
RadVel: The Radial Velocity Modeling Toolkit

Benjamin J. Fulton1,2,3 , Erik A. Petigura1,4 , Sarah Blunt1 , and Evan Sinukoff1,2,5
1
California Institute of Technology, Pasadena, California, USA

2
Institute for Astronomy, University of Hawai‘i at Maānoa, Honolulu, HI 96822, USA
Received 2017 December 22; accepted 2018 January 16; published 2018 March 12

Abstract

RadVel is an open-source Python package for modeling Keplerian orbits in radial velocity (RV) timeseries.

RadVel provides a convenient framework to fit RVs using maximum a posteriori optimization and to compute

robust confidence intervals by sampling the posterior probability density via Markov Chain Monte Carlo (MCMC).

RadVel allows users to float or fix parameters, impose priors, and perform Bayesian model comparison. We have

implemented real-time MCMC convergence tests to ensure adequate sampling of the posterior. RadVel can

output a number of publication-quality plots and tables. Users may interface with RadVel through a convenient

command-line interface or directly from Python. The code is object-oriented and thus naturally extensible. We

encourage contributions from the community. Documentation is available athttp://radvel.readthedocs.io.

Key words: (stars:) planetary systems – planets and satellites: fundamental parameters – planets and satellites:

general

Online material: color figures

1. Introduction

The radial velocity (RV) technique was among the first

techniques to permit the discovery and characterization of

extrasolar planets (e.g., Campbell et al. 1988; Latham et al.

1989; Mayor & Queloz 1995; Marcy & Butler 1996). Prior to

NASA’s Kepler Space Telescope (Borucki et al. 2010), the RV

technique accounted for the vast majority of exoplanet

detections (Akeson et al. 2013).

In the post-Kepler era, the RV field has shifted somewhat

from discovery to followup and characterization of planets

discovered by transit surveys. In the case of planets discovered

via either technique, the need to model RV orbits to extract

planet masses (or minimum masses, M isin) is a critical tool

necessary to understand the compositions and typical masses of

exoplanets.

Several software packages have been written to address the

need of the exoplanet community to fit RV timeseries.6 In

designing RadVel, we emphasized ease of use, flexibility, and

extensibility. RadVel can be installed and a simple planetary

system can modeled from the command-line in seconds.

RadVel also provides an extensive and well-documented

application programming interface (API) to perform complex

fitting tasks. We employ modern Markov Chain Monte Carlo

(MCMC) sampling techniques and robust convergence criteria

to ensure accurately estimated orbital parameters and their

associated uncertainties.

The goal of this paper is to document the core features of

RadVel version 1.0 (Fulton & Petigura 2017). Due to the

evolving nature of RadVel, the most up-to-date documenta-

tion can be found athttp://radvel.readthedocs.io (RTD page

hereafter). This paper complements that documentation and is

structured as follows. We describe the parameters involved to

describe an RV orbit in Section 2, in Section 3 we discuss

Bayesian inference as implemented in RadVel. The design of

the code is described in Section 4 and the model fitting

procedure is described in Section 5. We explain how to install

RadVel and walk through two example fits to demonstrate

how the code is run in Section 6. We describe the mechanism

for support and contributions in Section 7 and close with some

concluding remarks in Section 8.

2. The Radial Velocity Orbit

RV orbits are fundamentally described with five orbital

elements: orbital period (P), a parameter that describes the

orbital phase at a given time (we use the time of inferior

conjunction, Tc); orbital eccentricity (e); the argument of

periastron of the star’s orbit (ω); and the velocity semi-

amplitude (K). We also include terms for the mean center-of-

mass velocity (γ), plus linear (ġ), and quadratic (g̈) acceleration
terms in the RV model. Since RV measurement uncertainties

generally do not take into account contributions from

Publications of the Astronomical Society of the Pacific, 130:044504 (13pp), 2018 April https://doi.org/10.1088/1538-3873/aaaaa8

© 2018. The Astronomical Society of the Pacific. All rights reserved. Printed in the U.S.A.

3
Texaco Fellow.

4
Hubble Fellow.

5
Natural Sciences and Engineering Research Council of Canada Graduate

Student Fellow.
6

A non-exhaustive list includes RVLIN (Wright & Howard 2009),
Systemic (Meschiari et al. 2009; Meschiari & Laughlin 2010), EXOFAST
(Eastman et al. 2013), rvfit (Iglesias-Marzoa et al. 2015), and ExoSOFT
(Mede & Brandt 2017).

1

https://orcid.org/0000-0003-3504-5316
https://orcid.org/0000-0003-3504-5316
https://orcid.org/0000-0003-3504-5316
https://orcid.org/0000-0003-0967-2893
https://orcid.org/0000-0003-0967-2893
https://orcid.org/0000-0003-0967-2893
https://orcid.org/0000-0002-3199-2888
https://orcid.org/0000-0002-3199-2888
https://orcid.org/0000-0002-3199-2888
https://orcid.org/0000-0002-5658-0601
https://orcid.org/0000-0002-5658-0601
https://orcid.org/0000-0002-5658-0601
http://radvel.readthedocs.io
http://radvel.readthedocs.io
https://doi.org/10.1088/1538-3873/aaaaa8
http://crossmark.crossref.org/dialog/?doi=10.1088/1538-3873/aaaaa8&domain=pdf&date_stamp=2018-03-12
http://crossmark.crossref.org/dialog/?doi=10.1088/1538-3873/aaaaa8&domain=pdf&date_stamp=2018-03-12

astrophysical and instrumental sources of noise we also fit for a

“jitter” term (σ), which is added in quadrature with the

measurement uncertainties. These parameters are listed and

described in Table 1 for reference. Figure 1 depicts an example

eccentric Keplerian orbit with several of these parameters

annotated. We define a cartesian coordinate system described

by the x̂, ŷ, and ẑ unit vectors such that ẑ points away from the

observer and ŷ is normal to the plane of the planet’s orbit. In

this coordinate system, the x-y plane defines the sky plane.

