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LIST OF ABBREVIATIONS 
 
 
Caspr1  contactin-associated protein, also known as paranodin 
CGT  ceramide galactosyl transferase 
CHAPS 3-[(3-chloramidopropyl)-dimethylammonio]-1-propane-sulfonate 
CNP  2',3'-cyclic nucleotide 3'-phosphodiesterase 
CNS  central nervous system 
Cx32  connexin-32 
DRM  detergent-resistant membrane 
EAE  experimental allergic encephalitis 
F3  contactin 
FIIM  fluorescence intensity imaging microscopy 
GalC  galactosylceramide 
GPI-AP glycosylphosphatidylinositol-anchored protein 
GSL  glycosphingolipid 
mAb  monoclonal antibody  
MAG  myelin-associated glycoprotein  
MAL  myelin and lymphocyte protein 
MβCD  methyl-β-cyclodextrin   
MBP  myelin basic protein  
MDCK Madin-Darby canine kidney 
MOBP  myelin-associated oligodendrocytic basic protein 
MOG  myelin/oligodendrocyte glycoprotein 
MS  multiple sclerosis 
NCAM 120 neuronal cell adhesion molecule of 120 kDa 
NF155  155 kDa isoform of neurofascin 
NgR  Nogo receptor 
OLG  oligodendrocyte 
OMgp  oligodendrocyte myelin glycoprotein 
OPC  oligodendrocyte progenitor cell  
OSP  oligodendrocyte-specific protein/claudin-11 
PDGF  platelet-derived growth factor 
PLP  proteolipid protein 
Siglec  sialic acid-dependent immunoglobulin-like family member lectin 
SL  sphingolipid 
Src  Rous sarcoma 
TX-100 Triton X-100, t-octylphenoxypolyethoxyethanol 
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ABSTRACT  
 
The plasma membrane of eukaryotic cells exhibits lateral inhomogeneities, mainly 

containing cholesterol and sphingomyelin, which provide liquid-ordered 

microdomains (lipid ‘rafts’) that segregate membrane components. Rafts are thought 

to modulate the biological functions of molecules that become associated with them, 

and as such, they appear to be involved in a variety of processes, including signal 

transduction, membrane sorting, cell adhesion and pathogen entry. Although still a 

matter of ongoing debate, evidence in favor of the presence of these microdomains is 

gradually accumulating but a consensus on issues like their size, lifetime, composition 

and biological significance has yet to be reached. Here, we provide an overview of the 

evidence supporting the presence of rafts in oligodendrocytes, the myelin-producing 

cells of the central nervous system, and discuss their functional significance. The 

myelin membrane differs fundamentally from the plasma membrane, both in lipid and 

protein composition. Moreover, since myelin membranes are unusually enriched in 

glycosphingolipids, questions concerning the biogenesis and functional relevance of 

microdomains thus appear of special interest in oligodendrocytes. The current picture 

of rafts in oligodendrocytes is mainly based on detergent methods. The robustness of 

such data is discussed and alternative methods that may provide complementary data 

are indicated.  
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INTRODUCTION 

Oligodendrocytes (OLGs) are the myelin-producing cells of the central nervous 

system (CNS). They originate from mitotic and migratory precursors which go 

through discrete stages of maturation, i.e. from a pre-progenitor (precursor) cell, to a 

bipolar, migratory cell (O-2A, also called OLG progenitor cell (OPC)), a sulfatide-

positive pre-OLG, an immature galactosylceramide (GalC)-positive OLG and finally 

to the mature, post-mitotic myelin-producing OLG (Figure 1) (Baumann and Pham-

Dinh, 2001; Pfeiffer et al., 1993). The sequential steps in the maturation process of 

OLGs are characterized by the differential expression of developmental markers, 

which are recognized by specific monoclonal antibodies (mAbs) (Hardy and 

Reynolds, 1993). 

Mature, myelin-producing OLGs extend a complex array of thin processes (Figure 2), 

which project outward from the cell body. Each process forms a segment of a highly 

specialized membrane that wraps around an axon, i.e. the myelin sheath. 

Architecturally, the myelin sheath is a complex membrane structure. While the 

cytoplasmic compartment is continuous from the OLG cell body to the myelin sheath, 

distinct membrane domains can be discerned which differ dramatically in lipid and 

protein composition (Figure 3). In the compact myelin region the cytoplasm has been 

virtually extruded. However, in the non-compact region (cytoplasmic incisures and 

abaxonal, periaxonal and paranodal loops) cytoplasm is still present. The protein 

fraction of purified myelin consists mainly (60 to 80%) of proteolipid protein (PLP), 

its isoform DM20, and myelin basic protein (MBP) (Table 1). The primary function of 

these proteins is to stabilise the apposed myelin membranes in compact myelin (Table 

2). Myelin and lymphocyte protein (MAL) and myelin-associated oligodendrocytic 

basic protein (MOBP) are also localized in compact myelin. The non-compact regions 
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of myelin contain 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP), myelin-

associated glycoprotein (MAG), myelin/oligodendrocyte glycoprotein (MOG), the 

155 kDa isoform of neurofascin (NF155), oligodendrocyte myelin glycoprotein 

(OMgp) and connexin-32 (Cx32) (Baumann and Pham-Dinh, 2001). A tight 

junctional array containing oligodendrocyte-specific protein/claudin-11 (OSP) marks 

the border between compact and non-compact myelin and may act as a diffusion 

barrier between these myelin subdomains (Bronstein et al., 2000; Gow et al., 1999; 

Krämer et al., 2001; Morita et al., 1999).  

The ensheathment of axons with myelin is essential for the fast saltatory conduction 

of action potentials along the nerve cells and thus for the proper functioning of the 

nervous system. Abnormalities in myelin development or disturbance and destruction 

of its structure lead to severe neurological symptoms observed in diseases such as 

multiple sclerosis (MS) (Bartlett and Mackay, 1983; Baumann and Pham-Dinh, 2001; 

de Vries and Hoekstra, 2000). MS is the most common human demyelinating disease. 

It affects about 0.1% of the population in temperate climates (Wingerchuk et al., 

2001). The disabling nature of MS strongly highlights the importance of OLGs. In 

addition to the initial elaboration of myelin, these cells are also required for the 

maintenance of the myelin sheath during adult life. As myelin is a compacted 

multilamellar membrane structure containing little cytoplasm, it is difficult to imagine 

how myelin membrane constituents are actively metabolized, recycled and/or 

reassembled. Nevertheless, during the lifespan of mice, individual myelin components 

are metabolized at different rates and the evidence suggests that these turnover rates 

are differently affected by aging (Ando et al., 2003). Maintenance of the functional 

myelin sheath during adult life would thus require a carefully regulated balance of 

myelin synthesis and turnover.  
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Besides the subdivision of the fully mature myelin sheath into compact and non-

compact myelin, the overall myelin membrane composition differs dramatically from 

that of the plasma membrane that surrounds the OLG cell body. Therefore, it is clear 

that the processes of myelin formation and maintenance require precise sorting and 

targeting mechanisms, which at least in part originate in the OLG cell body.  

