
Rafiki: Machine Learning as an Analytics Service System

Wei Wang†, Jinyang Gao†, Meihui Zhang
∗

, Sheng Wang†

Gang Chen‡, Teck Khim Ng†, Beng Chin Ooi†, Jie Shao⋄, Moaz Reyad†

†National University of Singapore, ∗Beijing Institute of Technology
‡Zhejiang University, ⋄ University of Electronic Science and Technology of China

†{wangwei, jinyang.gao, wangsh, ngtk, ooibc, moaz}@comp.nus.edu.sg
∗meihui zhang@bit.edu.cn, ‡ cg@zju.edu.cn, ⋄shaojie@uestc.edu.cn

ABSTRACT

Big data analytics is gaining massive momentum in the last few

years. Applying machine learning models to big data has become

an implicit requirement or an expectation for most analysis tasks,

especially on high-stakes applications. Typical applications include

sentiment analysis against reviews for analyzing on-line products,

image classification in food logging applications for monitoring

user’s daily intake, and stock movement prediction. Extending

traditional database systems to support the above analysis is in-

triguing but challenging. First, it is almost impossible to imple-

ment all machine learning models in the database engines. Sec-

ond, expert knowledge is required to optimize the training and in-

ference procedures in terms of efficiency and effectiveness, which

imposes heavy burden on the system users. In this paper, we de-

velop and present a system, called Rafiki, to provide the training

and inference service of machine learning models. Rafiki provides

distributed hyper-parameter tuning for the training service, and on-

line ensemble modeling for the inference service which trades off

between latency and accuracy. Experimental results confirm the

efficiency, effectiveness, scalability and usability of Rafiki.

PVLDB Reference Format:

Wei Wang, Jinyang Gao, Meihui Zhang, Sheng Wang, Gang Chen, Teck
Khim Ng, Beng Chin Ooi, Jie Shao, Moaz Reyad. Rafiki: Machine Learn-
ing as an Analytics Service System. PVLDB, 12(2): 128-140, 2018.
DOI: https://doi.org/10.14778/3282495.3282499

1. INTRODUCTION
Data analysis plays an important role in extracting valuable in-

sights from a huge amount of data. Database systems have been

traditionally used for storing and analyzing structured data, spatial-

temporal data, graph data, etc. Other data, such as multimedia data

(e.g., images and free text), and domain specific data (e.g, medical

data and sensor data), are being generated at fast speed and con-

stitute a significant portion of the Big Data [31]. It is beneficial

to analyze these data for database applications [32]. For instance,

∗Meihui Zhang is the corresponding author.

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 2
ISSN 21508097.
DOI: https://doi.org/10.14778/3282495.3282499

inferring the quality of a product from the review column in the

sales database would help to explain the sales numbers; Analyz-

ing food images from the food logging application can extract the

food preference of people from different ages. However, the above

analysis requires machine learning models, especially deep learn-

ing [15] models, for sentiment analysis [3] to classify the review as

positive or negative, and for image classification [13] to recognize

the food type from images. Figure 1 shows a pipeline of data anal-

ysis, where database systems have been widely used for the first 3

stages and machine learning is good at the 4th stage.

Acquisition

Extraction/

Cleaning/

Annotation

Integration
Analysis/

Modeling
Visualization

Figure 1: Data analytic pipeline.

One approach to integrating the machine learning techniques into

database applications is to preprocess the data off-line and add the

prediction results into a new column, e.g., a column for the food

type. However, such off-line preprocessing has two-folds of re-

striction. First, it requires the developers to have expert knowledge

and experience of training machine learning models. Second, the

queries cannot involve attributes of the object, e.g., the ingredients

of food, if they are not predicted in the preprocessing step. In ad-

dition, predicting the labels of all rows wastes a lot of time if the

queries only read the food type column of few rows, e.g., due to a

filtering on other columns. Another approach is to carry out the pre-

diction on-line as user-defined functions (UDFs) in the SQL query.

However, it is challenging to implement all machine learning mod-

els in UDFs by database users [23], for machine learning models

vary a lot in terms of theory and implementation. It is also difficult

to optimize the prediction accuracy in the database engine.

A better solution is to call the corresponding cloud machine learn-

ing service, e.g., APIs, in the UDFs for each prediction (or analy-

sis) task. Cloud service is economical, elastic and easy to use. With

the resurgence of AI, cloud providers like Amazon (AWS), Google

and Microsoft (Azure) have built machine learning services on their

cloud platforms. There are two types of cloud services. The first

one is to provide an API for each specific task, e.g., image classi-

fication and sentiment analysis. Such APIs are available on Ama-

zon AWS1 and Google cloud platform2. The disadvantage is that

the accuracy could be low since the models are trained by Ama-

zon and Google with general data, e.g., food from all countries,

1https://aws.amazon.com/machine-learning/
2https://cloud.google.com/products/machine-learning/

128

which is likely to be different from the user’s data, e.g., food from

Singapore. The second type of service overcomes this issue by

providing the training service, where users can upload their own

datasets to conduct training. This service is available on Amazon

AWS and Microsoft Azure. However, only a limited number of ma-

chine learning models are supported [33]. For example, only sim-

ple logistic regression or linear regression models3 are supported

by Amazon. Deep learning models such as convolutional neural

networks (ConvNets) and recurrent neural networks (RNN) are not

included.

As a machine learning service, it not only needs to cover a wide

range of models, including deep learning models, but also pro-

vide an easy-to-use, efficient and effective service for users without

much machine learning knowledge and experience, e.g., database

users. Considering that different models may result in different

performance in terms of efficiency (e.g., latency) and effectiveness

(e.g., accuracy), the cloud service has to select the proper models

for a given task. Moreover, most machine learning models and the

training algorithms come with a set of hyper-parameters or knobs,

e.g., number of layers and size of each layer in a neural network.

Some hyper-parameters are vital for the convergence of the train-

ing algorithm and the final model performance, e.g., the learning

rate of the stochastic gradient descent (SGD) algorithm. Man-

ual hyper-parameter tuning requires rich experience and is tedious.

Random search and Bayesian optimization are two popular auto-

matic tuning approaches. However, both are costly as they have to

test many hyper-parameter assignments and each trial (assignment)

takes hundreds of epochs4. A distributed tuning platform is desir-

able. Besides training, inference also matters as it directly affects

the user experience. Machine learning products often apply ensem-

ble modeling to improve the prediction performance. However, en-

semble modeling incurs a larger latency (i.e., response time) com-

pared with using a single prediction model. Therefore, there is a

trade-off between accuracy and latency.

There have been studies on these challenges for providing ma-

chine learning as a service. mlbench [33] compares the cloud ser-

vice of Amazon and Azure over a set of binary classification tasks.

Ease.ml [16] builds a training platform with model selection aiming

at optimizing the resource utilization for multiple tenants. Google

Vizier [8] is a distributed hyper-parameter tuning platform that pro-

vides tuning service for other systems. Clipper [4] focuses on the

inference by proposing a general framework and specific optimiza-

tion for efficiency and accuracy. However, none of them resolve all

the challenges.

In this paper, we present a system, called Rafiki, to provide both

the training and inference services for machine learning models.

With Rafiki, (database) users are exempted from constructing the

machine learning models, tuning the hyper-parameters, optimizing

the prediction accuracy and speed. Instead, they simply upload

their datasets and configure the service to conduct training and then

deploy the model for inference. As a cloud service system [9, 5],

Rafiki manages the hardware resources, failure recovery, etc. It

comes with a set of built-in machine learning models for popular

tasks such as image and text processing. In particular, we make the

following contributions to make Rafiki easy-to-use, efficient and

effective.

• We propose a unified system architecture for both the train-

ing and the inference services. We observe that the two ser-

3https://docs.aws.amazon.com/machine-
learning/latest/dg/learning-algorithm.html
4Training the model by scanning the dataset once is called one
epoch.

vices share some common components such as the param-

eter server for model parameter storage, and the distributed

computing environment for distributed hyper-parameter tun-

ing and parallel inference. By sharing the same underlying

storage, communication protocols and computation resource,

we implicitly avoid some technical debts [25]. Moreover, by

combining the two services together, Rafiki enables instant

model deployment after training.

• For the training service, we first propose a general frame-

work for distributed hyper-parameter tuning, which is ex-

tensible for popular hyper-parameter tuning algorithms in-

cluding random search and Bayesian optimization. In addi-

tion, we propose a collaborative tuning scheme specifically

for deep learning models, which uses the model parameters

from the current top performing training trials to initialize

new trials.

• For the inference service, we propose a scheduling algorithm

based on reinforcement learning to optimize the overall ac-

curacy and reduce latency. Both algorithms are adaptive to

the changes of the request arriving rate.

• We conduct micro-benchmark experiments to evaluate the

performance of our proposed algorithms.

In the reminder of this paper, we review related works in Sec-

tion 2 and then give an overview of Rafiki in Section 3. Section 4

describes the training service and the distributed hyper-parameter

tuning algorithm. The inference service and optimization tech-

niques are introduced in Section 5. Section 6 describes the sys-

tem implementation. We explain the experimental evaluation in

Section 7. A case study is introduced in Section 8. Section 10

concludes the paper.

2. RELATED WORK
Rafiki is a SaaS that provides training and inference services of

machine learning models. In this section, we review related works

on SaaS, hyper-parameter tuning for model training, inference op-

timization, and reinforcement learning which is adopted by Rafiki

for inference optimization.

2.1 Cloud Service
Cloud computing has changed the way of IT operation in many

companies by providing infrastructure as a service (IaaS), platform

as a service (PaaS) and software as a service (SaaS). With IaaS,

users and companies can use remote physical or virtual machines

instead of establishing their own data center. Based on user require-

ments, IaaS can scale up the compute resources quickly. PaaS, e.g.,

Microsoft Azure, provides development toolkit and running envi-

ronment, which can be adjusted automatically based on business

demand. SaaS, including database as a service[9, 5], installs soft-

ware on cloud computing platforms and provides application ser-

vices, which simplifies software maintenance. The ‘pay as you go’

pricing model is convenient and economic for (small) companies

and research labs.

Recently, machine learning (especially deep learning) has gain a

lot of interest due to its outstanding performance in analytics and

predictive tasks. However, it is not easy to build a machine learning

application [7] since there are multiple non-trivial steps involved.

In this paper, we focus on two primary steps, namely training and

inference. Cloud providers, like Amazon AWS, Microsoft Azure

and Google Cloud, have already included some services for the

two steps. However, their training services have limited support

129

for deep learning models, and their inference services cannot be

customized for customers’ data (see Section 1). There are also re-

search papers towards efficient resource allocation for training [16]

and efficient inference [4] on the cloud. Rafiki differs from the ex-

isting cloud services on both the service types and the optimization

techniques. Firstly, Rafiki allows users to train machine learning

(including deep learning) models on their own data, and then de-

ploy them for inference. Secondly, Rafiki has special optimization

for the training (Section 4) and inference (Section 5) service.

2.2 Hyperparameter Tuning
To train a machine learning model for an application, we need to

decide many hyper-parameters related to the model structure, opti-

mization algorithm and data preprocessing operations. All hyper-

parameter tuning algorithms work via empirical trials. Random

search [2] randomly selects the value of each hyper-parameter and

then tries it. It has shown to be more efficient than grid search that

enumerates all possible hyper-parameter combinations. Bayesian

optimization [27] assumes the optimization function (hyper-parameters

as the input and the inference performance as the output) follows

Gaussian process. It samples the next point in the hyper-parameter

space based on existing trials (according to an acquisition function).

Google Vizier [8] provides the hyper-parameter tuning service on

the cloud. Rafiki provides distributed hyper-parameter tuning ser-

vice, which is compatible with all the above mentioned hyper-parameter

tuning algorithms. In addition, it supports collaborative tuning that

shares model parameters across trials. Our experiments confirm the

effectiveness of the collaborative tuning scheme.

2.3 Inference Optimization
To improve the inference accuracy, ensemble modeling that trains

and deploys multiple models is widely applied. For real-time in-

ference, latency is another critical metric of the inference service.

NoScope [12] proposes specific inference optimization for video

querying. Clipper [4] studies multiple optimization techniques to

improve the throughput (via batch size) and reduce latency (via

caching). It also proposes to do model selection for ensemble mod-

eling using multi-armed bandit algorithms. Compared with Clip-

per, Rafiki provides both training and inference services, whereas

Clipper focuses only on the inference service. In addition, Clipper

optimizes the throughput, latency and accuracy separately, whereas

Rafiki models them together to find the optimal model selection

and batch size. TFX [20] provides the training and inference ser-

vice through a set of libraries including Tensorflow transform5 for

data preprocessing, TensorFlow serving [1] for inference, etc..

2.4 Reinforcement Learning
In reinforcement learning (RL)[17], each time an agent takes one

action, it enters the next state. The environment returns a reward

based on the action and the states. The learning objective is to

maximize the aggregated rewards. RL algorithms decide the ac-

tion to take based on the current state and experience gained from

previous trials (exploration). Policy gradient based RL algorithms

maximize the expected reward by taking actions following a policy

function πθ(at|st) over n steps (Equation 1), where ς represents

a trajectory of n (action at, state st, reward Rt) tuples, and γ is a

decaying factor. The expectation is taken over all possible trajec-

tories. πθ is usually implemented using a multi-layer perceptron

model (θ represents the parameters) that takes the state vector as

input and generates the action (a scalar value for continuous action

or a Softmax output for discrete actions). Equation 1 is optimized

using stochastic gradient ascent methods. Equation 3 is used as a

5https://www.tensorflow.org/tfx/

‘surrogate’ function for the objective as its gradient is easy to com-

pute via automatic differentiation.

J(θ) = Eς∼πθ(ς)[

n∑

t=0

γtRt], (1)

▽θJ(θ) = Eς∼πθ(ς)[
n∑

t=0

▽θ log πθ(at|st)
T∑

t=0

γtRt] (2)

Ĵ(θ) = Eς∼πθ(ς)[

T∑

t=0

log πθ(at|st)
n∑

t=0

γtRt] (3)

Many approaches have been proposed to improve the policy gra-

dient by reducing the variance of the rewards, including actor-critic

model [19] which subtracts the reward Rt by a baseline V (st).
V (st) is an estimation of the reward, which is also approximated

using a neural network like the policy function. Then Rt in the

above equations becomes Rt−V (st). Yuxi [17] has done a survey

of deep reinforcement learning, including the actor-critic model

used in this paper.

3. SYSTEM OVERVIEW
To develop an application, Rafiki users configure the training or

inference jobs via either RESTFul APIs or Python SDK. In Figure 2

(left column), we show one image classification example using the

Python SDK. The training code firstly loads the training data from

a local folder into Rafiki’s distributed data storage (HDFS) and re-

turns the data path. Next, it creates the training job by passing

the unique application name, the data path, and the input/output

shapes (i.e., a tuple or a list of tuples). The input-output shapes

are used for model customization. For example, ConvNets usually

accept input images of a fixed shape, and adapt the final output

layer to have the same number of neurons as the size of the out-

put shape. The job ID is returned for monitoring the execution

status and metrics. Once the job is submitted, Rafiki selects the

models (Section 4.1), launches the master and workers (Section 6),

downloads the training data onto each worker’s local disk and then

starts hyper-parameter tuning (Section 4.2). During training, the

best version of parameters are stored in the parameter server. After

training, we can deploy the models instantly as shown in infer.py.

The application name is used to retrieve the models and parameters

from the training stage. Once the model is deployed, application

users can submit their requests for prediction as shown by the code

in query.py. We can see that there are 3 types of Rafiki users:

• Model contributors (e.g., Rafiki developers), who are ma-

chine learning experts and are responsible for adding new

models into Rafiki.

• Application developers without much machine learning back-

ground. They provide the training data following the task re-

quirements designed by model contributors, and call Rafiki’s

APIs (left column of Figure 2) to train models and then de-

ploy the models for inference.

• Application users (right column of Figure 2) who send re-

quests to Rafiki’s inference services.

In Rafiki, we focus on distributed hyper-parameter tuning and

inference optimization as shown in the middle of Figure 2. In the

figure, Rafiki tunes two models, i.e., ResNet [10] and VGG [26]

separately using 2 workers for each model. For the inference job,

two models (running on different workers) are combined via en-

semble modeling for better prediction accuracy.

130

Hyper-tune Hyper-tune Ensemble modelling

ResNet

Task Models

Image classification VGG, ResNet, Squeezenet, XceptionNet, InceptionNet

Sentiment analysis TemporalCNN, FastText, CharacterRNN

ResNet ResNetVGG VGG VGG

Master

Worker

Rafiki user code
Application user code

train.py

import rafiki

data = rafiki.upload(‘train/')
job = rafiki.Train(app=‘food’,

data=data,

task="ImageClassification",

input_shape=(3,256,256),

output_shape=(120,))

infer.py

job = rafiki.Inference(app=‘food’) img = Image.load('test.jpg')

ret = rafiki.query(app=‘food’,
data={'img':img})

ret[‘label’]

Training

data
Parameter Meta-

data

Rafiki

Admin

Model

Figure 2: Overview of Rafiki.

Rafiki is compatible with any machine learning framework, in-

cluding TensorFlow [1], Scikit-learn, Kears, etc., although we have

tested it on top of Apache Singa [21] due to its efficiency and scal-

able architecture. More details of Rafiki implementation shall be

described in Section 6.

4. TRAINING SERVICE
The training service consists of two steps, namely model selec-

tion and hyper-parameter tuning. We adopt a simple model selec-

tion strategy in Rafiki. For hyper-parameter tuning, we first pro-

pose a general programming model for distributed tuning, and then

propose a collaborative tuning scheme.

4.1 Model Selection
Every built-in model in Rafiki is registered with a task category,

e.g., image classification or sentiment analysis via the register API

shown below.

class Model:

def train(app, dpath, inshape, outshape)

def predict(x)

def load(app)

def save(app)

def register(model, task)

New models must implement the four functions for training, pre-

diction, model saving and restoring respectively. The argument app

is a unique identifier of the application, which is used to identify the

data and parameters in the distributed storage (see Section 6). The

models should also follow the requirement of the corresponding

task, e.g, the inference code of image classification should expect

input data to be a tensor with 4 dimensions for the batch, channel,

height and weight respectively.

For each training job, Rafiki selects the corresponding built-in

models based on the task type. The table in Figure 2 lists some

built-in tasks and the models. With the proliferation of machine

learning, we are able to find open source implementations for al-

most every popular model.

By default, Rafiki uses the models suggested by the model con-

tributors for each task. The principle is to use models with simi-

lar performance on the same benchmark dataset but with different

architectures. This is to create a competitive and diverse model

set [14] for better ensemble accuracy. Other model selection strate-

gies are also available, e.g., selecting all models, selecting top-K

fast or accurate models. We observe that the models for the same

task perform consistently across datasets. For example, ResNet[10]

Table 1: Hyper-parameter groups.

Group Hyper-parameter Example Domain

1. Data preprocessing

Image rotation [0,30)

Image cropping [0,32]

Whitening {PCA, ZCA}

2. Model architecture

Number of layers Z+

N cluster Z+

Kernel {Linear, RBF, Poly}

3. Training algorithm

Learning rate R+

Weight decay R+

Momentum R+

is better than AlexNet [13] and SqueezeNet [11] for a bunch of

datasets including ImageNet [6], CIFAR-106, etc.. Therefore, the

performance on one benchmark dataset is a reliable reference for

model selection for new datasets.

4.2 Distributed Hyperparameter Tuning
Hyper-parameter tuning usually has to run many different sets of

hyper-parameters. Distributed tuning by running these instances in

parallel is a natural solution for reducing the tuning time. There

are three popular approaches for hyper-parameter tuning, namely

grid search, random search [2] and Bayesian optimization [27]. To

support these algorithms, we need a general and extensible pro-

gramming model.

4.2.1 Programming Model

We cluster the hyper-parameters involved in training a machine

learning model into three groups as shown in Table 1. Data prepro-

cessing adopts different approaches to normalize the data, augment

the dataset and extract features from the raw data, i.e., feature en-

gineering. Rafiki expects the training code to pre-define the pos-

sible pre-processing operations, and lets the hyper-parameter tun-

ing algorithm to decide which pre-processing operation to use and

the configuration of each operation. For example, image cropping

is one pre-processing operation, which is included in the code but

whether it is applied or not is decided by the tuning algorithm. Most

machine learning models have some tuning knobs about the archi-

tecture, e.g., the number of trees in a random forest, number of lay-

ers of ConvNets and the kernel function of SVM. The optimization

algorithms, especially the gradient based optimization algorithms

6https://www.cs.toronto.edu/ kriz/cifar.html

131

like SGD, have another set of hyper-parameters, including the ini-

tial learning rate, the decaying rate and decaying method (linear or

exponential), etc.

From Table 1 we can see that the hyper-parameters could come

from a range, or a list of numbers or categories. All possible as-

signments of the hyper-parameters construct the hyper-parameter

space, denoted as H. Following the convention [8], we call one

point in the space as a trial, denoted as h. Rafiki provides a Hyper-

Space class with the functions shown in Figure 3 for model con-

tributors to specify the hyper-parameter space.

'train’,

class HyperSpace():

def add_range_knob(name, dtype, min, max,

depends=None, pre_hook=None, post_hook=None)

def add_categorical_knob(name, dtype, list,

depends=None, pre_hook=None, post_hook=None)

Figure 3: HyperSpace APIs.

The first function defines the domain of a hyper-parameter as a

range [min,max); dtype represents the data type which could be

float, integer or string. depends is a list of other hyper-parameters

whose values directly affect the generation of this hyper-parameter.

For example, if the initial learning rate is very large, then we would

prefer a larger decay rate to decease the learning rate quickly. There-

fore, the decay rate has to be generated after generating the learn-

ing rate. To enforce such relation, we can add learning rate into

the depends list and add a post hook function to adjust the value

of learning rate decay. The second function defines a categori-

cal hyper-parameter, where list represents the candidates. depends,

pre hook, post hook are analogous to those of the range knob.

The whole hyper-parameter tuning process for one model over

a dataset is called a study. The performance of the trial h is de-

noted as ph. A larger ph indicates a better performance (e.g., ac-

curacy). For distributed hyper-parameter tuning, we have a master

and multiple workers for each study communicating via RPC (re-

mote procedure call). The master generates trials for workers, and

the workers evaluate the trials. At one time, each worker trains the

model with a given trial. The workflow of a study at the master

side is explained in Algorithm 1. The master iterates over an event

loop to collect the performance of each trial, i.e., < h, ph, t >,

and generates the next trial by TrialAdvisor that implements the

hyper-parameter search algorithm, e.g., random search or Bayesian

optimization. It stops when there is no more trials to test or the

user configured stop criteria is satisfied (e.g., total number of tri-

als). Finally, the best parameters are put into the parameter server

for the inference service. The worker side keeps requesting trials

from the master, conducting the training and reporting the results

to the master.

4.2.2 Collaborative Tuning

In this section, we extend the distributed hyper-parameter tuning

framework by proposing a collaborative tuning scheme.

We observe that some hyper-parameters should be changed dur-

ing training to get better performance. We use the hyper-parameters

of the training algorithm, i.e., SGD, as an example. SGD is widely

used for training machine learning models. Typically the training

loss stays in a plateau after a while, and then drops suddenly if we

decrease the learning rate of SGD, e.g., from 0.1 to 0.01 and from

0.01 to 0.001[10]. If we fix the model architecture and tune the

hyper-parameters from group 1 and 3 in Table 1, then the model pa-

rameters trained using one hyper-parameter trial should be reused

Algorithm 1 Study(HyperTune conf, TrialAdvisor adv)

1: num = 0

2: while conf.stop(num) do

3: msg = ReceiveMsg()

4: if msg.type == kRequest then

5: trial = adv.next(msg.worker)

6: if trial is nil then

7: break

8: else

9: send(msg.worker, trial)

10: end if

11: else if msg.type == kReport then

12: adv.collect(msg.worker, msg.p, msg.trial)

13: else if msg.type == kFinish then

14: num += 1

15: if adv.is best(msg.worker) then

16: send(msg.worker, kPut)

17: end if

18: end if

19: end while

20: return adv.best trial()

to initialize the same model with another trial. By selecting the pa-

rameters from the top performing trials to continue with the hyper-

parameter tuning, the old trials are just like pre-training [15]. In

fact, a good model initialization results in faster convergence and

better performance[29]. Users typically fine-tune popular ConvNet

architectures over their own datasets. Consequently, this collabora-

tive tuning scheme is likely to converge to a good state quickly.

It is not straightforward to apply collaborative tuning for model

architecture related hyper-parameters. This is because when the

architecture changes, the parameter shapes also change. For exam-

ple, the parameters for a convolution layer with filter size 3x3 can-

not be used to initialize another convolution layer whose filter size

is 5x5. However, if some sub-networks are shared across different

architectures [22], the parameters of the sub-networks can be tuned

collaboratively. During training, parameters of all sub-networks are

stored in the parameter server. For every trial, a specific architec-

ture is created and its parameters (a subset of all parameter) are

updated.

A

B

C

𝛼 = 1𝛼 = 0.1𝛼 = 0.01
𝛼 = 0.1 𝛼 = 0.01𝛼 = 0.1

Figure 4: A collaborative tuning example.

The whole process of collaborative tuning is illustrated using

an example in Figure 4, where 3 workers are running to tune the

hyper-parameters (e.g., the learning rate) of the same model. After

a while, the performance of worker A stops increasing. The train-

ing stops automatically according to early stopping criteria, e.g the

training loss is not decreasing for 5 consecutive epochs. Early stop-

ping is widely used for training machine learning models7, which

is cheaper than training for a fixed number of epochs. The new

trial on worker A uses the parameters from the current best worker,

which is B. The work done by B serves as the pre-training for the

7https://keras.io/callbacks/#earlystopping

132

new trial on A. Similarly, when C stops, the master instructs it to

start a new trial using the parameters from A, whose model has the

best performance at that time.

The control flow for this collaborative tuning scheme is described

in Algorithm 2. It is similar to Algorithm 1 except that the master

instructs the worker to save the model parameters (Line 9) if the

model’s performance is significantly larger than the current best

performance (Line 8). The performance difference, i.e., conf.delta

is set according to the user’s expectation about the performance of

the model. For example, for MNIST image classification, an im-

provement of 0.1% is very large as the current best performance is

above 99%.

We notice that bad parameter initialization degrades the perfor-

mance in our experiments. This is very serious for random search.

Because the checkpoint from one trial with poor accuracy would

affect the next trials as the model parameters are initialized into a

poor state. To resolve this problem, a α-greedy strategy is intro-

duced in our implementation, which initializes the model param-

eters either by random initialization or using the parameters from

the parameter server. A threshold α represents the probability of

choosing random initialization and (1-α) represents the probability

of using pre-trained parameters. α decreases gradually to decrease

the chance of random initialization, i.e., increasing the chance of

CoStudy. This α-greedy strategy is widely used in reinforcement

learning to balance the exploration and exploitation.

Algorithm 2 CoStudy(HyperTune conf, TrialAdvisor adv)

1: num = 0, best p = 0

2: while conf.stop(num) do

3: msg = ReceiveMsg()

4: if msg.type == kRequest then

5: ... ⊲ // same as Algorithm 1

6: else if msg.type == kReport then

7: adv.collect(msg.worker, msg.p, msg.trial)

8: if msg.p - best p > conf.delta then

9: send(msg.worker, kPut)

10: best p = msg.p

11: else if adv.early stopping(msg.worker, conf) then

12: send(msg.worker, kStop)

13: end if

14: else if msg.type == kFinish then

15: num += 1

16: end if

17: end while

18: return adv.best trial()

5. INFERENCE SERVICE
Inference service provides real-time request serving by deploy-

ing the trained model. Other services, like database services, sim-

ply optimize the throughput with the constraint on latency, which

is set manually as a service level objective (SLO), denoted as τ ,

e.g., τ = 0.1 seconds. For machine learning inference services,

accuracy becomes an important optimization objective. The ac-

curacy refers to a wide range of performance measurements, e.g.,

negative error, precision, recall, F1, area under curve, etc. A larger

value (accuracy) indicates better performance. If we set latency as

a hard constraint as shown in Equation 4, overdue requests would

get ‘time out’ responses. Typically, a delayed response is better

than an error of ‘time out’ for the application users. Hence, we pro-

cess the requests in the queue sequentially following FIFO (first-in-

first-out). The objective is to maximize the accuracy and minimize

Table 2: Notations.

Name Definition

S request list

M model list

τ latency requirement

b ∈ B one batch size from a candidate list

qk the k−th oldest requests in the queue

q:k is the oldest k requests

qk: is the latest |Q| − k requests

c(b) inference time for batch size b

c(m, b) inference time for model m and batch size b
w(s) waiting time for a request s in the queue

l(s) latency (waiting + inference time) of a request

β balancing factor between accuracy and latency

v binary vector for model selection

R() reward function over a set of requests

the exceeding time according to τ . However, typically, there is a

trade-off between accuracy and latency. For example, ensemble

modeling with more models increases both the accuracy and the

latency. We shall optimize the model selection for ensemble mod-

eling in Section 5.2. Before that, we discuss a simpler case with a

single inference model. Table 2 summarizes the notations used in

this section.

maxAccuracy(S) (4)

subject to ∀s ∈ S, l(s) < τ

5.1 Single Inference Model
When there is only one single model deployed for an application,

the accuracy of the inference service is fixed from the system’s per-

spective. Therefore, the optimization objective is reduced to mini-

mizing the exceeding time, which is formalized in Equation 5.

min

∑
s∈S

max(0, l(s)− τ)

|S|
(5)

The latency l(s) of a request includes the waiting time in the

queue w(s), and the inference time which depends on the model

complexity, hardware efficiency (i.e., FLOPS) and the batch size.

The batch size decides the number of requests to be processed to-

gether. Modern processing units, like CPU and GPU, exploit data

parallelism techniques (e.g., SIMD) to improve the throughput and

reduce the computation cost. Hence, a large batch size is necessary

to saturate the parallelism capacity. Once the model is deployed,

the model complexity and hardware efficiency are fixed. There-

fore, Rafiki tunes the batch size to optimize the latency.

To construct a large batch, e.g., with b requests, we have to delay

the processing until all b requests arrive, which may incur a large

latency for the old requests if the request arriving rate is low. The

optimal batch size is thus influenced by SLO τ , the queue status

(e.g., the waiting time), and the request arriving rate which varies

along time. Since the inference time of two similar batch sizes

varies little, e.g., b=8 and b=9, a candidate batch size list should in-

clude values that have significant difference with each other w.r.t

the inference time, e.g., B = {16, 32, 48, 64, ...}. The largest

batch size is determined by the system (GPU) memory. c(b), the

latency of processing a batch of b requests b ∈ B, is determined by

the hardware resource (e.g., GPU memory) and utilization (e.g., in

multi-tenant environment), and the model’s complexity. Figure 5

133

0.2 0.4 0.6 0.8 1.0

Time for Each Iteration (s)

0.70

0.75

0.80

A
cc
ur
ac
y

inception resnet v2

inception v1

inception v2

inception v3

inception v4

mobilenet v1

nasnet large

nasnet mobile

resnet v1 50

resnet v1 101

resnet v1 152

resnet v2 50

resnet v2 101

resnet v2 152

vgg 16

vgg 19

Figure 5: Accuracy, inference time and memory footprint of popular ConvNets.

shows the inference time, memory footprint and accuracy of pop-

ular ConvNets trained on ImageNet8. The accuracy is measured

based on the top-1 prediction of images from the validation dataset

of ImageNet. The inference time and memory footprint is averaged

over 50 iterations, each with 50 images (i.e., batch size=50).

Algorithm 3 shows a greedy solution for this problem. It al-

ways applies a large batch size. If the queue length (i.e., num-

ber of requests in the queue) is larger than the largest batch size

b = max(B), then the oldest b requests are processed in one batch.

Otherwise, it waits until the oldest request (q0) is about to overdue

as checked by Line 8. b is the largest batch size in B that is smaller

or equal to the queue length (Line 8). δ is a back-off constant,

which is equivalent to reducing the batch size in Additive-Increase-

Multiplicative-Decrease scheme (AIMD)[4], e.g., δ = 0.1τ .

Algorithm 3 Inference(Queue q, Model m)

1: while True do

2: b = maxB
3: if len(q) >= b then

4: m.infer(q0:b)

5: deque(q0:b)

6: else

7: b = max{b ∈ B, b <= len(q)}
8: if c(b) + w(q0) + δ >= τ then

9: m.infer(q0:b)

10: deque(q0:b)

11: end if

12: end if

13: end while

5.2 Multiple Inference Models
Ensemble modeling is an effective and popular approach to im-

prove the inference accuracy. To give an example, we compare the

performance of different ensemble of 4 ConvNets as shown in Fig-

ure 6. Majority voting is applied to aggregate the predictions. The

accuracy is evaluated over the validation dataset of ImageNet. Gen-

erally, with more models, the accuracy is better. The exception is

that the ensemble of resnet v2 101 and inception v3, which is not

better than the single best model, i.e., inception resnet v2. In fact,

the prediction of the ensemble modeling is the same as inception v3

because when there is a tie, the prediction from the model with the

better accuracy is selected as the final prediction, i.e., inception v3.

Parallel ensemble modeling by running one model per node (or

GPU) is a straight-forward way to scale the system and improve the

8https://github.com/tensorflow/models/tree/master/research/slim/

Single Model Two Models Three Models Four Models
Ensemble Method

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

A
cc
ur
ac
y

resnet v2 101

inception v3

inception v4

inception resnet v2

Figure 6: Accuracy of ensemble modeling with different models.

throughput. However, the latency could be high due to stragglers.

For example, as shown in Figure 5, the node running nasnet large

would be very slow although its accuracy is high. In addition, en-

semble modeling is also costly in terms of throughput when com-

pared with serving different requests on different nodes (i.e., no

ensemble). We can see that there is a trade-off between latency

(throughput) and accuracy, which is controlled by the model selec-

tion. Note that the model selection is different to that in Section 4.

Here we assume that multiple models have already been trained,

and deployed on separate workers. We select some of them online

for ensemble modelling. In other words, the models used for pre-

dicting the first batch of requests could be different to the models

for processing the second batch of requests. If the requests arrive

slowly, we simply run all models for each batch to get the best ac-

curacy. However, when the request arriving rate is high, like in

Section 5.1, we have to select different models (i.e., workers) for

different requests to increase the throughput and reduce the latency.

In addition, the model selection for the current batch also affects the

next batch. For example, if we use all models for a batch, the next

batch has to wait until at least one model finishes.

To solve Equation 4, we have to balance the accuracy and latency

to get a single optimization objective. We move the latency term

into the objective as shown in Equation 6. It maximizes a reward

function R related to the prediction accuracy and penalizes overdue

requests. β balances the accuracy and the latency in the objective.

If the ground truth of each request is not available for evaluating

the accuracy, which is the normal case, we have to find a surrogate

accuracy.

134

maxR(S)− βR({s ∈ S, l(s) > τ}) (6)

Like the analysis for single inference model, we need to consider

the batch size selection as well. It is difficult to design an optimal

policy for this complex decision making problem, which decides

both the model selection and batch size selection. In this paper,

we propose to optimize Equation 6 using reinforcement learning

(RL). RL optimizes an objective over a long term by trying different

actions and entering the corresponding states to collect rewards.

By setting the reward as Equation 6 and defining the actions to

be model selection and batch selection, we can apply RL for our

optimization problem.

RL has three core concepts, namely, the action, reward and state.

Once these three concepts are defined, we can apply existing RL

algorithms to do optimization. We define the three concepts w.r.t

our optimization problem as follows. First, the state space con-

sists of : a) the queue status represented by the waiting time of

each request in the queue. The waiting time of all requests form

a feature vector. To generate a fixed length feature vector, we pad

with 0 for the shorter queues and truncate the longer queues. b) the

model status represented by a vector including the inference time

for different models (i.e., workers) with different batch sizes, i.e.,

c(m, b),m ∈ M, b ∈ B, and the left time to finish the existing

requests dispatched to it. For multi-tenant environment, c(m, b)
varies as the workload of the worker (i.e., GPU) changes. There-

fore, the latest c(m, b) of each worker is recorded and used in RL.

The two feature vectors are concatenated into a state feature vector,

which is the input to the RL model for generating the action.

Second, the action decides the batch size b and model selection

represented by a binary vector v of length |M | (1 for selected; 0

for unselected). The action space size is thus (2|M| − 1) ∗ |B|. We

exclude the case where v = 0, i.e., none of the models are selected.

Third, following Equation 6, the reward for one batch of requests

without ground truth labels is defined in Equation 7, a(M [v]) is

the accuracy of the selected models (ensemble modeling). In our

experiment, we assume that there is no concept drift[4] from the

validation data to the online request data. Hence, the validation ac-

curacy reflects the performance of the model(s) and is used as the

surrogate accuracy. In real applications, we can update the model

accuracy periodically based on the prediction feedback [4]. In the

experiment, we use the ImageNet’s validation dataset to evaluate

the accuracy of different ensemble combinations for image clas-

sification. The results are shown in Figure 6. The reward shown

in Equation 7 considers the accuracy, the latency (indirectly rep-

resented by the number of overdue requests) and the number of

requests.

a(M [v]) ∗ (b− β|{s ∈ batch|l(s) > τ}|) (7)

With the state, action and reward well defined, we apply the

actor-critic algorithm [24] to optimize the overall reward by learn-

ing a good policy for selecting the models and batch size.

6. SYSTEM IMPLEMENTATION
In this section, we introduce the implementation details of Rafiki,

including the cluster management, data and parameter storage, and

failure recovery.

6.1 Cluster Management
Rafiki uses Kubernetes (or Docker Swarm) to manage the Docker

containers for the masters, workers, data servers and parameter

servers as shown in Figure 7. Docker container simplifies the envi-

ronment setup. The training code, inference code, hyper-parameter

Node A

Node CNode B

Master

Data

Worker Worker

Parameter

Admin

Train()

Inference()
Model Meta

Master

Data

Worker Worker

Parameter

Figure 7: Rafiki cluster topology.

tuning algorithms, and ensemble modeling approaches are deployed

in separate Docker containers. Every time a new job is submit-

ted, the corresponding master or worker containers are launched

by the Rafiki admin (See Figure 2). The masters generate hyper-

parameters for training or conduct ensemble modelling for infer-

ence. Rafiki prefers to locate the master and workers for the same

job in the same physical node to avoid network communication

overhead.

6.2 Data and Parameter Storage
Deep learning models are typically trained over large datasets

that would consume a lot of space if stored in CPU memory. There-

fore, Rafiki stores the training data in the distributed data storage,

e.g., HDFS. Users upload their datasets via Rafiki utility functions,

e.g., rafiki.upload (see Figure 2). The training dataset is down-

loaded to a local directory before the training starts. In this way,

Rafiki supports any format of data as long as the data is organized

following the requirement (specified in documentation) of the train-

ing and inference code.

For model parameters, Rafiki implements a distributed parame-

ter server based on Redis. During training, there is one database

for each model, storing the best version of parameters from hyper-

parameter turning. This database is kept in-memory as it is ac-

cessed and updated frequently. Once the hyper-parameter tuning

finishes, Rafiki dumps the parameter database of each model onto

disk. The path of the dumped file is stored in the meta database.

Later, when we want to deploy the models of one application, Rafiki

retrieves the dumped files from the meta database and loads them

into memory for the inference workers to access.

6.3 Failure Recovery
For both the hyper-parameter training and inference services, the

workers are stateless. Hence, Rafiki admin can easily recover these

nodes by running a new docker container and registering it into the

training or inference master. However, for the masters, they have

state information. For example, the master for the training service

records the current best hyper-parameter trial. The master for the

inference service has the state, action and reward for reinforcement

learning. Rafiki checkpoints these (small) state information of mas-

ters for fast failure recovery.

7. EXPERIMENTAL STUDY
In this section we evaluate the scalability, efficiency and effec-

tiveness of Rafiki for hyper-parameter tuning and inference service

optimization. The experiments are conducted on three machines,

each with 3 Nvidia GTX 1080Ti GPUs, 1 Intel E5-1650v4 CPU

with 64GB memory connected by 1Gbps Ethernet card.

7.1 Evaluation of Hyperparameter Tuning
Task and Dataset We test Rafiki’s distributed hyper-parameter

tuning service by running it to tune the hyper-parameters of deep

135

 0

 20

 40

 60

 80

 100

 0 30 60 90 120 150 180

A
cc

u
ra

cy

Trial of Study
 0 30 60 90 120 150 180

Trial of CoStudy

(a)

 20

 40

 60

 80

 100

 120

10 20 30 40 50 60 70 80 90

N
u
m

b
e
r

o
f

T
ri
a
ls

Accuracy

Study

CoStudy

(b)

 60

 65

 70

 75

 80

 85

 90

 95

 100

 30 60 90 120 150 180

B
e
st

 A
cc

u
ra

cy

Trial

CoStudy

Study

(c)

Figure 8: Hyper-parameter tuning based on random search.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

A
cc

u
ra

cy

Trial of ATM
 0 20 40 60 80 100 120

Trial of CoStudy

(a)

 0

 20

 40

 60

 80

10 20 30 40 50 60 70 80 90

N
u
m

b
e
r

o
f

T
ri
a
ls

Accuracy

ATM

CoStudy

(b)

 70

 75

 80

 85

 90

 95

 100

 30 60 90 120

B
e
st

 A
cc

u
ra

cy

Trial

CoStudy

ATM

(c)

Figure 9: Hyper-parameter tuning based on Bayesian optimization.

ConvNets over CIFAR-10 for image classification. CIFAR-10 is a

popular benchmark dataset with RGB images from 10 categories.

Each category has 5000 training images (including 1000 validation

images) and 1000 test images. All images are of size 32x32. There

is a standard sequence of preprocessing steps for CIFAR-10, which

subtracts the mean and divides the standard deviation from each

channel computed on the training images, pads each image with

4 pixels of zeros on each side to obtain a 40x40 pixel image, ran-

domly crops a 32x32 patch, and then flips (horizontal direction) the

image randomly with probability 0.5.

We fix the ConvNet architecture to be the same as shown in Table

5 of [28], which has 8 convolution layers. The hyper-parameters to

be tuned are from the optimization algorithm, including momen-

tum, learning rate, weight decay coefficients, dropout rates, and

standard deviations of the Gaussian distribution for weight initial-

ization. We run each trial with early stopping, which terminates the

training when the validation loss stops decreasing.

We compare the naı̈ve distributed tuning algorithm, i.e., Study

(Algorithm 1) and the collaborative tuning algorithm. i.e., CoS-

tudy (Algorithm 2) with different TrialAdvisor algorithms. Figure 8

shows the comparison using random search [2] for TrialAdvisor. In

particular, each point in Figure 8a stands for one trial. We can see

that the top area for CoStudy is denser than that for Study. In other

words, CoStudy is more likely to get better performance. This is

confirmed in Figure 8b, which shows that CoStudy has more tri-

als with high accuracy (i.e., accuracy >50%) than Study, and has

fewer trials with low accuracy (i.e., accuracy ≤50%). Figure 8c

illustrates the tuning progress of the two approaches, where each

point on the line represents the best performance among all trials

conducted so far. We can observe that CoStudy is faster than Study

and achieves better accuracy than Study. Notice that the validation

accuracy is very high (>91%). Therefore, a small difference (1%)

indicates a significant improvement.

 300

 600

 900

 1200

 1500

 1800

1 2 4 8

W
a
ll

T
im

e
 (

M
in

u
te

s)

Number of workers

(a)

 80

 82

 84

 86

 88

 90

 92

 0 250 500 750 1000

B
e
st

 A
cc

u
ra

cy

Wall Time (Minutes)

1 Worker

2 Workers

4 Workers

8 Workers

(b)

Figure 10: Scalability test of distributed hyper-parameter tuning.

Figure 9 compares Study and CoStudy using Gaussian process

based Bayesian Optimization (BO)9 for TrialAdvisor. Study with

BO is actually the same as ATM [30]. Comparing Figure 9a and

Figure 8a, we can see there are more points in the top area of BO

figures. In other words, BO is better than random search, which has

been observed in other papers [27]. In Figure 9a, CoStudy has a few

more points in the right bottom area than ATM (i.e., Study). After

doing an in-depth inspection, we found that those points were trials

initialized randomly (α is large) instead of from pre-trained mod-

els. For ATM, it always uses random initialization, hence the BO

algorithm has a fixed prior about the initialization method. How-

ever, for CoStuy, its initialization is from pre-trained models for

most time. The random initialization trials change the prior and

thus get biased estimation about the Gaussian process, which leads

to poor accuracy. Since we are decaying α to reduce the chance of

random initialization, there are fewer and fewer points in the right

9https://github.com/scikit-optimize

136

T/2T/4

rm

t

0.1T 0.1T

Figure 11: Sine function for controlling the request arriving rate.

bottom area. Overall, CoStudy achieves better accuracy as shown

in Figure 9b and Figure 9c.

We study the scalability of Rafiki by varying the number of work-

ers. Figure 10 compares the jobs running over 1, 2, 4 and 8 GPUs

respectively. Each point on the curves in the figure represents the

best validation performance among all trials that have been tested

so far. The x-axis is the wall clock time. We can see that with

more GPUs, the tuning becomes faster. It scales almost linearly

this is because the communication cost is very small. Workers do

not communicate with each other and worker-master communica-

tion happens once per trial.

7.2 Evaluation of Inference Optimization
We use image classification as the application to test the opti-

mization techniques introduced in Section 5. The inference models

are ConvNets trained over the ImageNet [13] benchmark dataset.

ImageNet is a popular image classification benchmark with many

open-source ConvNets trained on it (Figure 5). It has 1.2 million

RGB training images and 50,000 validation images.

Our environment simulator randomly samples images from the

validation dataset as requests. The number of requests is deter-

mined as follows. First, to simulate the scenario with very high

peak arriving rate and very low peak arriving rate, we run two

sets of experiments by generating the arriving rate based on the

maximum throughput ru and minimum throughput rl respectively.

Specifically, the maximum throughput is the sum of all models’

largest throughput, which is achieved when all models run asyn-

chronously to process different batches of requests. In contrast,

when all models run synchronously, the slowest model’s minimum

throughput is just the overall minimum throughput. Second, we

use a sine function to define the request arriving rate, i.e., r =
γsin(t) + b. The slope γ and intercept b are derived by solving

Equation 8 and 9, where T is the cycle period which is configured

to be 500×τ in our experiments. The first equation is to make sure

that more requests than ru (or rl) are generated for 20% of each cy-

cle period (Figure 11, T ×20% = 0.2T). In this way, we are simu-

lating the scenario where there are overwhelming requests coming

at times. The second equation is to make sure that the highest arriv-

ing rate is not too large, otherwise the request queue would be filled

up very quickly and new requests have to be dropped. Finally, a

small random noise φ is applied over r to prevent the RL algorithm

from remembering the sine function. To conclude, the number of

new requests is δ × (γsin(t) + b) × (1 + φ), φ ∼ N (0, 0.1)),
where δ is the time span between the last invocation of the simula-

tor and the current time. In the following figures, the dashed curve

represents the request arriving rate.

We compare the greedy algorithm (Algorithm 3), the RL algo-

rithm from Section 5.2 and Clipper [4] in terms of the overall ac-

curacy and latency (measured by the number of overdue requests).

Clipper selects all models for ensemble modeling as they give the

best accuracy in our experiments. It prefers large throughput (i.e.,

batch size) as long as the processing time c(m, b) is smaller than

τ . Note that it does not consider the request waiting time. Since

the processing time of the largest batch size, i.e., b=64, is smaller

than τ in our experiments, Clipper always selects the largest batch

size and uses all available models for ensemble modeling. For the

greedy and RL algorithm, they consider both the queuing time and

the processing time for the latency, which is more realistic.

k × sin(T/2− 0.2× 2T/2) + b = ru or rl (8)

k × sin(T/2) + b = 1.1× ru or rl (9)

7.2.1 Single Inference Model

We use inception v3 trained over ImageNet as the single infer-

ence model. The state of the RL algorithm is defined to be the

same as that in Section 5.2 except that the model related status is

removed since there is only a single model. The batch size list is

B = {16, 32, 48, 64}. The maximum throughput is max b/c(b) =
64/0.23 = 272 images per second and the minimum throughput is

min b/c(b) = 16/0.07 = 228. We set τ = c(64) × 2 = 0.56s.

The computation time for the RL algorithm to make a decision is

about 0.02s, which is far less than the model inference time c(b)
and τ . This is because the RL’s decision model is a simple multi-

layer perceptron model.

First, we compare all algorithms with the arriving rate defined

based on ru. We can see from Figure 12 that after a few iterations,

RL performs similarly as the greedy algorithm when the request

arriving rate r is high. When r is low, RL performs better than

the greedy algorithm. This is because there are a few requests left

when the queue length does not equal to any batch size in Line 7

of Algorithm 3. These left requests are likely to overdue because

the new requests are coming slowly to form a new batch. Clipper

always selects b = 64, which results in a long queuing time when

the arriving rate is low. Hence, there are overdue requests. When

the arriving rate is high, the optimal selection is b = 64, and the

performance (measured by the number of overdue requests) is the

same as the greedy algorithm.

Second, we compare all algorithms with the arriving rate defined

based on the minimum throughput rl. We can see from Figure 13

that since the arriving rate is smaller than that in Figure 12, there are

fewer overdue requests. In addition, RL learns to select the proper

batch size adaptively and thus has fewer overdue requests (nearly

0) than the greedy algorithm. Clipper performs worst as it wastes

much time on waiting for enough requests (64) to form a complete

batch.

7.2.2 Multiple Inference Models

In the following experiments, we select inception v3, inception v4

and inception resnet v2 to construct the model list M . The maxi-

mum throughput ru and minimum throughput rl are 572 requests

per second and 128 requests/second respectively. In the following

experiments, RL selects a subset of models (one per worker) and

a batch size for ensemble modeling. The computation time for de-

cision making is about 0.024s, which is a bit higher than that for

single model inference because the decision space is larger. Clip-

per always uses all models and the largest batch size. The selected

workers run synchronously. The greedy algorithm adopts different

strategies (explained below) to select models for ensemble model-

ing. Algorithm 3 is applied for batch size selection.

We first generate the request rate using the maximum through-

put, i.e., ru. For this case, the greedy algorithm runs all workers

asynchronously to process different batches. There is no ensemble

modeling. We can see that RL has better accuracy (Figure 14a ver-

sus 14b) and fewer overdue requests (Figure 14c versus 14d) than

137

0 250 500 750 1000 1250 1500

Time (seconds)

0

100

200

300

400

O
ve
rd
ue

R
eq
ue
st
s/
se
co
nd

RL Greedy Clipper

Figure 12: Comparing number of overdue requests for single model inference (arriving rate generated based on ru)

0 250 500 750 1000 1250 1500

Time (seconds)

0

50

100

150

200

250

300

R
eq
ue
st
s/
se
co
nd

RL Greedy Clipper

Figure 13: Comparing number of overdue requests for single model inference (arriving rate generated based on rl).

0 500 1000

Time (seconds)

0.76

0.78

0.80

0.82

0.84

A
cc
ur
ac
y

0

200

400

600

R
eq
ue
st
s/
se
co
nd

Greedy Clipper

(a) Greedy algorithm.

13500 14000 14500

Time (seconds)

0.76

0.78

0.80

0.82

0.84

A
cc
ur
ac
y

100

200

300

400

500

600

R
eq
ue
st
s/
se
co
nd

(b) RL algorithm.

0 500 1000

Time (seconds)

0

200

400

600

R
eq
ue
st
s/
se
co
nd

Greedy Clipper

(c) Overdue requests of Greedy and Clipper.

13500 14000 14500

Time (seconds)

0

200

400

600

R
eq
ue
st
s/
se
co
nd

(d) Overdue requests of RL.

Figure 14: Multiple model inference with the arriving rate generated based on ru.

0 500 1000

Time (seconds)

0.78

0.80

0.82

0.84

A
cc
ur
ac
y

0

25

50

75

100

125

150

#
re
qu
es
ts
/s
ec
on
d

Greedy Clipper

(a) Greedy algorithm.

23000 23500 24000

Time (seconds)

0.78

0.80

0.82

0.84

A
cc
ur
ac
y

0

25

50

75

100

125

150

R
eq
ue
st
s/
se
co
nd

(b) RL algorithm.

0 500 1000

Time (seconds)

0

25

50

75

100

125

150

R
eq
ue
st
s/
se
co
nd

Greedy Clipper

(c) Overdue requests of Greedy and Clipper.

23000 23500 24000

Time (seconds)

0

25

50

75

100

125

150

R
eq
ue
st
s/
se
co
nd

(d) Overdue requests of RL.

Figure 15: Multiple model inference with the arriving rate generated based on rl.

the greedy algorithm. This is because it is adaptive to the request

arriving rate. When the rate is high, it uses fewer models to serve

the same batch to improve the throughput and reduce the overdue

requests. When the rate is low, it uses more models to serve the

same batch to improve the accuracy. Clipper uses all models for

ensemble modeling, which results in high accuracy as shown in

Figure 14a. However, the throughput is low. Therefore, the queue

overflows quickly and the number of overdue requests increases

138

0 2000 4000 6000

Time (seconds)

0.800

0.805

0.810

A
cc
ur
ac
y

25

50

75

100

125

150

R
eq
ue
st
s/
se
co
nd

(a) β = 0.

0 2000 4000 6000

Time (seconds)

0.795

0.800

0.805

0.810

A
cc
ur
ac
y

25

50

75

100

125

150

R
eq
ue
st
s/
se
co
nd

(b) β = 1.

0 2000 4000 6000

Time (seconds)

0

50

100

150

200

R
eq
ue
st
s/
se
co
nd

Overdue

Arriving

(c) β = 0.

0 2000 4000 6000

Time (seconds)

0

50

100

150

200

R
eq
ue
st
s/
se
co
nd

Overdue

Arriving

(d) β = 1.

Figure 16: Comparison of the effect of different β for the RL algorithm.

quickly, which makes the program crash after running for a short

period.

Second, we generate the request rate using the minimum through-

put, i.e., rl. For this case, the greedy algorithm runs all work-

ers synchronous, i.e., selecting all models for ensemble modeling.

From Figure 15a and Figure 15b, we can see that the greedy al-

gorithm and Clipper have the same fixed accuracy since they use

all models for ensemble modeling. The RL algorithm’s accuracy

is high (resp. low) when the rate is low (resp. high). Because it

uses fewer models to do ensemble modeling when the arriving rate

is high. Since the peak request arriving rate is very low, the greedy

algorithm is able to handle almost all requests. Similar to Figure 13,

some overdue requests of the greedy algorithm is due to the mis-

match of the queue size and the batch size in Algorithm 3. Clipper

has to wait for enough requests for processing, which wastes some

time for the early arrived requests and results in many overdue re-

quests. RL is better than Clipper as it adapts the model and batch

size selection based on the arriving rate.

We also compare the effect of different β, namely β = 0 and

β = 1 in the reward function, i.e., Equation 7. Figure 16 shows

the results with the requests generated based on rl. We can see

that when β is smaller, the accuracy (Figure 16a) is higher. This is

because the reward function focus more on the accuracy part. Con-

sequently, there are many overdue requests as shown in Figure 16c.

In contrast, when β = 1, the reward function tries to avoid overdue

requests by reducing the number of models for ensemble. There-

fore, the accuracy and the number of overdue requests are smaller

(Figure 16b and Figure 16d).

8. CASE STUDY ON USABILITY
Rafiki has been deployed to support various applications, includ-

ing food image recognition as a component of a nutrition tacking

App10, disease progression modelling [34] for an integrative heal-

care analytics system [18], etc. In this section, we demonstrate

the end-to-end journey of a Rafiki user, i.e., an application devel-

oper, using image classification as an example. We have a database

(food) storing the food images. Each image record contains the ID

and age of the user who uploaded the image, the image taken time

and location, and the image path (img path) on the server. The task

is to predict the food name from the image and aggregate the food

of each user to get his/her food preference or intake summary.

First, the application developer prepares a training dataset, e.g.,

crawling food images from the internet and labeling them manually.

The image classification task requires the images of the same class

(i.e., the same food) to be placed under one sub-folder of the dataset

directory. Let us denote the dataset directory as train/.

10www.foodlg.com

Second, the application developer uses Rafiki’s training service

to train machine learning models for food image classification. The

code is shown in Figure 2 (train.py), which indicates that there

are 120 types of food and the input image will be resized to 256

(height) times 256 (width) before feeding to the model.

Third, the application developer uses Rafiki’s inference service

to deploy the model(s) after training. The code is shown in Fig-

ure 2 (infer.py). Once the model is deployed, the application de-

veloper executes the SQL query below for the food analytic task,

which calls a user-defined function (UDF) food name() to predict

the name of the food in each image. The UDF function is similar

to the application user code in Figure 2. Note that the function is

executed only on the images of the rows that satisfy the condition

(age is greater than 60). It saves much time when the table is large.

select food_name(img_path) as name, count(*)

from food

where age > 60

group by name;

9. ACKNOWLEDGEMENT
This research is supported by the National Research Foundation,

Prime Ministers Office, Singapore under its National Cybersecu-

rity R&D Programme (Grant No. NRF2016NCR-NCR002-020),

National Natural Science Foundation of China (No. 61832001),

National Key Research and Development Program of China (No.

2017YFB1201001). The work of Meihui Zhang is supported by

China Thousand Talents Program for Young Professionals (3070011

181811).

10. CONCLUSIONS
Complex analytics has become an inherent and expected func-

tionality to be supported by big data systems. However, it is widely

recognized that machine learning models are not easy to build and

train, and they are sensitive to data distributions and characteris-

tics. It is therefore important to reduce the pain points of imple-

menting and tuning of dataset specific models, as a step towards

making AI more usable. In this paper, we present Rafiki to provide

the training and inference service of machine learning models, and

facilitate complex analytics. Rafiki supports effective distributed

hyper-parameter tuning for the training service, and online ensem-

ble modeling for the inference service that is amenable to the trade

off between latency and accuracy. The system is evaluated with var-

ious benchmarks to illustrate its efficiency, effectiveness and scal-

ability. We also conduct a case study that demonstrates how the

system enables a database developer to use deep learning services

easily.

139

11. REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,

J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,

P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and

X. Zheng. Tensorflow: A system for large-scale machine

learning. In OSDI 16, pages 265–283, GA, 2016. USENIX

Association.

[2] J. Bergstra and Y. Bengio. Random search for

hyper-parameter optimization. J. Mach. Learn. Res.,

13:281–305, Feb. 2012.

[3] R. Collobert, J. Weston, L. Bottou, M. Karlen,

K. Kavukcuoglu, and P. P. Kuksa. Natural language

processing (almost) from scratch. CoRR, abs/1103.0398,

2011.

[4] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E.

Gonzalez, and I. Stoica. Clipper: A low-latency online

prediction serving system. In NSDI, pages 613–627, Boston,

MA, 2017. USENIX Association.

[5] C. Curino, E. Philip Charles Jones, R. Popa, N. Malviya,

E. Wu, S. Madden, H. Balakrishnan, and N. Zeldovich.

Relational cloud: A database-as-a-service for the cloud.

CIDR, pages 235–240, April 2011.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR09, 2009.

[7] J. Gao, W. Wang, M. Zhang, G. Chen, H. V. Jagadish, G. Li,

T. K. Ng, B. C. Ooi, S. Wang, and J. Zhou. PANDA:

facilitating usable AI development. CoRR, abs/1804.09997,

2018.

[8] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. E. Karro,

and D. Sculley, editors. Google Vizier: A Service for

Black-Box Optimization, 2017.

[9] H. Hacigumus, B. Iyer, and S. Mehrotra. Providing database

as a service. In ICDE, pages 29–38, Feb 2002.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. CoRR, abs/1512.03385, 2015.

[11] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J.

Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy

with 50x fewer parameters and <1mb model size. CoRR,

abs/1602.07360, 2016.

[12] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia.

Noscope: Optimizing neural network queries over video at

scale. PVLDB, 10(11):1586–1597, Aug. 2017.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, pages 1106–1114, 2012.

[14] L. I. Kuncheva and C. J. Whitaker. Measures of diversity in

classifier ensembles and their relationship with the ensemble

accuracy. Mach. Learn., 51(2):181–207, May 2003.

[15] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

[16] T. Li, J. Zhong, J. Liu, W. Wu, and C. Zhang. Ease.ml:

Towards multi-tenant resource sharing for machine learning

workloads. PVLDB, 11(5):607–620, Jan. 2018.

[17] Y. Li. Deep reinforcement learning: An overview. CoRR,

abs/1701.07274, 2017.

[18] Z. J. Ling, Q. T. Tran, J. Fan, G. C. H. Koh, T. Nguyen, C. S.

Tan, J. W. L. Yip, and M. Zhang. Gemini: An integrative

healthcare analytics system. PVLDB, 7(13):1766–1771, Aug.

2014.

[19] V. Mnih, A. Puigdomènech Badia, M. Mirza, A. Graves, T. P.

Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.

Asynchronous Methods for Deep Reinforcement Learning.

ArXiv e-prints, Feb. 2016.

[20] A. N. Modi, C. Y. Koo, C. Y. Foo, C. Mewald, D. M. Baylor,

E. Breck, H.-T. Cheng, J. Wilkiewicz, L. Koc, L. Lew, M. A.

Zinkevich, M. Wicke, M. Ispir, N. Polyzotis, N. Fiedel, S. E.

Haykal, S. Whang, S. Roy, S. Ramesh, V. Jain, X. Zhang,

and Z. Haque. Tfx: A tensorflow-based production-scale

machine learning platform. In KDD 2017, 2017.

[21] B. C. Ooi, K. Tan, S. Wang, W. Wang, Q. Cai, G. Chen,

J. Gao, Z. Luo, A. K. H. Tung, Y. Wang, Z. Xie, M. Zhang,

and K. Zheng. SINGA: A distributed deep learning platform.

In ACM Multimedia, pages 685–688, 2015.

[22] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean.

Efficient Neural Architecture Search via Parameter Sharing.

ArXiv e-prints, Feb. 2018.

[23] C. Ré, D. Agrawal, M. Balazinska, M. I. Cafarella, M. I.

Jordan, T. Kraska, and R. Ramakrishnan. Machine learning

and databases: The sound of things to come or a cacophony

of hype? In SIGMOD, pages 283–284, 2015.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and

O. Klimov. Proximal policy optimization algorithms. CoRR,

abs/1707.06347, 2017.

[25] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips,

D. Ebner, V. Chaudhary, and M. Young. Machine learning:

The high interest credit card of technical debt. In SE4ML:

Software Engineering for Machine Learning (NIPS 2014

Workshop), 2014.

[26] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

[27] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian

Optimization of Machine Learning Algorithms. ArXiv

e-prints, June 2012.

[28] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish,

N. Sundaram, M. M. A. Patwary, Prabhat, and R. P. Adams.

Scalable Bayesian Optimization Using Deep Neural

Networks. ArXiv e-prints, Feb. 2015.

[29] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the

importance of initialization and momentum in deep learning.

ICML’13, pages III–1139–III–1147. JMLR.org, 2013.

[30] T. Swearingen, W. Drevo, B. Cyphers, A. Cuesta-Infante,

A. Ross, and K. Veeramachaneni. ATM: A distributed,

collaborative, scalable system for automated machine

learning. In 2017 IEEE BigData 2017, Boston, MA, USA,

December 11-14, 2017, pages 151–162, 2017.

[31] W. Wang, X. Yang, B. C. Ooi, D. Zhang, and Y. Zhuang.

Effective deep learning-based multi-modal retrieval. The

VLDB Journal, pages 1–23, 2015.

[32] W. Wang, M. Zhang, G. Chen, H. Jagadish, B. C. Ooi, and

K.-L. Tan. Database meets deep learning: Challenges and

opportunities. ACM SIGMOD Record, 45(2):17–22, 2016.

[33] H. Zhang, L. Zeng, W. Wu, and C. Zhang. How good are

machine learning clouds for binary classification with good

features? CoRR, abs/1707.09562, 2017.

[34] K. Zheng, W. Wang, J. Gao, K. Y. Ngiam, B. C. Ooi, and

J. W. L. Yip. Capturing feature-level irregularity in disease

progression modeling. In CIKM, pages 1579–1588, 2017.

140