2.1. Keplerian Solver

Synthesizing radial velocities involves solving the following

system of equations:

= - ()M E e Esin , 1

n =
+
-

-
⎛

⎝
⎜

⎞

⎠
⎟ ()

e

e

E
2 tan

1

1
tan

2
, 21

n w w= = + +˙ [() ()] ()v K ez cos cos , 3r

where M is the mean anomaly, E is the eccentric anomaly, and

e is the orbital eccentricity, ν is commonly referred to as the

true anomaly, K is the velocity semi-amplitude, and vr is the

star’s reflex RV caused by a single orbiting planet. Equation (1)

is known as Kepler’s equation, and we solve it using the

iterative method proposed by Danby (1988) and reproduced in

Murray & Dermott (1999).

Note that we equate ż to vr in our description of the RV orbit.

In our coordinate system, the ẑ unit vector points away from the

observer. Historically, this has been the observational conven-

tion so that positive RV can be interpreted as a redshift of the

star. However, some derivations of this equation in the

literature (e.g., Murray & Correia (2010) and Deck et al.

(2014) define their coordinate system such that ẑ points toward

the observer and derive an equation for RV that is very similar

to our Equation (3)). The key difference when defining a

coordinate system with ẑ pointing toward the observer is that

the sign in Equation (3) must be flipped (= -˙v zr) or,

equivalently, ω must refer to the argument of periapsis of the

planet’s orbit, which is shifted by π relative to the argument of

periapsis of the star’s orbit.

In the case of multiple planets, the Keplerian orbits are

summed together. We also add acceleration terms to account

for additional perturbers in the system with orbital periods

much longer than the observational baseline. The total RV

motion of the star due to all companions (r) is

 å g g g= + + - + -˙ () () ()v t t t t¨ , 4r

k

N

r k, 0 0
2

pl

where Npl is the total number of planets in the system and t0 is

an arbitrary abscissa epoch defined by the user.

2.2. Parameterization

To speed fitting convergence and avoid biasing parameters

that must physically be finite and positive (e.g., Lucy &

Sweeney 1971), analytical transformations of the orbital

elements are often used to describe the orbit. In RadVel, we

have implemented several of these transformations into six

different “basis” sets. One of the highlight features of RadVel

is its ability to easily switch between these different bases. This

allows the user to explore any biases that might arise based on

the choice of parameterization, and/or impose priors on

parameters or combinations of parameters that are not typically

used to describe an RV orbit (e.g., a prior on we cos from a

secondary eclipse detection).

We have implemented the basis sets listed in Table 2. Users

can easily add additional basis sets by modifying the radvel.

basis.Basis object. A string representation of the new

basis should be added to the radvel.basis.Basis.

BASIS_NAMES attribute. The radvel.basis.Basis.

to_synth and radvel.basis.Basis.from_synth

methods should also be updated to properly transform the

new basis to and from the existing “synth” basis.

Because priors are assumed to be uniform in the fitting basis,

this imposes implicit priors on the Keplerian orbital elements.

For example, choosing the “ Pln , Tc, e, w, Kln ” basis would

impose a prior that favors small P and K values as there is

much more phase space for the MCMC chains to explore near

= =P K 0. See Eastman et al. (2013) for a detailed

description of the implicit priors imposed on e and ω based

Table 1

Keplerian Orbital Elements

Parameter Description Symbol

Keplerian Orbital Parameters

Orbital period P

Time of inferior conjunction (or transit)a Tc
Time of periastrona,b Tp
Eccentricity e

Argument of periapsis of the star’s orbitb ω

Velocity semi-amplitude K

Mean and Acceleration Terms

Mean center-of-mass velocityc gi
Linear acceleration term ġ
Second-order acceleration term g̈

Noise Parameters

Radial velocity “jitter” (white noise)c si

Notes.
a
Either Tc or Tp can be used to describe the phase of the orbit. Both are not

needed simultaneously.
b
Undefined for circular orbits.

c
Usually specific to each instrument (i).

2

Publications of the Astronomical Society of the Pacific, 130:044504 (13pp), 2018 April Fulton et al.

on the choice of fitting in we cos and we sin , we cos and

we sin , or e and ω directly. In the case that the data does not

constrain, or weakly constrains some or all orbital parameters,

the choice of the fitting basis becomes important due to these

implicit priors. We usually prefer to perform fitting and

posterior sampling using the P, Tc, we cos , we sin , K basis

because this imposes flat priors on all of the orbital elements,

avoids biasing >K 0, and helps to speed MCMC convergence.

However, the P, Tc, we cos , we sin , Kln , and Pln , Tc, e, w,
Kln bases can be useful in some scenarios, especially when K

is large and P is long compared with the observational baseline.

There is no default basis. The choice of fitting basis must be

made explicitly by the user. It is generally good practice to

perform the fit in several different basis sets to check for

consistency.

Inspection of Equation (3) shows that vr for = +K q and

w l= is identical to vr when = -K q and w l p= + . For

low signal-to-noise detections where the MCMC walkers (see

Section 5.2) can jump between the = +K q and = -K q

solutions, this degeneracy can lead to bimodal posterior

distributions for K reflected about K=0. The posterior

distributions for Tc and/or ω will also be bimodal. In these

cases, we advise the user to proceed with caution when

interpreting the posterior distributions and to explore a variety

of basis sets and priors (see Section 4.5) to determine their

impact on the resulting posteriors.

Figure 1. Diagram of a Keplerian orbit. Left: top-down view of an eccentric Keplerian orbit with relevant parameters labeled. The planet’s orbit is plotted as a light

gray dotted line and the star’s orbit is plotted in blue (scale exaggerated for clarity). Right: model radial velocity curve for the same orbit with the relevant parameters

labeled. We define a cartesian coordinate system described by the x̂, ŷ, and ẑ unit vectors such that ẑ points away from the observer and ŷ is normal to the plane of the

planet’s orbit. In this coordinate system, the x-y plane defines the sky plane. The plane of the orbit lies in the plane of the page.

(A color version of this figure is available in the online journal.)

Table 2

Parameterizations of the Orbit

Parameters Describing Orbit Notes

P, Tp, e, w, K “Synth” basis used to synthesize RVs

P, Tc, we cos , we sin , K Standard basis for fitting and posterior sampling

P, Tc, we cos , we sin , Kln Forces >K 0

P, Tc, we cos , we sin , K Imposes a linear prior on e

P, Tc, e, w, K Slower MCMC convergence

Pln , Tc, e, w, Kln Useful when P is long compared with the observational baseline

3

Publications of the Astronomical Society of the Pacific, 130:044504 (13pp), 2018 April Fulton et al.

3. Bayesian Inference

We model RV data following the standard practices of

Bayesian inference. The goal is to infer the posterior

probability density p given a data set () and priors as in

Bayes’ Theorem:

  q q qµ(∣) (∣) () ()p p . 5

The Keplerian orbital parameters are contained in the θ vector.

 q(∣) is the likelihood that the data is drawn from the model

described by the parameter set θ. Assuming Gaussian

distributed noise, the likelihood is

 


åq
q

s

p s

=-
-

+

- +

(∣)
(())

() ()

t d

e

e

ln
1

2

,

ln 2 , 6

i i

j

r j j

j i

j i

,
2

2 2

2 2

where r j, is the Keplerian model (Equation (4)) predicted at the

time (t) of each RV measurement (dj), ej is the measurement

uncertainty associated with each dj, and si is a Gaussian noise

term to account for any astrophysical or instrumental noise not

included in the measurement uncertainties. The si terms are

unique to each instrument (i). For data sets containing

velocities from multiple instruments, the total likelihood is

the sum of the natural log of the likelihoods for each

instrument:

   åq q=(∣) (∣) ()ln ln 7
i

i i

We sample the posterior probability density surface using

MCMC (see Section 5.2). The natural log of the priors are

applied as additional additive terms such that

    åq q q q= +(∣) () (∣) () ()pln ln ln , 8
k

k

for each prior (k). If no priors are explicitly defined by the

user, then all priors are assumed to be uniform

and  qå =()ln 0k k .

4. Code Design

The fundamental quantity for model fitting and parameter

estimation is the posterior probability density p, which is

represented in RadVel as a Python object. Users create p by

specifying a likelihood , priors  , model r, and data ,

which are also implemented as objects. Here, we describe each

of these objects, which are the building blocks of the RadVel

API. Figure 2 summarizes these objects and their hierarchy.

4.1. Parameters

The posterior probability density p is a surface inN , where

N is number of free parameters. We specify coordinates in this

parameter space using a radvel.Parameters object.

radvel.Parameters is a container object that inherits

from Python’s ordered dictionary object, collections.

OrderedDict. We modeled this dictionary representation

after the lmfit7 (Newville et al. 2014) API, which allows users

to conveniently interface with variables via string keys (as

opposed to integer indexes). Auxiliary attributes, such as the

number of planets and the fitting basis, are also stored in the

radvel.Parameters object outside of the dictionary

representation.

Each element of the radvel.Parameters dictionary is

represented as a radvel.Parameter object that contains

the parameter value and a boolean attribute which specifies if

the parameter is fixed or allowed to float.8

4.2. Model Object

The radvel.RVModel class is a callable object that

computes the radial velocity curve that corresponds to the

parameters stored in the radvel.Parameters object.

Calculating the model RV curve requires solving Kepler’s

equation (see Section 2.1), and is computationally intensive.

This solver is implemented in C to maximize performance. We

also provide a Python implementation so that users may run

RadVel without compiling C code (albeit at slower speeds).

4.3. Likelihood Object

The primary function of the radvel.Likelihood object

is to establish the relationship between a model and the data. It

is a generic class which is meant to be inherited by objects

designed for specific applications such as the radvel.

RVLikelihood object. Most fitting packages (e.g., emcee,

Foreman-Mackey et al. 2013) require functions that take

vectors of floating-point values as inputs, and outputs a single

goodness-of-fit metric. These conversions between the string-

indexed radvel.Parameters object and ordered arrays of

floats containing only the parameters that are allowed to vary

are handled within the radvel.Likelihood object.

The radvel.RVLikelihood object is a container for a

single radial velocity data set (usually from a single instrument)

and a radvel.RVModel object. The radvel.Likelihood.

logprob method returns the natural log of the likelihood of the

model evaluated at the parameter values contained in the params

attribute given the data contained in the x, y, and yerr attributes.

The extra_params attribute contains additional parameters that

are not needed to calculate the Keplerian model, but are needed in

the calculation of the likelihood (e.g., jitter).

The radvel.CompositeLikelihood object is simply

a container for multiple radvel.RVLikelihood objects

7
https://lmfit.github.io/lmfit-py/

8
Note that this representation is different from that used in RadVel

versions <1.0.

4

Publications of the Astronomical Society of the Pacific, 130:044504 (13pp), 2018 April Fulton et al.

https://lmfit.github.io/lmfit-py/

which is constructed in the case of multi-instrument data sets.

The logprob method of the radvel.CompositeLike-

lihood adds the results of the logprob methods for all of

the radvel.RVLikelihood objects contained within the

radvel.CompositeLikelihood.

4.4. Posterior Object

The radvel.Posterior object is very similar to the

radvel.Likelihood object, but it also contains any user-

defined priors. The logprob method of the radvel.

Posterior object is then the natural log of the likelihood

of the data given the model and priors.

4.5. Priors

Priors are defined in the radvel.prior module and

should be callable objects which return a single value to be

multiplied by the likelihood. Several useful example priors are

already implemented.

• EccentricityPrior can be used to set upper limits on

the planet eccentricities.

• GaussianPrior can be used to assign a prior to a

parameter value with a given center (μ) and width (σ).

• PositiveKPrior can be used to force planet semi-

amplitudes to be positive.9

• HardBounds prior is used to impose strict limits on

parameter values.