The myelin sheath, being strongly enriched in glycosphingolipids (GSLs), bears some 

resemblance to the apical membrane of polarized epithelial cells, whereas the OLG 

plasma membrane shows similarity to the basolateral membrane. Particularly in 

membranes enriched in GSLs and cholesterol, such as in apical membranes, 

GSL/cholesterol-enriched microdomains or so called ‘lipid rafts’ may exist and/or 

arise. These microdomains have been postulated to be involved in signaling and to act 

as targeting devices in the direct transport of apical proteins from the trans-Golgi 

network (TGN) to the apical membrane (Brown and Rose, 1992; Hoekstra et al., 

2003; Ikonen and Simons, 1998; Ikonen, 2001; Simons and van Meer, 1988; Simons 

and Wandinger-Ness, 1990; Zurzolo et al., 1994). Given the enrichment of GSLs and 

cholesterol in myelin, it is tempting to consider that transport and functioning of 

myelin-specific proteins towards and in the myelin sheath are accomplished in a 

similar fashion. 

In this review we will first critically discuss some aspects of the current concept of 

lipid rafts and subsequently provide an overview of the evidence that supports the 

presence and relevance of such microdomains in OLGs. The two main techniques 

used to study rafts in OLGs, detergent extraction and co-localization imaging, are 

discussed with respect to possible pitfalls. Alternative methods that can be used to 

study rafts in living cells are briefly described. 
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THE RAFT CONCEPT 

Although the cell membrane may be considered as a two-dimensional, liquid-like 

structure, it is far from being a homogeneous mixture of lipids and proteins (Jain and 

White, 1977; Karnovsky et al., 1982; Klausner et al., 1980; Lai, 2003). Rather, it is a 

non-ideal liquid mixture of molecules with variable degrees of mutual miscibility 

(Kusumi et al., 2004). As a consequence, the cell membrane contains a variety of 

molecular complexes and domains, characterized by different composition and spatial 

arrangement of the membrane-constituting lipids, which implies constraints on the 

diffusion of the membrane components (Kusumi et al., 2004; Lommerse et al., 2004; 

Mukherjee and Maxfield, 2004; Ritchie and Kusumi, 2004; Simons and Vaz, 2004;  

Vereb et al., 2003). 

Lipid rafts are a particular class of membrane ‘inhomogeneities’, and they can be seen 

as relatively small ‘liquid-ordered’ membrane domains enriched in cholesterol, GSLs 

and phospholipids with saturated acyl chains. The lipids are ordered as in the gel 

phase but nevertheless remain mobile in the plane of the membrane, so that this phase 

has been denoted as the ‘liquid-ordered’ phase (Ahmed et al., 1997; Brown, 1998; 

Ipsen et al., 1987; Lentz et al., 1980; London, 2002; Schroeder et al., 1994; Simons 

and Toomre, 2000). Within these phases, specific lipids (and proteins) may 

dynamically associate with each other to form functionally relevant platforms that are 

important in processes as diverse as membrane protein sorting, signaling and 

(caveolae-mediated) endocytosis. An operational basis for this lateral functional 

compartmentalization was given by the discovery that a specific set of membrane 

components was insoluble in cold (4°C) non-ionic detergent, t-

octylphenoxypolyethoxyethanol (Triton X-100, TX-100), resulting in a detergent-

resistant membrane (DRM) fraction that could be recovered by density gradient 
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flotation (Brown and Rose, 1992; Brown and London, 2000; London and Brown, 

2000; Simons and Ikonen, 1997). Resistance to detergent extraction has since become 

an operational definition of membrane rafts, and ‘raft association’ is defined as the 

partitioning of proteins and lipids into DRMs. Another criterion generally used to 

assign proteins to ‘rafts’ is the disruption of this association after cholesterol 

depletion. Cholesterol is an inherent part of such domains and its depletion by agents 

such as methyl-β-cyclodextrin (mβCD) ruptures the raft structure and, consequently, 

results in loss of the raft-associated function. 

Compositional analysis of DRMs has provided a list of potential raft-associated 

molecules (Foster et al., 2003). However, the outcome of the detergent solubilization 

appears to depend on the cell type and the extraction condition (concentration, 

temperature) used (Banerjee et al., 1995; Chamberlain, 2004; Schuck et al., 2003). 

Moreover, detergent-resistance to solubilization also strongly depends on the nature of 

the detergent, which is thought to reflect in part the presence of microdomains of 

distinct composition.  

The reliability of detergent resistance and cholesterol dependence as raft-supporting 

criteria has been subject of criticism (see last section). However, studies on living 

cells, using highly sophisticated approaches, corroborate the lipid raft hypothesis by 

demonstrating that ‘raft’ proteins exhibit cholesterol-dependent clustering at the 

plasma membrane, and display membrane-anchor dependent lateral diffusion rates 

only after dissociation from the raft structures (Friedrichson and Kurzchalia, 1998; 

Pralle et al., 2000; Varma and Mayor, 1998). Thus, although size and precise function 

of rafts may still be a matter of debate (Edidin, 2003), circumstantial evidence favors 

the presence of microdomains in the lateral plane of membranes. Pralle et al. (2000) 

estimated the presence per se and the size of rafts in eukaryotic cell membranes from 
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local diffusion measurements of single GPI-anchored and transmembrane proteins, 

using a laser trap procedure. When associated with rafts, the diffusion rates were 

independent of the nature of the protein’s association with the membrane. Dissolving 

rafts by cholesterol depletion accelerated the diffusion to rates as determined for non-

raft associated membrane proteins. Moreover, the increase in diffusion rate of the 

initially raft-associated proteins appeared to be co-determined by the nature of the 

membrane anchor, GPI-linked proteins diffusing faster than transmembrane proteins 

(Pralle et al., 2000). Gaus et al. (2003) used two-photon microscopy to monitor the 

fluorescent membrane probe Laurdan (6-acyl-2-dimethylaminonaphthalene) in living 

cells. The so-called generalized polarization based on the environmental dependence 

of the fluorescence spectrum of Laurdan reflects the local organization of the 

surrounding lipids (gel, liquid-disordered and liquid-ordered phase). The distribution 

of generalized polarization values from a stack of images indicated the existence of 

different membrane phases in the living cell. Their relative coverage was sensitive to 

cholesterol depletion agents (Gaus et al., 2003). 

Depending on the time-resolution of the technique used, different properties can be 

revealed (Kusumi et al., 2004). Rafts are dynamic so that proteins and lipids can move 

in and out. Resting cells may contain “reserve rafts”, which are postulated to be 

sufficiently small (down to only 3 molecules, detectable by the sphingomyelin-

binding protein earthworm toxin, lysenin; Kiyokawa et al., 2005) and short-lived 

(lifetimes on the order of a few microseconds; Kusumi et al., 2004) to allow for rapid 

diffusion of its “transient” constituent molecules to quickly reach the site of signal 

input. Ligand binding and cross-linking of raft-preferring molecules could induce 

“receptor-clustered rafts”. These larger and stabilized rafts are thought to have a 

sufficient size and lifetime (up to 1-10h) to facilitate the incorporation of various key 
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signaling molecules which in turn may result in downstream signaling (Brown and 

London, 1998; Brown and London, 2000; Kusumi et al., 2004; Kusumi et al., 2005; 

Mukherjee and Maxfield, 2004; Simons and Ikonen, 1997).  

 

RAFTS AND MYELIN FORMATION  

As early as in 1989, it was postulated that sorting and trafficking of PLP, the major 

myelin protein in the CNS, is coupled to that of myelin GSLs (Pasquini et al., 1989). 

Evidence for a common transport route came from observations in isolated brain 

slices that the inhibition of GSL synthesis reduced the translocation of PLP into 

myelin by about 50%, while the incorporation of MBP and overall protein synthesis 

were unaffected (Pasquini et al., 1989). In subsequent work, sulfatide was identified 

to be co-transported with PLP (Brown et al., 1993), although this GSL species largely 

resides in the plasma membrane of the OLG cell body rather than in the myelin 

membrane, which is strongly enriched in GalC. However, others (Bansal and Pfeiffer, 

1994; van der Haar et al., 1998) demonstrated in primary OLG cell cultures that an 

inhibition of sulfation did not affect PLP transport to processes and sheets in these 

cells. Moreover, when expressed in GalC- and sulfatide-deficient CHO (Chinese 

hamster ovary) cells, PLP-delivery to the plasma membrane was unaffected compared 

to such delivery in cells expressing these SLs, whereas PLP was found to be fully 

soluble in TX-100. Taken together these data suggest that transport of PLP to the 

OLG membrane does not involve a raft-mediated sorting system (Kim and Pfeiffer, 

1999; Krämer et al., 1997; van der Haar et al., 1998). It is possible however that the 

apparent controversy may originate from differences in cell systems, the early work 

having been carried out in tissue, while the latter studies were performed in primary 

cell cultures. In a culture dish, in the absence of neurons, there are no cell-cell (axon-
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glial) or cell-matrix contacts. However, OLGs in monoculture do differentiate and 

form flat myelin networks, called myelin sheets. They may not fully mature and 

compaction of the myelin sheath does not occur. By contrast, in vivo (and possibly in 

OLG-neuron co-cultures) the fully mature myelin sheath is further segregated in 

compact and non-compact myelin. Transport mechanisms used by developing OLGs 

in vitro might therefore differ from those used during the maintenance stage of the 

fully mature myelin sheath. Thus, in vivo, PLP may reside in different myelin 

fractions and, depending on its localization, may only partly solubilize in TX-100, as 

is the case in myelin of adult mice where PLP is partly TX-100 resistant (Saravanan et 

al., 2004). Evidently, further work in vitro, using mixed brain cultures as well as 

careful fractionation of in vivo brain slice material, should clarify this issue. 

More recently, it has become clear that detergent-resistant microdomains do not 

necessarily have to be defined exclusively by their insolubility in TX-100. Rather, 

such fractions can also be isolated by gradient flotation following extraction with 

other non-ionic detergents such as Lubrol, Brij 98, 3-[(3-chloramidopropyl)-

dimethylammonio]-1-propane-sulfonate (CHAPS), etc. When OLGs are extracted 

with CHAPS, PLP is recovered in the DRM fraction and indeed behaves as a raft-

associated protein (Simons et al., 2000). On the other hand, the 

glycosylphosphatidylinositol-anchored proteins (GPI-APs) NCAM 120 (neuronal cell 

adhesion molecule of 120 kDa) and F3 (also known as contactin) are soluble in 

CHAPS but highly enriched in TX-100-insoluble fractions (Simons et al., 2000). This 

led to the conclusion that PLP may assemble into a specialized “myelin-raft”, which 

directs sorting and trafficking of myelin components (Simons et al., 2000). 

Interestingly, as NCAM 120 resides in the plasma membrane of the cell body whereas 

F3 localizes to the sheet, these data suggest that, based on detergent-resistence of PLP 
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versus F3, different DRMs coexist in the myelin sheet. These findings would favor the 

notion (Brügger et al., 2004; Madore et al., 1999) that the disparate results obtained 

by different detergents may relate to the co-existence of different domains, 

characterized by differences in composition. However, claims have been made that 

differential insolubility of proteins in different detergents is not sufficient to imply 

their association with distinct lipid rafts (Chamberlain, 2004; Pike, 2004).  

From a functional point of view, the specific association of a given molecular 

compound with a DRM has been correlated with sorting and, in polarized epithelial 

cells, with apical-directed membrane transport (Hoekstra et al., 2003; Ikonen and 

Simons, 1998; Ikonen, 2001; Simons and van Meer, 1988; Simons and Wandinger-

Ness, 1990; Zurzolo et al., 1994). As noted above and elsewhere (de Vries and 

Hoekstra, 2000), OLGs can also be considered to be polarized, given the remarkable 

differences in lipid composition of plasma and myelin membrane, the latter being 

particularly enriched in GSLs, saturated phospholipids and cholesterol, a composition 

typical of raft-like domains. Remarkably, when the trafficking of the viral membrane 

proteins influenza haemagglutinin (HA) and vesicular stomatitis virus G protein 

(VSVG) were monitored in infected OLGs, HA was expressed at the plasma 

membrane of the cell body, where it localizes in a TX-100 detergent-resistant fraction, 

while VSVG is transported to the sheet as a TX-100 soluble protein (de Vries et al., 

1998). When expressed in polarized epithelial cells, HA and VSVG are sorted and 

transported to the apical and basolateral surface, respectively. Using these findings as 

criteria, it can be suggested that the myelin membrane is target of a basolateral-like 

mechanism, while the plasma membrane displays apical-like features. Consistent with 

this notion is the observation that the t-SNARES (target-membrane-associated soluble 

N-ethylmaleimide fusion protein attachment protein (SNAP) receptor) syntaxin-3 and 
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syntaxin-4 similarly distribute in a polarized manner, syntaxin-3 being localized at the 

plasma membrane, while syntaxin-4 is strongly enriched in the sheet (Klunder and 

Hoekstra, personal communication). Alternatively, Kroepfl and Gardinier (2001) 

stably transfected (polarized) Madin-Darby canine kidney (MDCK) cells with the 

myelin proteins MOG, PLP and MAG, and subsequently examined the membrane 

targeting of these myelin proteins. As in OLGs, MOG and PLP were sorted to 

mutually exclusive compartments in MDCK cells. MOG, a non-compact myelin 

protein, was solely found in the basolateral membrane, whereas PLP, a compact 

myelin protein, was exclusively found within the apical membrane (Kroepfl and 

Gardinier, 2001). Whether such data can be extrapolated to oligodendrocytes in terms 

of basolateral versus apical sorting mechanisms remains to be determined. As noted, 

in the same cells, HA is specifically sorted to the apical membrane, but when 

expressed in OLGs its localization is largely restricted to the cell body plasma 

membrane. MAL, present in both epithelial cells and OLGs, is sorted to the apical 

membrane and into the sheath in TX-100 detergent-insoluble microdomains, in 

contrast to PLP, which is soluble in this detergent. Together, these data emphasize the 

complexity in directly comparing the role of detergent-resistence in apical versus 

basolateral sorting, and extrapolation of polarized sorting in epithelial cells to that in 

OLGs. 

Indeed in several recent studies (Paladino et al., 2004; Slimane et al., 2003) it has 

become clear that microdomain or raft-mediated transport, as defined by detergent-

resistence, is not restricted to apical membrane directed trafficking, but is similarly 

operational in basolateral transport pathways. Accordingly, formation of different raft 

domains might be a mechanism of membrane subdomain organization, important for 

compartmentalization of signaling molecules as well as for the sorting of myelin 
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components. Whether the distinction that many of the major myelin-specific proteins 

display different preferences for localization in microdomains, as reflected by 

differences in detergent solubility (Table 3), coincides with differences in 

sorting/transport mechanisms, remains to be elucidated. For this, further analyses 

including pulse-chase experiments and OLG development-dependent transport studies 

rather than determination of a detergent-resistent localization at steady state are 

necessary. This notion also relates to the potentially distinct distribution of a myelin 

protein in fully mature OLGs, where it may partition in both compact and non-

compact myelin, thus possibly displaying distinct detergent-solubility properties 

which, moreover, do not necessarily have to correlate with those in its sheet-directed 

transport. Thus the dynamics and transient association of proteins in distinct rafts 

should be particularly taken into account when investigating their association with 

membrane microdomains. 

Thus far, the picture of molecular parameters involved in DRM-mediated sorting is 

far from complete. In apical sorting pathways, the formation of high-molecular-

weight complexes as part of the mechanism of DRM recruitment seems to be required 

(Helms and Zurzolo, 2004; Paladino et al., 2004; Schuck and Simons, 2004; Zurzolo 

et al., 2003). Oligomerization or association with a high-molecular-weight complex 

might lead to an exponential increase in raft affinity with increasing oligomer size 

(Simons and Vaz, 2004), thereby stabilizing raft association. In addition, 

oligomerization might cause the coalescence of small rafts into a stable functional 

sorting domain or signal. Are such mechanisms operational in OLGs? One protein 

that might promote raft clustering is MAL, which is also known as MVP17 (myelin 

vesicular protein 17; Kim et al., 1995) and VIP17 (vesicular integral protein 17; 

Zacchetti et al., 1995). MAL is a 17 kDa non-glycosylated integral membrane protein 
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that localizes in the Golgi (Puertollano et al., 1999) and is required for apical targeting 

in epithial cells (Cheong et al., 1999; Martin-Belmonte et al., 2000; Puertollano et al., 

1999). In OLGs, MAL has been shown to be a component of GSL-rafts (Frank et al., 

1998; Frank, 2000; Kim et al., 1995; Kim and Pfeiffer, 2002; Schaeren-Wiemers et 

al., 1995) and to end up in compact myelin (Frank et al., 1998). MAL is upregulated 

during active myelination (Kim et al., 1995; Schaeren-Wiemers et al., 1995). In 

addition, MAL can form oligomers, which might function to cluster rafts at the sites at 

which sorting takes place (Schuck and Simons, 2004). However, MAL is relatively 

late expressed in myelinogenesis, i.e., after expression of most major myelin proteins, 

including PLP. Whether the role of MAL is thus restricted to the reorganization of 

myelin proteins in compact myelin or is involved in sorting and transport during 

maintenance of the myelin sheath, remains to be determined. In this context it is 

worthwhile to mention that, based on observations in MAL-deficient mice, MAL has 

recently been implicated in the maintenance of axon-glial interactions at the CNS 

paranodes, presumably by playing a role in the trafficking and/or sorting of paranodal 

proteins NF155 and MAG (Schaeren-Wiemers et al., 2004).  

 

RAFTS IN AXON-GLIAL INTERACTION 

Myelination of axons by OLGs involves recognition of the axonal surface, subsequent 

interaction between the OLG and the axon, spiral enwrapment of the axonal segment 

and finally compaction of the multilamellar OLG membrane into a functional myelin 

sheath (Sherman and Brophy, 2005, and references therein). There is substantial 

evidence that microdomain assembly is a prerequisite for proper recruitment of the 

molecular machinery involved in axon-glial interaction. 
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Initial axon-glial contact 

Fyn is a key molecule in OLG differentiation and myelination (Osterhout et al., 1999; 

Sperber and McMorris, 2001; Umemori et al., 1994). This molecule belongs to the Src 

(Rous sarcoma) family of kinases and is associated with cell migration, proliferation, 

differentiation, adhesion, apoptosis and cytoskeletal rearrangements (Osterhout et al., 

1999). Fyn is associated with the F3/contactin adhesion protein in OLGs and this 

interaction occurs within rafts (Krämer et al., 1999). Since antibody-mediated cross-

linking of F3/contactin in the oligodendroglial cell line Oli-neu results in activation of 

Fyn kinase (Krämer et al., 1999), the functional advantage of being localized in a 

microdomain thus becomes readily apparent, i.e., providing an  environment for 

molecular clustering which triggers an efficient signal transduction between axons 

and OLGs in the early phases of myelination. Activation of this pathway causes Fyn 

to bind to the cytoskeletal proteins Tau, which further strengthens initial axon-glial 

contact, and α-tubulin in OLGs. It is thought that the local reorganization of the 

cytoskeleton, accomplished in this manner, might subsequently facilitate directed 

transport of myelin-specific lipids and proteins to the expanding myelin sheath (Klein 

et al., 2002).  

Myelin integrity 
 
The functional role that raft domains may play in establishing axon-glial interactions 

is further supported by observations that NF155, an ankyrin-binding cell adhesion 

molecule, also localizes in such microdomains, which seems necessary for carrying 

out its function. NF155 is localized within the paranodal loops where it interacts with 

the Caspr1 (contactin-associated protein, also known as paranodin)-F3/contactin 

protein complex on the axon (Charles et al., 2002; Tait et al., 2000), an interaction 

that is required for myelination in co-cultures of OLGs and neurons (Charles et al., 
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2002). The finding that NF155 is completely absent from paranodes of CGT 

(ceramide galactosyl transferase) knockout mice (Menon et al., 2003) indicates that 

raft assembly might be critical for the accumulation of NF155 in paranodes. CGT is 

the key enzyme of the galactolipid biosynthesis pathway and myelin of mice missing 

the CGT enzyme completely lacks GalC and sulfatide (Bosio et al., 1996; Lee, 2001). 

Recently, it has been shown that NF155 associates with DRMs (rafts) in the CNS 

(Schaeren-Wiemers et al., 2004) and that this association is commensurate with the 

timing of paranode formation (Schafer et al., 2004). Given the abnormal structure of 

the paranodal loops in CGT knockout mice (Bosio et al., 1998), it is likely that the 

correct membrane association of NF155 is important for the stability of the paranodal 

structure and thus for the integrity of the myelin sheath. During myelination, close 

contact between the axon and the OLG will lead to interaction between NF155 and 

Caspr1-F3/contactin, which in turn will stabilize these proteins and the lipid 

environment in which they reside, providing a “nucleation” site for the formation of a 

lipid raft protein adhesion complex. Additional NF155, Caspr and F3/contactin might 

be recruited because of an increased affinity for the raft environment, which in turn 

leads to further stabilization through the axon-glial interaction. The sum of these 

protein-protein interactions within the raft environment would provide the basis for 

the strong adhesion complex at the paranode and thus for myelination and myelin 

integrity. Of relevance to potential causes of a demyelinating disease could thus be 

that an interference with raft stability/association might result in destabilization of the 

axon-glial interaction and eventually lead to demyelination. Culturing OLGs on 

fibronectin, which mimics changes in the extracellular matrix (ECM) as occurs in MS 

due to the perturbation of the blood brain barrier (BBB), results in dissociation of 

NF155 from the DRM fraction as well as in inhibition of the morphological 
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differentiation of OLGs (Maier et al., 2005). Consistent with in vitro data, raft 

association of NF155 is substantially reduced in spinal cord of experimental allergic 

encephalitis (EAE) rats, an animal model for the demyelinating disease MS. Hence, 

the association of NF155 to microdomains in the myelin membrane is required for its 

participation in intermolecular interactions, which are important for myelination and 

myelin integrity. 

Raft-mediated adverse effects 

Interestingly, the association of MOG with microdomains seems to induce process 

retraction rather then stabilizing myelin integrity. MOG is an integral myelin-specific 

protein, which is localized in the outer lamella of the myelin sheath and therefore 

exposed to the extracellular environment. Although MOG is only a minor component 

of the myelin membrane (0.01-0.05 % of the total myelin protein content), it induces 

severe EAE after administration to both rodents and primates (Iglesias et al., 2001; 

Johns and Bernard, 1999). Furthermore, injection of mAbs against MOG into rodents 

causes extensive myelin destruction in situ (Linington et al., 1988). In addition, anti-

MOG antibodies are found in the cerebrospinal fluid and in lesions of acute MS 

patients (Linington and Lassmann, 1987; Reindl et al., 1999). Therefore, it appears 

that MOG/anti-MOG interactions could be mediators in the process of demyelination 

in EAE and MS. The role of MOG in this process is closely related to its dynamic 

association with DRMs, which causes activation of distinct signal transduction 

pathways. Following Ab binding, the non-raft associated fraction causes the activation 

of mitogen-activated protein kinase (MAPK) and Akt pathways. When present in TX-

100 insoluble rafts, signaling pathways related to stress response and cytoskeletal 

instability are activated, which result in the retraction of OLG processes (Marta et al., 

2003; Marta et al., 2005). Worth noting is that MOG-mediated retraction of OLG 



 19

processes requires a secondary cross-linking antibody. The role of this secondary 

cross-linking antibody might be to increase raft affinity and to promote stabilization 

of MOG in rafts with a lifetime that suffices to recruit the signaling molecules 

necessary for process retraction. In MS, macrophages and complement could mimic 

the effect of the secondary cross-linking antibody since they are able to bind IgG 

(immunoglobulin G) molecules. In fact, a secondary cross-linking antibody might not 

be necessary when polyclonal anti-MOG antibodies with different epitope specificity 

are present in MS patients.  

Dual functions mediated through rafts 

Like the NF155-Caspr1-F3/contactin interaction, the interplay of MAG with its 

axonal receptors might also occur by raft-mediated intercellular interactions between 

OLGs and neurons. MAG, a quantitatively minor protein of myelin (< 1%), serves 

both as a myelin-stabilizing factor and as inhibitor of nerve regeneration (Vyas and 

Schnaar, 2001; Weiss et al., 2000). It is a sialic acid-binding protein of the siglec 

(sialic acid-dependent immunoglobulin-like family member lectin) family. MAG is 

restricted to the periaxonal membrane of the myelin sheath where it interacts with 

molecules on the axonal membrane, including the gangliosides GD1a and GT1b 

(Vinson et al., 2001; Vyas et al., 2002) and the GPI-linked Nogo receptor (NgR) 

(Domeniconi et al., 2002; Fournier et al., 2001; Liu et al., 2002). As the affinity of a 

monomeric siglec molecule (e.g. MAG) for its sialic acid ligand is thought to be 

relatively low, the rationale for localization of MAG and its receptors in lipid rafts 

might be the creation of discrete areas of high local molecular density necessary for 

the activation of signaling pathways in both cell types. In neurons, this interaction 

would result in the inhibition of neurite outgrowth, whereas in OLGs it would be 

necessary for the maintenance of myelin integrity (Vinson et al., 2003). MAG was 



 20

found to interact with lipid rafts on the surface of neurons, which contain known 

binding partners of MAG, namely GT1b and NgR, as well as p75 and Rho. The latter 

are required for transmitting MAG-mediated signals into neurons. Interestingly, in 

primary OLGs, antibody-induced cross-linking of MAG causes the (re-)partitioning of 

the protein from a soluble into a DRM fraction (Marta et al., 2004). Cross-linking 

apparently seems to induce recruitment into rafts and the observed clustering thus 

results from the cross-linking as such rather than from the coalescence of individual, 

MAG containing rafts.  

 

ON A FUNCTIONAL ROLE OF RAFTS IN OLIGODENDROCYTE 

BEHAVIOR  

Raft recruitment and coalescence of rafts may provide OLGs with a means for 

differential regulation of growth factor responses during development. Platelet-

derived growth factor (PDGF), for example, does not only regulate OPC proliferation 

but also survival (Calver et al., 1998). The nature of the response to PDGF, 

proliferation or survival, is determined by the identity of the integrin associated with 

the PDGFα receptor (PDGFαR). αvβ3, which stimulates proliferation, interacts with 

the PDGFαR in OLG precursors (Baron et al., 2002), while α6β1, which is involved 

in cell survival (Colognato et al., 2002) and myelination (Relvas et al., 2001), is found 

to be the interaction partner in immature Galc-positive OLGs (Baron et al., 2003). 

Rafts could contribute to integrin signaling by facilitating growth factor receptor-

integrin interactions necessary to trigger integrin activation by concentrating the 

necessary complex of signaling molecules required for activation and/or down-stream 

signaling. Alternatively, the conformational equilibrium between inactive and active 

integrins might be displaced in favor of the activated integrin by the altered membrane 
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structure of the lipid raft (ffrench-Constant and Colognato, 2004). Activation of 

integrins is associated with a change from a bent to an extended conformation, with 

associated intramolecular interactions altering the conformation of the ligand-binding 

pocket, thereby increasing ligand affinity (Baron et al., 2005, and references therein). 

The OLG PDGFαR becomes associated with lipid rafts at a stage when it no longer 

promotes proliferation but instead is required for survival (Baron et al., 2003). A pool 

of integrin α6β1 is also present in membrane rafts, but these are different from the 

PDGFαR-containing rafts. Laminin-2, which is expressed on axons of the CNS 

(Colognato et al., 2002), induces coalescence of the integrin α6β1+ rafts with the 

PDGFαR+ lipid rafts, resulting in receptor co-association, integrin activation, affinity 

modulation and signal amplification at physiological PDGF levels, respectively, 

ultimately leading to survival of the OLGs (Baron et al., 2003; Decker and ffrench-

Constant, 2004; Decker et al., 2004). Merging of PDGFαR-containing microdomains 

with those that contain the integrin α6β1 could thus provide a distinct signalling 

microenvironment that allows the PDGF signaling response during OLG development 

to switch from proliferation to survival. Fyn and Lyn (another member of the Src 

kinase family) were recently shown to be key effector molecules within the integrin-

growth factor receptor complexes that selectively promote either proliferation or 

differentiation/survival (Colognato et al., 2004). As discussed earlier, Fyn has been 

postulated to play a role in OLG differentiation and myelin formation (Klein et al., 

2002; Krämer et al., 1999). Lyn, on the other hand, is associated with the PDGFαR-

αvβ3 integrin complex and contributes to proliferation signaling (Colognato et al., 

2004). After axonal contact, Lyn dissociates from the integrin-growth factor complex 

whereas Fyn is activated thereby promoting OLG survival, differentiation and myelin 

formation (Colognato et al., 2004).  
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RAFT ANALYSIS: CRITICAL HINDSIGHT AND FUTURE 

PERSPECTIVES 

The formation of lipid rafts in OLGs seems to be a mechanism of membrane 

subdomain organization, important for compartmentalization of signaling molecules 

as well as for the sorting of myelin components. However, all the information 

available at present about the existence and possible function of lipid rafts in OLGs is 

mainly based on detergent extraction. Different detergents, extraction procedures and 

cell/tissue sources have been used (Table 3). As already indicated by others (Banerjee 

et al., 1995; Chamberlain, 2004; Edidin, 2001a; London and Brown, 2000;  Schuck et 

al., 2003), the detergent insolubility of proteins depends highly on the detergent and 

the extraction conditions used. DeBruin et al. (2005) used three different detergents 

(TX-100, CHAPS and Brij 96V) to characterize membrane microdomains in 

developing and mature bovine myelin. Taylor et al. (2002) screened four different 

detergents (under four extraction conditions) to determine which supported the 

retention of four integral (MAG, OSP/claudin-11, MOG and PLP) and three 

peripheral (NCAM-120, CNP and MBP) proteins of the myelin membrane in a low-

density DRM fraction. Both groups reported that the amount of proteins and lipids, as 

well as the sucrose gradient buoyancy of the DRM-complexes, varied substantially 

among the detergents and extraction procedure used.  

In addition to the detergent dependence of the results, it is not clear whether proteins 

found to be present in DRMs were associated with lipid rafts in the living cell as 

detergent extraction seems to dramatically alter the lipid composition of preexisting 

domains (de Almeida et al., 2003; Heerklotz, 2002; Heerklotz et al., 2003; Skwarek, 

2004). However, others provide evidence that isolation of DRM from biological 

membranes by detergent-induced extraction is not an artefact (Staneva et al., 2005). 
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Different detergents differ in structure, which results in differential partitioning into 

the plasma membrane and the disruption of specific protein-lipid and protein-protein 

interactions by individual detergents. In addition, individual detergents have a 

different ability to deplete inner leaflet lipids. TX-100, for example, selectively 

extracts inner leaflet lipids giving rise to membrane preparations with a 

preponderance of outer leaflet lipids, whereas Brij 98-resistant rafts have a normal 

balance of inner and outer leaflet lipids (Pike et al., 2005). It is unlikely that different 

detergents reflect the same aspects of membrane organization. In a complex 

environment as the cell membrane, DRM association may at best serve to define a 

circumstantial steady-state biochemical characteristic. It cannot provide reliable 

information regarding the preexisting molecular organization on the multicomponent 

cell surface. This underscores both the structural complexity of cell membranes and 

the need for additional approaches to understand their architecture and in particular 

the dynamics of that architecture. Detergent extraction only reflects information 

concerning the steady-state but does not yield any information about dynamic events, 

which may influence the recruitment of molecules into lipid rafts. As mentioned 

before, cross-linking induces the relocalization of certain proteins, e.g. MOG, into 

DRM domains (Marta et al., 2003, 2005). The relocalization of MOG within 

microdomains, however, is a reversible event, and is abolished after removal of the 

cross-linking antibody. The effective partitioning of a given protein in such domains 

could vary, reflected by differences in the fraction recovered, using a given detergent, 

or by differences in detergent-dependent solubilization. Hence, extraction per se may 

also not properly reflect the functional relevance of localization of a protein in a 

particular microdomain, since at steady-state the protein is likely not restricted to one 

domain only. Knowledge about the dynamic behaviour of membrane architecture, 
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however, may in turn determine the molecular composition of a microdomain and 

hence its biophysical properties, including the lifetime.  

The method of cholesterol depletion seems to be rather controversial as well. Acute 

cholesterol depletion blocks both endo- and exocytosis, alters the actin cytoskeleton 

and inhibits lateral diffusion of membrane proteins. A number of pleiotropic effects 

may thus result, including the dissociation of various proteins from lipid rafts (Edidin, 

2003; Lai, 2003). Biochemical approaches should be combined with other methods 

that could identify lipid rafts in intact cell membranes and provide information about 

the size, lifetime, dynamics and functional role of rafts in living cells.  

Fluorescence intensity imaging microscopy (FIIM) is commonly used to determine 

the distribution and possible co-localization of putative raft markers labelled with 

different fluorescent conjugated antibodies. A physical limitation of FIIM methods is 

the optical resolution (airy disk diameter) of ~250 nm, which makes the resolvable 

detail related to the pixel size larger than the size of the rafts (Kusumi and Suzuki, 

2005; Pralle et al., 2000). The observation of co-localization, although required, is 

therefore insufficient to conclude that the labeled components are within the same 

raft. The co-localization imaging approach has a limited time resolution so that 

restricted information, if any, about the kinetic properties of the domains can be 

obtained. The problem of the restricted spatial resolution can be circumvented by the 

application of Förster resonance energy transfer (FRET) (Acasandrei et al., 2006; 

Kenworthy and Edidin, 1998; Kenworthy and Edidin, 1999; Rao and Mayor, 2005). 

In order to obtain information about the kinetic properties of molecules, methods such 

as single particle tracking (SPT) and photonic force microscopy (Lommerse et al., 

2004; Pralle et al., 2000) can be used. Diffusional mobility can also be measured at 

single-molecule sensitivity by fluorescence correlation spectroscopy (FCS). It was 
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recently demonstrated that FCS promises to be a valuable tool to elucidate lipid raft 

associations both in domain-exhibiting model membranes and in cell membranes 

(Bacia et al., 2004; Wawrezinieck et al., 2005). Moreover, a first attempt has been 

made to study the membrane heterogeneity of living OLN-93 oligodendroglial cells 

by means of one-photon FCS (Gielen et al., 2005; Humpolíčková et al., 2006). 

Fluorescence recovery after photobleaching (FRAP) is another technique that can be 

used to determine the translational mobility of fluorescent molecules in the cell 

membrane (Kenworthy et al., 2004; Lippincott-Schwartz et al., 2003; Phair and 

Misteli, 2001).  

A major advantage of the described microfluorimetric techniques in comparison to 

detergent extraction is that they can be applied to single cells so that only tiny 

amounts of valuable brain tissue are required for these experiments. Other techniques 

that can be used to study rafts in intact cell membranes are electron microscopy (EM: 

Prior et al., 2003; Wilson et al., 2000), atomic force microscopy (AFM: Giocondi et 

al., 2004; Henderson et al., 2004; Rinia et al., 2001; Yuan et al., 2002) and near-field 

scanning optical microscopy (NSOM: Dunn, 1999; Edidin, 2001b).  

The different techniques described above characterize rafts on different time and 

spatial scales (Edidin, 1997; Kenworthy 2005; Lagerholm et al., 2005; Lommerse et 

al., 2004; Mátko and Szöllõsi, 2002), yielding a wide range of characteristic 

parameter values for lipid rafts in terms of size, stability and abundance (Lommerse et 

al., 2004). This clearly emphasizes the need to combine several techniques to assess 

detailed information about the size, structure and function of lipid rafts. Techniques, 

such as FRAP, FCS, FRET and SPT allow the investigation of membrane 

heterogeneity in living cells under physiological conditions. The combination of 

biochemical studies with these photophysical, microfluorimetric methods will yield a 
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better insight in the biological relevance of rafts in OLGs and help to come to a 

consensus on lipid rafts concerning their existence, size, lifetime and molecular 

organization. 
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Table 1 Lipid and protein composition of human central nervous system myelin3 
  

                                                                                               % Total dry weight 
             
              Lipid                                                                                                    70.0 
              Protein                                                                                                 30.0 
 
 
              Protein                                                                                        % Total dry weight 
 
            Myelin basic protein            22.5 
              Proteolipid proteins            30.0 
 Other LH-20 components1            17.5 
              Myelin-associated glycoprotein           <1.0 
             2',3'-cyclic nucleotide 3'-phosphodiesterase            4.0 
              Others (Wolfgram, glycoproteins, etc.)          25.0 
 
 
              Lipid                                                                                           % Total dry weight 
 
              Cholesterol             27.7 
              Galactosylceramide            22.7 
              Sulfatide                3.8 
              Ethanolamine phosphatides           15.6 
              Phosphatidylcholine            11.2 
              Phosphatidylserine              4.8 
              Phosphatidylinositol              0.6 
              Sphingomyelin               7.9 

Plasmalogens2             12.3 
 Gangliosides (primarily GM1 and GM4)          <1.0 
 

1The proteolipid fraction is a family of proteins that can be isolated on Sephadex LH-20 in acidified 
chloroform-methanol. The major homogeneous protein is PLP  
2Plasmalogens are ether-linked lipids composed primarily of ethanolamine phosphatides 

 3Adapted from Deber and Reynolds (1991) 
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Table 2 Function of myelin-specific proteins 

Myelin component Function 

PLP/DM20 Myelin compaction1 
MBP Myelin compaction1 

MAL 

Might function to form and maintain stable protein-lipid 
microdomains in myelin effecting reorganization of myelin 
proteins in compact myelin and sorting and transport during 
maintenance of the myelin sheath2, 3 
Maintenance of proper axon-glia interactions2 

MAG 
Myelin stabilization/maintenance of myelin integrity4 
Inhibition of neurite outgrowth, i.e. axon regeneration in the 
CNS after lesion4 

OSP/claudin-11 

Mediator of parallel-array tight junction strands in CNS 
myelin5 
May act as a diffusion barrier between compact and non-
compact myelin5, 6 

MOG 

May function in transmitting extracellular information to the 
interior of oligodendrocytes7 
Target antigen in the process of demyelination in EAE and 
MS8 

CNP Microtubule assembly myelin protein9 
Process outgrowth9 

NF155 Establishment of the paranodal septate junction required for 
tight interaction between myelin and axon10 

MOBP Myelin compaction1 
1Baumann and Pham-Dinh, 2001; 2Schaeren-Wiemers et al., 2004; 3Frank et al., 1998; Frank, 2000; 4Vyas and 
Schnaar, 2001; Weiss et al., 2000; 5Gow et al., 1999; 6Bronstein et al., 2000; Morita et al., 1999; 7Johns and 
Bernard, 1999; 8Iglesias et al., 2001; 9Lee et al., 2005; 10Bhat, 2003 
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Table 3 Overview of extraction conditions in which myelin proteins resist solubilization  

Extraction condition 
Protein Cell/tissue 

source Species Detergent 
Conc Incubation 

time Temp 
Reference 

CHAPS 1% 30 min 4°C/37°C 35-days-old mice TX-102 1% 30 min 4°C 
Taylor et al. 2002 

4-months-old mice: 
WT and MAL KO CHAPS na 30 min 4°C Schaeren-Wiemers et al. 2004 

Adult mouse brain CHAPS 20 mM 30 min 4°C Simons et al. 2000 
2-year-old mice TX-100 2% 30 min 4°C Saravanan et al. 2004 

Purified myelin 

Bovine brain E20 - E40 CHAPS 1.5% 30 min 4°C Debruin et al. 2005 

PLP/DM20 

Primary OLGs Mouse OLG 5 DIV CHAPS 20 mM 30 min 4°C Simons et al. 2000 
        

TX-100 1% na 4°C Adult rat CHAPS 30 mM  na 4°C 
Boyanapalli et al. 2005 Whole brain 

Rabbit TX-100 1% 16h + 24h 4°C Pereyra et al. 1988 
4 to 6-weeks-old rat TX-100 0.5% 3 min RT Gillespie et al. 1989 

35-days-old mice TX-102 1% 30 min 4°C Taylor et al. 2002 
4-months-old mice: 
WT and MAL KO CHAPS na 30 min 4°C Schaeren-Wiemers et al. 2004 

Purified myelin 

Bovine brain E29 - E40 CHAPS 1.5% 30 min 4°C Debruin et al. 2005 

MBP 

Primary OLGs 1 to 2-days-old rat brain 
OLGs 12 DIV TX-100 0.5% 3 min RT Wilson and Brophy 1989 

        
30-days-old rat brain TX-100 1% 30 min 4°C Kim and Pfeiffer 2002 

Adult rat brain CHAPS 20 mM 2h 4°C Kim et al. 1995 Purified myelin 
2-year-old mice TX-100 2% 30 min 4°C Saravanan et al. 2004 

Primary OLGs Mature rat OLGs CHAPS 40 mM 30 min 4°C Kim et al. 1995 
MAL 

Spinal cord 14-days-old Rat CHAPS 1% 30 min 4°C Frank et al. 1998 
        

Whole brain Mouse Lubrol WX 1% na 4°C Vinson et al. 2003 
Adult mouse brain CHAPS 20 mM 30 min 4°C Simons et al. 2000 
35-days-old mice CHAPS/Brij 96V  1% 30 min 4°C/37°C Taylor et al. 2002 Purified myelin 

Bovine brain E29 - E40 CHAPS 1.5% 30 min 4°C Debruin et al. 2005 

MAG 

Primary OLGs 1 to 2-days-old rat brain 
OLGs 6 DIV Lubrol WX 1% na 4°C Vinson et al. 2003 



 39 

 Spinal cord Rat (WT or EAE) Lubrol WX 0.5% 30 min 4°C Maier et al. 2005 
        

Cx-32 Purified myelin 30-days-old rat brain TX-100  1% 30 min 4°C/37°C Kim and Pfeiffer 1999 
        

30-days-old rat brain TX-100  1% 30 min 4°C Kim and Pfeiffer 1999 
OSP Purified myelin 35-days-old mice TX-100 / CHAPS 

Brij 96V / TX-102 1% 30 min 4°C Taylor et al. 2002 

        
30-days-old rat brain TX-100 1% 30 min 4°C Kim and Pfeiffer 1999 

35-days-old mice TX-100/CHAPS 
Brij 96V/TX-102 1% 30 min 4°C Taylor et al. 2002 

4-months-old mice: 
WT and MAL KO CHAPS na 30 min 4°C Schaeren-Wiemers et al. 2004 

Adult mouse brain CHAPS 20 mM 30 min 4°C Simons et al. 2000 
2-year-old mice TX-100 2% 30 min 4°C Saravanan et al. 2004 

Purified myelin 

Bovine brain E20 – E40 CHAPS 1.5% 30 min 4°C Debruin et al. 2005 

MOG 

Primary OLGs Mouse OLG 5 DIV CHAPS 20 mM 30 min 4°C Simons et al. 2000 
        

30-days-old rat TX-100 1% 30 min 4°C Kim and Pfeiffer 1999 
4-6 weeks old rat TX-100 0.5% 3 min RT Gillespie et al. 1989 

35-days-old mice TX-100 / CHAPS / 
Brij 96V / TX-102 1% 30 min 4°C/37°C Taylor et al. 2002 

2-year-old mice TX-100 2% 30 min 4°C Saravanan et al. 2004 
TX-100 1% na 4°C Mouse CHAPS 30 mM na 4°C 

Boyanapalli et al. 2005 

Rabbit TX-100 1% 16h  + 24h 4°C Pereyra et al. 1988 

Purified myelin 

Bovine brain E11 – E40 CHAPS 1.5% 30 min 4°C Debruin et al. 2005 

Primary OLGs 1-2 day old rat brain 
OLGs 12 DIV TX-100 0.5% 3 min RT Wilson and Brophy 1989 

CNP 

Optic nerve p13, p18, p24 and 
2 months old rat TX-100 1% 1h 4°C Schafer et al. 2004 

        
TX100 1% na 4°C Whole brain Adult rat CHAPS 30 mM na 4°C 
TX100 1% na 4°C OMgp 

Purified myelin Mouse CHAPS 30 mM na 4°C 

Boyanapalli et al. 2005 

        
NF155 Purified myelin 4-months-old mice CHAPS na 30 min 4°C Schaeren-Wiemers et al. 2004 
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TX-100  1% 30 min 4°C Rat OLGs 6 DIV Lubrol WX 0.5% 30 min 4°C 
Maier et al. 2005 Primary OLGs 

premyelinating mouse OLGs TX-100 1% 1h 4°C Schafer et al. 2004 
TX-100 1% 30 min 4°C Spinal cord Rat (WT or EAE) Lubrol WX 0.5% 30 min 4°C 

Maier et al. 2005 

 

Optic nerve p13, p18, p24 and 
2 months old rat TX-100 1% 1h 4°C Schafer et al. 2004 

        

35-days-old mice TX-100 / CHAPS / 
Brij 96V / TX-102 1% 30 min 4°C Taylor et al. 2002 

Adult mouse brain TX-100 2% 30 min 4°C Krämer et al. 1997, 1999 Purified myelin 

2-year-old mice TX-100 2% 30 min 4°C Saravanan et al. 2004 
Mouse OLGs 5/8 DIV TX-100 2% 30 min 4°C Krämer et al. 1997, 1999 Primary OLGs Mouse OLG 5 DIV CHAPS 20 mM 30 min 4°C Simons et al. 2000 

NCAM 120 

Cell line Oli-neu (mouse) TX-100 2% 30 min 4°C Krämer et al. 1997 
        

4-months-old mice CHAPS na 30 min 4°C Schaeren-Wiemers et al. 2004 Purified myelin Adult mouse brain TX-100 2% 30 min 4°C Krämer et al. 1997, 1999 
Mouse OLGs 5/8 DIV TX-100 2% 30 min 4°C Krämer et al. 1997, 1999 F3/contactin 

Primary OLGs Mouse OLG 5 DIV CHAPS 20 mM 30 min 4°C Simons et al. 2000 
Conc: concentration; temp: temperature; na: not available; RT: room temperature; E20: embryonic stage week 20; p13: postnatal day 13; DIV: days in vitro; WT: wildtype; KO: knockout 
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FIGURE LEGENDS 
 
 
 
Figure 1: Schematic representation of the morphological and antigenic characteristics 
of cells of the oligodendroglial lineage differentiating from mitogenic progenitor cells 
to mature myelinating OLGs. Stage-specific markers are boxed. [Adapted from 
Baumann and Pham-Dinh, 2001; Maier et al., 2005] 
GD3: ganglioside GD3; NG2: NG2 chondroitin sulfate proteoglycan with a core 
protein of 260 kDa; A2B5: A2B5 mAb recognizes several gangliosides such as GT3; 
O4: O4 mAb reacts with sulfatides and still unidentified glycolipids; RIP: receptor-
interacting protein.  
 
Figure 2: Schematic representation of a myelinating OLG. 
 
 
Figure 3: The myelin sheath is segregated in different subdomains with unequal 
protein and lipid distribution. [Adapted from Kim and Pfeiffer, 1999; