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Abstract

We introduce Recurrent All-Pairs Field Transforms
(RAFT), a new deep network architecture for opti-
cal flow. RAFT extracts per-pixel features, builds
multi-scale 4D correlation volumes for all pairs of
pixels, and iteratively updates a flow field through
a recurrent unit that performs lookups on the cor-
relation volumes. RAFT achieves state-of-the-art
performance on the KITTI and Sintel datasets. In
addition, RAFT has strong cross-dataset general-
ization as well as high efficiency in inference time,
training speed, and parameter count.

1 Introduction

Optical flow is the task of estimating per-pixel motion be-
tween video frames. It is a long-standing vision problem that
remains unsolved. The best systems are limited by difficul-
ties including fast-moving objects, occlusions, motion blur,
and textureless surfaces.

Optical flow has traditionally been approached as a hand-
crafted optimization problem over the space of dense dis-
placement fields between a pair of images [Horn and
Schunck, 1981]. Generally, the optimization objective de-
fines a trade-off between a data term which encourages the
alignment of visually similar image regions and a regulariza-
tion term which imposes priors on the plausibility of motion.
Such an approach has achieved considerable success, but fur-
ther progress has appeared challenging, due to the difficulties
in hand-designing an optimization objective that is robust to
a variety of corner cases.

Recently, deep learning has been shown as a promising
alternative to traditional methods. Deep learning can side-
step formulating an optimization problem and train a network
to directly predict flow. Current deep learning methods[Ilg
et al., 2017; Sun et al., 2018b; Yang and Ramanan, 2019;
Hofinger et al., 2020] have achieved performance compara-
ble to the best traditional methods while being significantly
faster at inference time. A key question for further research
is designing effective architectures that perform better, train
more easily and generalize well to novel scenes.

We introduce Recurrent All-Pairs Field Transforms
(RAFT), a new deep network architecture for optical flow.
RAFT enjoys the following strengths:
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Figure 1: RAFT consists of 3 main components: (1) A feature en-
coder that extracts per-pixel features from both input images, along
with a context encoder that extracts features from only /7. (2) A
correlation layer which constructs a 4D correlation volume by tak-
ing the inner product of all pairs of feature vectors. The last 2-
dimensions of the 4D volume are pooled at multiple scales to con-
struct a set of multi-scale volumes. (3) An update operator which
recurrently updates optical flow by using the current estimate to look
up values from the multi-scale volume.

* State-of-the-art accuracy: On KITTI [Menze and
Geiger, 2015], RAFT achieves an F1-all error of 5.10%,
a 16% error reduction from the best published result
(6.10%). On Sintel [Butler er al., 2012] (final pass),
RAFT obtains an end-point-error of 2.86 pixels, a 30%
error reduction from the best published result.

» Strong generalization: When trained only on synthetic
data, RAFT achieves an end-point-error of 5.04 pixels
on KITTI [Menze and Geiger, 20151, a 40% error reduc-
tion from the best prior approach.

* High efficiency: RAFT processes 1088 x 436 videos at
10 frames per second on a 1080Ti GPU. It trains with
10X fewer iterations than other architectures. A smaller
version of RAFT runs at 20fps.

RAFT consists of three main components: (1) a feature
encoder that extracts a feature vector for each pixel; (2) a
correlation layer that produces a 4D correlation volume for
all pairs of pixels, with subsequent pooling to produce lower
resolution volumes; (3) a recurrent GRU-based update oper-
ator that retrieves values from the correlation volumes and
iteratively updates a flow field initialized at zero (Fig. 1).

The RAFT architecture is motivated by traditional
optimization-based approaches. The feature encoder extracts
per-pixel features. The correlation layer computes visual sim-
ilarity between pixels. The update operator mimics the steps
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of an iterative optimization algorithm. But unlike traditional
approaches, features and motion priors are not handcrafted
but learned—Ilearned by the feature encoder and the update
operator respectively.

The design of RAFT draws inspiration from many exist-
ing works but is substantially novel. First, RAFT main-
tains and updates a single fixed flow field at high resolution.
This is different from the prevailing coarse-to-fine design in
prior work [Sun et al., 2018b; Yang and Ramanan, 2019;
Hur and Roth, 2019], where flow is first estimated at low reso-
lution and upsampled and refined at high resolution. By oper-
ating on a single high-resolution flow field, RAFT overcomes
several limitations of a coarse-to-fine cascade: the difficulty
of recovering from errors at coarse resolutions, the tendency
to miss small fast-moving objects.

Second, the update operator has a novel design. Guided
by first order optimization algorithms, we design an update
operator which is recurrent and lightweight. It consists of a
convolutional GRU that performs lookups on 4D multi-scale
correlation volumes. During inference, the update operator
uses correlation features make iterative updates to the flow
field and can be applied 100+ times without divergence.

We conduct experiments on Sintel[Butler et al., 2012] and
KITTI[Menze and Geiger, 2015]. Results show that RAFT
achieves state-of-the-art performance on both datasets. In ad-
dition, we validate various design choices of RAFT through
extensive ablation studies.

2 Related Work
2.1 Optical Flow as Energy Minimization

Optical flow has traditionally been treated as an energy min-
imization problem which imposes a tradeoff between a data
term and a regularization term. [Horn and Schunck, 1981]
formulated optical flow as a continuous optimization prob-
lem using a variational framework, and were able to esti-
mate a dense flow field by performing gradient steps. [Black
and Anandan, 1993] addressed problems with oversmooth-
ing and noise sensitivity by introducing a robust estimation
framework. TV-L1 [Zach et al., 2007] replaced the quadratic
penalties with an L1 data term and total variation regulariza-
tion, which allowed for motion discontinuities and was better
equipped to handle outliers. Improvements have been made
by defining better matching costs [Weinzaepfel er al., 2013;
Brox et al., 2009] and regularization [Ranftl ef al., 2014].
Such continuous formulations maintain a single estimate
of optical flow which is refined at each iteration. To ensure
a smooth objective function, a first order Taylor approxima-
tion is used to model the data term. As a result, they only
work well for small displacements. To handle large displace-
ments, the coarse-to-fine strategy is used, where an image
pyramid is used to estimate large displacements at low resolu-
tion, then small displacements refined at high resolution. But
this coarse-to-fine strategy may miss small fast-moving ob-
jects and have difficulty recovering from early mistakes. Like
continuous methods, we maintain a single estimate of optical
flow which is refined with each iteration. However, since we
build correlation volumes for all pairs at both high resolution
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and low resolution, each local update uses information about
both small and large displacements.

2.2 Deep Learning for Optical Flow

Neural networks have been trained to directly predict opti-
cal flow between a pair of frames, side-stepping the opti-
mization problem completely. Coarse-to-fine processing has
emerged as a popular ingredient in many recent works [Sun
et al., 2018b; Hur and Roth, 2019; Yang and Ramanan, 2019;
Hofinger et al., 2020; Bar-Haim and Wolf, 2020; Zhao et al.,
2020]. In contrast, our method maintains and updates a single
high-resolution prediction of the optical flow field.

Many recent works have used iterative refinement to im-
prove results on optical flow [Ilg et al., 2017; Ranjan and
Black, 2017; Sun et al., 2018b; Yang and Ramanan, 2019].
[Tlg et al., 2017] applied iterative refinement to optical flow
by stacking multiple FlowNetS and FlowNetC modules in se-
ries. SpyNet[Ranjan and Black, 2017], PWC-Net[Sun et al.,
2018b], and VCN [Yang and Ramanan, 2019] apply iterative
refinement using coarse-to-fine pyramids.

More closely related to our approach is IRR[Hur and Roth,
2019], which builds off of the FlownetS and PWC-Net ar-
chitecture but shares weights between refinement networks.
When using FlowNetS, it is limited by the size of the net-
work (38M parameters) and is only applied up to 5 iterations.
When using PWC-Net, iterations are limited by the number of
pyramid levels. In contrast, we use a much simpler refinement
module (2.7M parameters) which can be applied for 100+ it-
erations during inference without divergence. Our method
also shares similarites with Devon [Lu et al., 2020], namely
the construction of the cost volume without warping and fixed
resolution updates. However, Devon does not have any recur-
rent unit nor a full correlation volume, and is limited to 3
refinement steps.

2.3 Learning to Optimize

Many problems in vision can be formulated as an optimiza-
tion problem. This has motivated several works to embed
optimization problems into network architectures [Amos and
Kolter, 2017; Tang and Tan, 2018]. These works typically
use a network to predict the inputs or parameters of the
optimization problem, and then train the network weights
by backpropogating the gradient through the solver, either
implicitly[Amos and Kolter, 2017] or unrolling each step
[Tang and Tan, 2018]. However, this technique is limited to
problems with an easily defined objective.

Another approach is to learn iterative updates directly from
data [Adler and Oktem, 2017]. These approaches are mo-
tivated by the fact that first order optimizers such as Primal
Dual Hybrid Gradient (PDHG)[Chambolle and Pock, 2011]
can be expressed as a sequence of iterative update steps. In-
stead of using an optimizer directly, [Adler and Oktem, 2017]
proposed building a network which mimics the updates of a
first order algorithm.

Our approach can be viewed as learning to optimize: our
network uses a large number of update blocks to emulate the
steps of a first-order optimization algorithm. However, un-
like prior work, we never explicitly define a gradient with
respect to some optimization objective. Instead, our network
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retrieves features from correlation volumes to propose the de-
scent direction.

3 Approach

Given a pair of consecutive RGB images, I, I», we esti-
mate a dense displacement field (f*, f?) which maps each
pixel (u,v) in I5 to its corresponding coordinates (u’,v’) in
I>. An overview of our approach is given in Figure 1. Our
method can be distilled down to three stages: (1) feature ex-
traction, (2) computing visual similarity, and (3) iterative up-
dates, where all stages are differentiable and composed into
an end-to-end trainable architecture.

3.1 Feature Extraction and Correlation Volume

Features are extracted from the input images using a convo-
Iutional network. The feature encoder network is applied to
both I; and I» and maps the input images to dense feature
maps at a lower resolution. Our encoder, gy outputs fea-
tures at 1/8 resolution gy : RFXW X3 oy RH/8XW/SXD ity
D = 256. The feature encoder consists of 6 residual blocks.

We additionally use a context network. The context net-
work extracts features only from the first input image I;. The
architecture of the context network, hy is identical to the fea-
ture extraction network. Together, the feature network gy and
the context network hg form the first stage of our approach,
which only need to be performed once.

Computing Visual Similarity. We compute visual similar-
ity by constructing a full correlation volume between all pairs.
Given image features go(I;) € RIXWXD and gy(Iy) €
RIXWXD "the correlation volume is formed by taking the
dot product between all pairs of feature vectors. The correla-
tion volume, C, can be efficiently computed as a single matrix
multiplication.

Cijrr = 9o(In)ijn - go(I2)kin ¢))
h

Correlation Volume. We construct a 4-layer pyramid
{C!,C?,C3, C*} by pooling the last two dimensions of the
correlation volume with kernel sizes 1, 2, 4, and 8 and equiv-
alent stride. Thus, volume C* has dimensions H x W x
H/2* x W/2". The set of volumes gives information about
both large and small displacements; however, by maintaining
the first 2 dimensions (the I; dimensions) we maintain high
resolution information, allowing our method to recover the
motions of small fast-moving objects.

Correlation Lookup. We define a lookup operator Lc
which generates a feature map by indexing from the cor-
relation pyramid. Given a current estimate of optical flow
(f1,£?), we map each pixel x = (u,v) in I to its estimated
correspondence in Io: x’ = (u+ f(u),v+ f2(v)). We then
define a local grid around x’

N(X/)TZ{X/+dX|dXEZQ,HdX||1 <r} 2)

as the set of integer offsets which are within a radius of r units
of x’ using the L1 distance. We use the local neighborhood
N (x'), to index from the correlation volume.

We perform lookups on all levels of the pyramid and con-
catenate the results. A constant radius across levels means
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larger context at lower levels; such that, as the lowest level,
the neighborhood covers a 576x576 grid of pixels.

3.2 Update Operator

Our update operator estimates a sequence of flow estimates
{f1,....,fx} from an initial starting point f; = 0. With each
iteration, it produces an update direction Af which is applied
to the current estimate: f;,; = Af + f}.

The update operator takes flow, correlation, and a latent
hidden state as input, and outputs the update Af and an up-
dated hidden state. The architecture of our update operator
is designed to mimic the steps of an optimization algorithm.
As such, we used tied weights across depth and use bounded
activations to encourage convergence to a fixed point. The
update operator is trained to perform updates such that the
sequence converges to a fixed point f;, — £*.

Initialization. By default, we initialize the flow field to 0
everywhere, but our iterative approach gives us the flexibil-
ity to experiment with alternatives. When applied to video,
we test warm-start initialization, where optical flow from the
previous pair of frames is forward projected to the next pair
of frames with occlusion gaps interpolated.

Inputs. Given the current flow estimate f k. we use it to re-
trieve correlation features from the correlation pyramid. The
correlation features are then processed by 2 convolutional
layers. Additionally, we apply 2 convolutional layers to the
flow estimate itself to generate flow features. Finally, we di-
rectly inject the input from the context network. The input
feature map is then taken as the concatenation of the correla-
tion, flow, and context features.

Update. A core component of the update operator is a gated
activation unit based on the GRU cell, with linear layers re-
placed with convolutions. Each iteration of the GRU takes in
a state variable, which is the concatenation of flow, correla-
tion, and context features. We also experiment with a separa-
ble ConvGRU unit, where we replace the 3 x 3 convolution
with two GRUs: one with a 1 x 5 convolution and one with
a b5 x 1 convolution to increase the receptive field without
significantly increasing the size of the model.

Flow Prediction. The hidden state outputted by the GRU
is passed through two convolutional layers to predict the flow
update Af. The output flow is at 1/8 resolution of the input
image. During training and evaluation, we upsample the pre-
dicted flow fields to match the resolution of the ground truth.

Upsampling. The network outputs optical flow at 1/8 res-
olution. We upsample the optical flow to full resolution
by taking the full resolution flow at each pixel to be the
convex combination of a 3x3 grid of its coarse resolution
neighbors. We use two convolutional layers to predict a
H/8 x W/8 x (8 x 8 x 9) mask and perform softmax over
the weights of the 9 neighbors. The final high resolution flow
field is found taking a weighted combination over the neigh-
borhood, then reshaped to a full resolution flow field.

3.3 Supervision

We supervised our network on the [; distance between the
predicted and ground truth flow over the full sequence of pre-
dictions, {fy, ..., fx }, with exponentially increasing weights.
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Sintel (train)

KITTI-15 (train)

Sintel (test)

KITTI-15 (test)

Training Data  Method Clean  Final Fl-epe Fl-all Clean Final F1-all
PWC-Net [Sun et al., 2018b] 2.55 3.93 10.35 33.7 - - -
VCN [Yang and Ramanan, 2019] 2.21 3.68 8.36 25.1 - - -
C+T MaskFlowNet [Zhao et al., 20201 2.25 3.61 - 23.1 - - -
FlowNet2 [Ilg et al., 2017] 2.02 3.54 10.08 30.0 3.96 6.02 -
Ours (small) 2.21 3.35 7.51 26.9 - - -
Ours (2-view) 1.43 2.71 5.04 17.4 - - -
FlowNet2 [Ilg et al., 2017] (145 (2.01) (2.30) (6.8) 4.16 5.74 11.48
IRR-PWC [Hur and Roth, 2019] (1.92) (.51) (1.63) (5.3) 3.84 4.58 7.65
C+T+S/K ScopeFlow [Bar-Haim and Wolf, 2020] - - - - 3.59 4.10 6.82
Ours (2-view) 0.77)  (1.200  (0.64) (1.5) 2.08 341 5.27
PWC-Net+ [Sun er al., 2018a] (1.71) (234  (1.50) (5.3) 345 4.60 7.72
VCN [Yang and Ramanan, 2019] (1.66) (2.24) (1.16) “.1) 2.81 4.40 6.30
MaskFlowNet [Zhao et al., 2020] - - - - 2.52 4.17 6.10
CHTHSHKAH (g (2-view) 076) (122) (0.63) (15 194 3.8 5.10
Ours (warm-start) ©.77  (1.27) - - 1.61 2.86 -

Table 1: Results on Sintel and KITTI datasets. We test the generalization performance on Sintel(train) after training on FlyingChairs(C) and
FlyingThing(T), and outperform all existing methods on both the clean and final pass. The bottom two sections show the performance of our
model on public leaderboards after dataset specific finetuning. S/K includes methods which use only Sintel data for finetuning on Sintel and
only KITTI data when finetuning on KITTI. +S+K+H includes methods which combine KITTI, HD1K, and Sintel data when finetuning on
Sintel. Ours (warm-start) ranks 1st on both the Sintel clean and final passes, and 1st among all flow approaches on KITTI.

Given ground truth flow fy;, the loss is defined as
N
L= A" —filli,  v=08. (3)
i=1

4 [Experiments

We evaluate RAFT on Sintel [Butler et al., 2012] and KITTI
[Menze and Geiger, 2015]. Following previous works, we
pretrain our network on FlyingChairs[Dosovitskiy e al.,
2015] and FlyingThings[Mayer et al., 20161, followed by
dataset specific finetuning.

Implementation. RAFT is implemented in PyTorch
[Paszke ef al., 2019] and initialized with random weights.
We train using the AdamW optimizer [Loshchilov and
Hutter, 2018] and clip gradients to the range [—1, 1]. Unless
otherwise noted, we evaluate after 32 flow updates on Sintel
and 24 on KITTL For every update, Af + f;, we only
backpropgate the gradient through the Af branch, and zero
the gradient through the f;, branch as suggested by [Hofinger
et al., 2020].

Training Schedule. We train RAFT using two 2080Ti
GPUs. We pretrain on FlyingThings for 100k iterations with
a batch size of 12, then train for 100k iterations on Fly-
ingThings3D with a batch size of 6. We finetune on Sin-
tel for another 100k by combining data from Sintel[But-
ler et al., 2012], KITTI-2015 [Menze and Geiger, 20151,
and HD1K[Kondermann et al., 2016] similar to prior work
[Zhao er al., 2020; Sun et al., 2018a]. Finally, we finetune
on KITTI-2015 for an additionally 50k iterations using the
weights from the model finetuned on Sintel. For comparison
with prior work, we also include results from our model when
finetuning only on Sintel and only on KITTIL.

Sintel. We train using the FlyingChairs—FlyingThings
schedule and then evaluate on the Sintel dataset using the
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Figure 2: Flow predictions on DAVIS.

train split for validation. Results are shown in Tab. 1, and
organized based on the data used for training. C + T means
that the models are trained on Chairs(C) and Things(T), +ft
indicates finetuning on Sintel.

Our method ranks 1st on both the Sintel clean and final
passes, and outperforms all prior work by 0.9 pixels (36%)
on the clean pass and 1.2 pixels (30%) on the final pass. We
evaluate two versions of our model, Ours (two-frame) uses
zero initialization, while Ours (warp-start) initializes flow by
forward projecting the flow estimate from the previous frame.

KITTI. We also evaluate RAFT on KITTI and provide re-
sults in Tab.1. We first evaluate cross-dataset generaliza-
tion by evaluating on the KITTI-15 (train) split after training
on Chairs(C) and FlyingThings(T). Our method outperforms
prior works by a large margin, improving EPE (end-point-
error) from 8.36 to 5.04. Our method ranks 1st on the KITTI
leaderboard among all optical flow methods.

S Conclusions

We have proposed RAFT—Recurrent All-Pairs Field
Transforms—a new end-to-end trainable model for optical
flow. RAFT is unique in that it operates at a single resolution
using a large number of lightweight, recurrent update oper-
ators. Our method achieves state-of-the-art accuracy across
a diverse range of datasets, has strong cross dataset general-
ization, and is efficient in terms of inference time, parameter
count, and training iterations.
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