Other priors are continuously being implemented and we

encourage users to frequently check the API documentation on

the RTD page for new priors.

Figure 2. Class diagram for the RadVel package showing the relationships between the various objects contained within the RadVel package. Arrows point from

attributes to their container objects (i.e., a radvel. Parameter object is an attribute of a radvel.Parameters object). Pertinent characteristics are summarized

beneath each object. An asterisk next to an arrow indicates that the container object typically contains multiple attribute objects of the indicated type.

9
This should be used with extreme caution to avoid biasing results toward

non-zero planet masses (Lucy & Sweeney 1971).

5

Publications of the Astronomical Society of the Pacific, 130:044504 (13pp), 2018 April Fulton et al.

Figure 3. Example RV timeseries plot produced by RadVel for the HD 164922 fit with two planets and three spectrometers (see Section 6.2.2). This shows the MAP

2-planet Keplerian orbital model. The blue line is the two-planet model. The RV jitter terms are included in the plotted measurement uncertainties. (b) Residuals to the

best fit two-planet model. (c) RVs phase-folded to the ephemeris of planet b. The Keplerian orbital models for all other planets have been subtracted. The small point

colors and symbols are the same as in panel (a). Red circles are the same velocities binned in 0.08 units of orbital phase. The phase-folded model for planet b is shown

as the blue line. Panel (d) is the same as panel (c), but for planet HD 164922 c.

(A color version of this figure is available in the online journal.)

6

Publications of the Astronomical Society of the Pacific, 130:044504 (13pp), 2018 April Fulton et al.

5. Model Fitting

5.1. Maximum a Posteriori Fitting

The set of orbital parameters that maximizes the posterior

probability (maximum a posteriori optimization, MAP) are

found using Powell’s method (Powell 1964) as implemented in

scipy.optimize.minimize.10 The code that performs

the minimization can be found in the radvel.fitting

submodule.

5.2. Uncertainty Estimation

The radvel.mcmc module handles the MCMC explora-

tion of the posterior probability surface (p) to estimate

parameter uncertainties. We use the MCMC package emcee

(Foreman-Mackey et al. 2013), which employs an Affine

Invariant sampler (Goodman & Weare 2010). The MCMC

sampling generally explores a fairly wide range of parameter

values but RadVel should not be treated as a planet discovery

tool. The RadVel MCMC functionality is simply meant to

determine the size and shape of the posterior probability

density.

It is important to check that all of the independent walkers in

the MCMC chains have adequately explored the same

maximum on the posterior probability density surface and are

not stuck in isolated local maxima. The Gelman-Rubin statistic

(G-R, Gelman et al. 2003) is one metric to check for

“convergence” by comparing the intra-chain variances to the

inter-chain variances. G-R values close to unity indicate that

the chains are converged.

We initially run a set of MCMC chains until the G-R statistic

is less than 1.03 for all free parameters as a burn-in phase.

These initial steps are the discarded and new chains are

launched from the last positions. We note that this is a

particularly conservative approach to burn-in that is enabled

thanks to the very fast Keplerian model calculation and

convergence of RadVel. Users may relax the G-R<1.03
burn-in requirement via command-line flags or in the

arguments of the radvel.mcmc.mcmc function. After the

burn-in phase, we follow the prescription of Eastman et al.

(2013) to check the MCMC chains for convergence after every

50 steps. The chains are deemed well-mixed, and the MCMC

run is halted when the G-R statistic is less than 1.01 and the

number of independent samples (Tz statistic, Ford 2006) is

greater than 1000 for all free parameters for at least five

consecutive checks. We note that these statistics can not be

calculated between walkers within an ensemble, so we

calculate G-R and Tz across completely independent ensembles

of samplers. By default, we run eight independent ensembles in

parallel with 50 walkers per ensemble for up to a maximum of

10000 steps per walker, or until convergence is reached.

These defaults can be customized on the command-line or in

the arguments of the radvel.mcmc.mcmc function. Each of

the independent ensembles are run on separate CPUs, so the

number of ensembles should not exceed the number of CPUs

available or significant slowdown will occur. Default initial

step sizes for all free parameters are set to 10% of their value

except period, which is set to 0.001% of the period. These

initial step sizes can be customized by setting the mcmcscale

attributes of the radvel.Parameter objects.

6. Examples

Users interact with RadVel either through a command-line

interface (CLI) or through the Python API. Below, we run

through an example RV analysis of HD 164922 from (Fulton

et al. 2016) using the CLI. The Python API exposes additional

functionality that may be used for special case fitting and is

described in the advanced usage page on the RTD website.

6.1. Installation

To install RadVel, users must have working version of

Python 2 or 3.11 We recommend the Anaconda Python

distribution.12

Users may then install RadVel from the Python Package

Index (pip).13,14

1$ pip install radvel

6.2. Command-line Interface

6.2.1. Setup Files

The setup file is the central component in the command-line

interface execution of RadVel. This file is a Python script that

defines the number of planets in the system; initial parameter

guesses; stellar parameters if present; priors; reads and defines

data sets; initializes a model object; and defines metadata

associated with the run. One setup file should be produced for

each planetary system that the user attempts to model using the

command-line interface. Two example setup files can be

downloaded from the GitHub repo. A complete example is

provided below with inline comments to describe the various

components.

10
Any of the optimization methods implemented in scipy.optimize.

minimize, which do not require pre-calculation of derivatives (e.g.,
Nelder-Mead), can be swapped in with a simple modification to the code in
the radvel.fitting module.

11
As the community transitions from Python 2 to 3, we will likely drop

support for Python 2.
12

https://www.anaconda.com
13

https://pypi.python.org/pypi
14

Early RadVel adopters may see installation conflicts with early versions of
RadVel. We recommend manually removing old versions and performing a
fresh install with pip.

7

Publications of the Astronomical Society of the Pacific, 130:044504 (13pp), 2018 April Fulton et al.

https://www.anaconda.com
https://pypi.python.org/pypi

1 #Required packages for setup

2 import os

3 import pandas as pd

4 import numpy as np

5 import radvel as rv

6

7 #name of the star used for plots and tables

8 starname=’HD164922’
9

10 #number of planets in the system

11 nplanets=2

12

13 #list of instrument names. Can be whatever

14 #you like but should match ’tel’ column in the

15 #input data file.

16 instnames=[’k’, ’j’, ’a’]

17

18 #number of instruments with unique

19 #velocity zero-points

20 ntels=len(instnames)

21

22 #Fitting basis, see rv.basis.BASIS_NAMES

23 #for available basis names

24 fitting_basis=’per tc secosw sesinw k’

25

26 #reference epoch for plotting purposes

27 bjd0=2450000.
28

29 #(optional) customize letters

30 #corresponding to planet indicies

31 planet_letters={1: ’b’, 2:’c’}

32

33 #Define prior centers (initial guesses) in a basis

34 #of your choice (need not be in the fitting basis)

35 #initialize Parameters object

36params=rv.Parameters(nplanets,

37 basis=’per tc e w k’)

38

39 #period of 1st planet

40 params[’per1’]=rv.Parameter(value=1206.3)

41 #time of inferior conjunction of 1st planet

42 params[’tc1’]=rv.Parameter(value=2456779.)
43 #eccentricity

44 params[’e1’]=rv.Parameter(value=0.01)

45 #argument of periastron of the star’s orbit

46 params[’w1’]=rv.Parameter(value=np.pi/2)

47 #velocity semi-amplitude

48 params[’k1’]=rv.Parameter(value=10.0)

49

50 #same parameters for 2nd planet ...

51 params[’per2’]=rv.Parameter(value=75.771)

52 params[’tc2’]=rv.Parameter(value=2456277.6)

53 params[’e2’]=rv.Parameter(value=0.01)
54 params[’w2’]=rv.Parameter(value=np.pi/2)

55 params[’k2’]=rv.Parameter(value=1.0)

56

57 #slope and curvature

58 params[’dvdt’]=rv.Parameter(value=0.0)

59 params[’curv’]=rv.Parameter(value=0.0)

60

61 #zero-points and jitter terms for each instrument

62 params[’gamma_j’]=rv.Parameter(1.0)

63 params[’jit_j’]=rv.Parameter(value=2.6)

(Continued)

64

65

66 #Convert input orbital parameters into the

67 #fitting basis

68 params=params.basis.to_any_basis(

69 params,fitting_basis)
70

71 #Set the ’vary’ attributes of each of the parameters

72 #in the fitting basis. A parameter’s ’vary’ attribute

73 #should be set to False if you wish to hold it fixed

74 #during the fitting process. By default, all ’vary’

75 #parameters are set to True.

76 params[’dvdt’].vary=False

77 params[’curv’].vary=False
78

79 #Load radial velocity data, in this example the

80 #data are contained in a csv file, the resulting

81 #dataframe or must have ’time’, ’mnvel’, ’errvel’,

82 #and ’tel’ keys the velocities are expected

83 #to be in m/s

84 path=os.path.join(rv.DATADIR, ’164922_fixed.txt’)

85 data=pd.read_csv(path, sep=’ ’)

86

87 #Define prior shapes and widths here.

88 priors=[
89 #Keeps eccentricity <1 for all planets

90 rv.prior.EccentricityPrior(nplanets),

91 #Keeps K>0 for all planets

92 rv.prior.PositiveKPrior(nplanets),

93 #Hard limits on jitter parameters

94 rv.prior.HardBounds(’jit_j’, 0.0, 10.0),

95 rv.prior.HardBounds(’jit_k’, 0.0, 10.0),

96 rv.prior.HardBounds(’jit_a’, 0.0, 10.0)

97]

98

99 #abscissa for slope and curvature terms

100 #(should be near mid-point of time baseline)

101 time_base=0.5*
(data.time.min() + data.time.max())

102

103 #optional argument that can contain stellar mass

104 #in solar units (mstar) and uncertainty (mstar_err).

105 #If not set, mstar will be set to nan.

106 stellar=dict(mstar=0.874, mstar_err=0.012)

6.2.2. Workflow

The RadVel CLI is provided for the convenience of the

user and is the standard operating mode of RadVel. It acts as a

wrapper for much of the underlying API. Most users will likely

find this to be the easiest way to run RadVel fits and produce

the standard outputs.

Here, we provide a walkthrough for a basic RadVel fit for a

multi-planet system with RV data collected using three

different instruments. The data for this example is taken from

Fulton et al. (2016). The first step is to create a setup file for the

fit. In this case, we have provided a setup file in the GitHub

8

Publications of the Astronomical Society of the Pacific, 130:044504 (13pp), 2018 April Fulton et al.

repo (example_planets/HD164922.py). Once we have

a setup file, we always need to run a MAP fit first. This is done

using the radvel fit command:

1 $ radvel fit -s /path/to/HD164922.py

This command will produce some text output summarizing

the result which shows the final parameter values after the

MAP fit. A new directory will be created in the current

working directory with the same name of the setup file.

In this case, a directory named HD164922 was created

and it contains a HD164922_post_obj.pkl file and a

HD164922_radvel.stat file. Both of these files are used

internally by RadVel to keep track of the components of the

fit that have already been run. All of the output associated

with this RadVel fit will be put in this directory.

It is useful to inspect the MAP fit using the radvel plot

command:

1 $ radvel plot -t rv -s /path/to/HD164922.py

This will produce a new PDF file in the output directory called

HD164922_rv_multipanel.pdf that looks very similar

to Figure 3. The annotated parameter uncertainties will only be

printed if MCMC has already been run. The -t rv flag tells

RadVel to produce the standard RV timeseries plot. Several

other types of plots can also be produced using the radvel

plot command.

If the fit looks good, then the next step is to run an MCMC

exploration to estimate parameter uncertainties:

1 $ radvel mcmc -s /path/to/HD164922.py

Once the MCMC chains have converged or the maximum step

limit is reached (see Section 5.2), two additional output files

will be produced: HD164922_chains.csv.tar.bz2 and

HD164922_post_summary.csv. The chains.csv.

tar.bz2 file contains each step in the MCMC chains. All

of the independent ensembles and walkers have been combined

such that there is one column per free parameter. The

post_summary.csv file contains the median and 68th

percentile credible intervals for all free parameters.

Now that the MCMC has finished we can make some

additional plots:

1$ radvel plot -t rv -s /path/to/HD164922.py

2$ radvel plot -t corner -s /path/to/HD164922.py

3$ radvel plot -t trend -s /path/to/HD164922.py

The RV timeseries plot (Figure 3) now includes the parameter

uncertainties in the annotations. In addition, a “corner” or

triangle plot showing all parameter covariances produced by

the corner Python package (Figure 4, Foreman-Mackey

et al. 2016), and a “trend” plot showing the evolution of the

parameter values as they step through the MCMC chains will

be produced (Figure 5).

In this case, we have also defined the stellar mass (mstar)

and uncertainty (mstar_err) in the stellar dictionary in

the setup file. This allows us to use the radvel derive

command to convert the velocity semi-amplitude (K), orbital

period (P), and eccentricity (e) into a minimum planet

mass (M isin):

1$ radvel derive -s /path/to/HD164922.py

2$ radvel plot -t derived -s /path/to/HD164922.py

This produces the file HD164922_derived.csv.tar.

bz2 in the output directory which contains columns for each of

the derived parameters. For the case of transiting planets,

planetary radii can also be specified (see the

epic203771098.py example file) to allow the computation

of planet densities. Synthetic Gaussian posterior distributions

are created for these stellar parameters and these synthetic

posteriors are multiplied by the real posterior distributions in

order to properly account for the uncertainties in both the stellar

and orbital parameters. A corner plot for the derived parameters

is created using the radvel plot -t derived command.

An optional model comparison table (Table 3) can be created

using the radvel bic command:

1$ radvel bic -t nplanets -s /path/to/HD164922.py

This produces a table summarizing model comparisons with 0

to Npl planets where Npl is the number of planets in the system

specified in the setup file. This allows the user to compare

models with fewer planets to ensure that their adopted model is

statistically favored. The comparisons are performed by fixing

the jitter parameters to their MAP values from the full Npl

planet fit.

RadVel can also produce publication-quality plots, tables,

and a summary report in LaTEX and PDF form. The

functionality contained in the radvel.RadvelReport

and radvel.TexTable objects depend on the existence of

a setup file (see Section 6.2.1), which is usually only present

when utilizing the CLI. RadVel reports contain LaTEX tables

showing the MAP values and credible intervals for all orbital

parameters, a summary of non-uniform priors, and a model

comparison table.15 A RV timeseries plot and a corner plot are

also included. If stellar and/or planetary parameters are

specified in the setup file (see Section 6.2.1), then a second

corner plot is included with the derived parameters including

planet masses (M isin) and densities (if transiting and planet

radii given).

15
only if the radvel bic command has been run.

9

Publications of the Astronomical Society of the Pacific, 130:044504 (13pp), 2018 April Fulton et al.

Figure 4. Corner plot showing all joint posterior distributions derived from the MCMC sampling. Histograms showing the marginalized posterior distributions for

each parameter are also included. This plot is produced as part of the CLI example for HD 164922 as discussed in Section 6.2.2.

10

Publications of the Astronomical Society of the Pacific, 130:044504 (13pp), 2018 April Fulton et al.

The command

1$ radvel report -s /path/to/HD164922.py

creates the LaTEX file HD164922_results.tex in the

output directory and compiles it into a PDF using the

pdflatex command.16 The summary PDF is a great way to

send RadVel results to colleagues, and because the LaTEX

code for the report is also saved the tables can be copied

directly into a manuscript to avoid transcription errors.

7. RadVel and the Community

7.1. Support

Please report any bugs or problems to the issues tracker on

the GitHub repo page.17 Bugfixes in response to issue reports

will be included in the next version release and will be

Figure 5. Trend plot produced by RadVel showing parameter evolution during the MCMC exploration. This plot is produced as part of the CLI example for HD

164922 as discussed in Section 6.2.2. As an example, we show only a single page of the PDF output. In practice, there will be one plot like this for each free

parameter. Each independent ensemble and walker is plotted in different colors. If the MCMC runs have successfully converged, these plots should look like white

noise will all colors mixed together. Large-scale systematics and/or single chains (colors) isolated from the rest likely indicate problems with the initial parameter

guesses and/or choices of priors.

(A color version of this figure is available in the online journal.)

Table 3

Model Comparison

Statistic 0 Planets 1 Planet 2 Planets (adopted)

Ndata (number of measurements) 401 401 401

Nfree (number of free parameters) 3 8 13

rms (rms of residuals in m s−1) 4.97 3.01 2.91

c2 (jitter fixed) 1125.56 431.7 397.29

cn
2 (jitter fixed) 2.83 1.1 1.02

ln (natural log of the likelihood) −1356.54 −1009.61 −992.41

BIC (Bayesian information criterion) 2731.06 2067.17 2062.74

16
The pdflatex binary is assumed to be in the system’s path by default, but

the full path to the binary may be specified using the –latex-compiler
flag if it installed in a non-standard location.

17
https://github.com/California-Planet-Search/radvel/issues

11

Publications of the Astronomical Society of the Pacific, 130:044504 (13pp), 2018 April Fulton et al.

https://github.com/California-Planet-Search/radvel/issues

available by download from PyPI (via pip install

radvel –upgrade) at that time.

7.2. Contributing Code

The RadVel codebase is open-source and we encourage

contributions from the community. All development will take

place on GitHub. Developers should fork the repo and submit

pull requests into the next-release base branch. These pull

requests will be reviewed by the maintainers and merged into

the master branch to be included in the next tagged release.

We ask that developers follow these simple guidelines when

contributing code:

• Do not break any existing functionality. This will

automatically be checked when a pull request is created

via Travis Continuous Integration.18

• Develop with support for Python 3 and backward-

compatibility with Python 2 where possible.

• Code according to PEP8 standards.19

• Document your code using Napolean-compatible doc-

strings,20 following the Google Python Style Guide.21

• Include unit tests that touch any new code using the

nosetests framework.22 Example unit tests can be

found in the radvel/radvel/tests subdirectory of

the repo.

7.3. Future Work

RadVel is currently under active development and will

grow to incorporate the modeling needs of the exoplanet

community. Specific areas for future include:

• Gaussian Process noise modeling. Implement likelihoods

that incorporate Gaussian process descriptions of RV

variability.

The authors have several potential improvements to

RadVel in mind or currently under development. We

encourage the community to suggest other wish list items or

contribute insight and/or code to ongoing development efforts

using the GitHub issue tracker. Our current wish list is as

follows:

• Improve performance of the dictionary key-based string

indexing.

• Include other types of model comparisons in the radvel

bic command (e.g., eccentric versus circular fits).

• Add ability to simultaneously fit other data sets (e.g., transit

photometry, transit timing variations, astrometry).

8. Conclusion

We have provided a flexible, open-source toolkit for

modeling RV data written in object-oriented Python. The

package is designed to model the RV orbits of systems with

multiple planets and data collected from multiple instruments.

It features a convenient command-line interface and a

scriptable API. RadVel utilizes a fast Keplerian solver written

in C and robust, real-time convergence checking of the MCMC

chains. It supports multiple parameterizations of the RV orbit

and contains convenience functions for converting between

parameterizations. RadVel has already been used to model

RV orbits in at least nine refereed publications.23 In addition,

Teske et al. (2017) demonstrated that RadVel produces results

consistent with the results of the Systemic RV fitting

package (Meschiari et al. 2009; Meschiari & Laughlin 2010).

We encourage the community to continue using RadVel for

their RV modeling needs and to contribute to its future

development.

E.A.P. acknowledges support from Hubble Fellowship grant

HST-HF2-51365.001-A awarded by the Space Telescope

Science Institute, which is operated by the Association of

Universities for Research in Astronomy, Inc. for NASA under

contract NAS 5-26555. E.S. is supported by a post-graduate

scholarship from the Natural Sciences and Engineering

Research Council of Canada.

ORCID iDs

Benjamin J. Fulton https://orcid.org/0000-0003-3504-5316
Erik A. Petigura https://orcid.org/0000-0003-0967-2893
Sarah Blunt https://orcid.org/0000-0002-3199-2888
Evan Sinukoff https://orcid.org/0000-0002-5658-0601

References

Akeson, R. L., Chen, X., Ciardi, D., et al. 2013, PASP, 125, 989
Borucki, W. J., Koch, D., Basri, G., et al. 2010, Sci, 327, 977
Campbell, B., Walker, G. A. H., & Yang, S. 1988, ApJ, 331, 902
Christiansen, J. L., Vanderburg, A., Burt, J., et al. 2017, AJ, 154, 122
Crossfield, I. J. M., Ciardi, D. R., Isaacson, H., et al. 2017, AJ, 153, 255
Danby, J. M. A. 1988, Fundamentals of Celestial Mechanics
Deck, K. M., Agol, E., Holman, M. J., & Nesvorný, D. 2014, ApJ, 787, 132
Eastman, J., Gaudi, B. S., & Agol, E. 2013, PASP, 125, 83
Ford, E. B. 2006, ApJ, 642, 505
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP,

125, 306
Foreman-Mackey, D., Vousden, W., Price-Whelan, A., et al. 2016, corner.py:

corner.py v2.0.0, doi:10.5281/zenodo.53155
Fulton, B., & Petigura, E. 2017, RadVel: Radial Velocity Fitting Toolkit,

doi:10.5281/zenodo.580821
Fulton, B. J., Howard, A. W., Weiss, L. M., et al. 2016, ApJ, 830, 46

18
https://travis-ci.org

19
https://www.python.org/dev/peps/pep-0008/

20
https://sphinxcontrib-napoleon.readthedocs.io

21
http://google.github.io/styleguide/pyguide.html

22
http://pythontesting.net/framework/nose

23
(Sinukoff et al. 2017a, 2017b; Petigura et al. 2017; Crossfield et al. 2017;

Weiss et al. 2017; Grunblatt et al. 2017; Christiansen et al. 2017; Teske
et al. 2017).

12

Publications of the Astronomical Society of the Pacific, 130:044504 (13pp), 2018 April Fulton et al.

https://orcid.org/0000-0003-3504-5316
https://orcid.org/0000-0003-3504-5316
https://orcid.org/0000-0003-3504-5316
https://orcid.org/0000-0003-3504-5316
https://orcid.org/0000-0003-0967-2893
https://orcid.org/0000-0003-0967-2893
https://orcid.org/0000-0003-0967-2893
https://orcid.org/0000-0003-0967-2893
https://orcid.org/0000-0002-3199-2888
https://orcid.org/0000-0002-3199-2888
https://orcid.org/0000-0002-3199-2888
https://orcid.org/0000-0002-3199-2888
https://orcid.org/0000-0002-5658-0601
https://orcid.org/0000-0002-5658-0601
https://orcid.org/0000-0002-5658-0601
https://orcid.org/0000-0002-5658-0601
https://doi.org/10.1086/672273
http://adsabs.harvard.edu/abs/2013PASP..125..989A
https://doi.org/10.1126/science.1185402
http://adsabs.harvard.edu/abs/2010Sci...327..977B
https://doi.org/10.1086/166608
http://adsabs.harvard.edu/abs/1988ApJ...331..902C
https://doi.org/10.3847/1538-3881/aa832d
http://adsabs.harvard.edu/abs/2017AJ....154..122C
https://doi.org/10.3847/1538-3881/aa6e01
http://adsabs.harvard.edu/abs/2017AJ....153..255C
https://doi.org/10.1088/0004-637X/787/2/132
http://adsabs.harvard.edu/abs/2014ApJ...787..132D
https://doi.org/10.1086/669497
http://adsabs.harvard.edu/abs/2013PASP..125...83E
https://doi.org/10.1086/500802
http://adsabs.harvard.edu/abs/2006ApJ...642..505F
https://doi.org/10.1086/670067
http://adsabs.harvard.edu/abs/2013PASP..125..306F
http://adsabs.harvard.edu/abs/2013PASP..125..306F
https://doi.org/10.5281/zenodo.53155
https://doi.org/10.5281/zenodo.580821
https://doi.org/10.3847/0004-637X/830/1/46
http://adsabs.harvard.edu/abs/2016ApJ...830...46F
https://travis-ci.org
https://www.python.org/dev/peps/pep-0008/
https://sphinxcontrib-napoleon.readthedocs.io
http://google.github.io/styleguide/pyguide.html
http://pythontesting.net/framework/nose

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. 2003, Bayesian Data
Analysis (2nd edn.; Chapman and Hall)

Goodman, J., & Weare, J. 2010, Comm. App. Math. Comp. Sci., 5, 65
Grunblatt, S. K., Huber, D., Gaidos, E., et al. 2017, AJ, 154, 254
Iglesias-Marzoa, R., López-Morales, M., & Jesús Arévalo Morales, M. 2015,

PASP, 127, 567
Latham, D. W., Stefanik, R. P., Mazeh, T., Mayor, M., & Burki, G. 1989,

Natur, 339, 38
Lucy, L. B., & Sweeney, M. A. 1971, AJ, 76, 544
Marcy, G. W., & Butler, R. P. 1996, ApJL, 464, L147
Mayor, M., & Queloz, D. 1995, Natur, 378, 355
Mede, K., & Brandt, T. D. 2017, AJ, 153, 135
Meschiari, S., & Laughlin, G. P. 2010, ApJ, 718, 543
Meschiari, S., Wolf, A. S., Rivera, E., et al. 2009, PASP, 121, 1016

Murray, C. D., & Correia, A. C. M. 2010, in Keplerian Orbits and Dynamics of
Exoplanets, ed. S. Seager (Tucson, AZ: Univ. Arizona Press), 15

Murray, C. D., & Dermott, S. F. 1999, in Solar System Dynamics, ed.
C. D. Murray (Cambridge: Cambridge Univ. Press)

Newville, M., Stensitzki, T., Allen, D. B., & Ingargiola, A. 2014, LMFIT: Non-
Linear Least-Square Minimization and Curve-Fitting for Python, doi:10.
5281/zenodo.11813

Petigura, E. A., Sinukoff, E., Lopez, E. D., et al. 2017, AJ, 153, 142
Powell, M. J. D. 1964 Comp. J, 7, 155
Sinukoff, E., Howard, A. W., Petigura, E. A., et al. 2017a, AJ, 153, 70
Sinukoff, E., Howard, A. W., Petigura, E. A., et al. 2017b, AJ, 153, 271
Teske, J. K., Wang, S. X., Wolfgang, A., et al. 2017, arXiv:1711.01359
Weiss, L. M., Deck, K. M., Sinukoff, E., et al. 2017, AJ, 153, 265
Wright, J. T., & Howard, A. W. 2009, ApJS, 182, 205

13

Publications of the Astronomical Society of the Pacific, 130:044504 (13pp), 2018 April Fulton et al.

https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.3847/1538-3881/aa932d
http://adsabs.harvard.edu/abs/2017AJ....154..254G
https://doi.org/10.1086/682056
http://adsabs.harvard.edu/abs/2015PASP..127..567I
https://doi.org/10.1038/339038a0
http://adsabs.harvard.edu/abs/1989Natur.339...38L
https://doi.org/10.1086/111159
http://adsabs.harvard.edu/abs/1971AJ.....76..544L
https://doi.org/10.1086/310096
http://adsabs.harvard.edu/abs/1996ApJ...464L.147M
https://doi.org/10.1038/378355a0
http://adsabs.harvard.edu/abs/1995Natur.378..355M
https://doi.org/10.3847/1538-3881/aa5e4a
http://adsabs.harvard.edu/abs/2017AJ....153..135M
https://doi.org/10.1088/0004-637X/718/1/543
http://adsabs.harvard.edu/abs/2010ApJ...718..543M
https://doi.org/10.1086/605730
http://adsabs.harvard.edu/abs/2009PASP..121.1016M
https://doi.org/10.5281/zenodo.11813
https://doi.org/10.5281/zenodo.11813
https://doi.org/10.3847/1538-3881/aa5ea5
http://adsabs.harvard.edu/abs/2017AJ....153..142P
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.3847/1538-3881/153/2/70
http://adsabs.harvard.edu/abs/2017AJ....153...70S
https://doi.org/10.3847/1538-3881/aa725f
http://adsabs.harvard.edu/abs/2017AJ....153..271S
http://arxiv.org/abs/1711.01359
https://doi.org/10.3847/1538-3881/aa6c29
http://adsabs.harvard.edu/abs/2017AJ....153..265W
https://doi.org/10.1088/0067-0049/182/1/205
http://adsabs.harvard.edu/abs/2009ApJS..182..205W

	1. Introduction
	2. The Radial Velocity Orbit
	2.1. Keplerian Solver
	2.2. Parameterization

	3. Bayesian Inference
	4. Code Design
	4.1. Parameters
	4.2. Model Object
	4.3. Likelihood Object
	4.4. Posterior Object
	4.5. Priors

	5. Model Fitting
	5.1. Maximum a Posteriori Fitting
	5.2. Uncertainty Estimation

	6. Examples
	6.1. Installation
	6.2. Command-line Interface
	6.2.1. Setup Files
	6.2.2. Workflow

	7. RadVel and the Community
	7.1. Support
	7.2. Contributing Code
	7.3. Future Work

	8. Conclusion
	References

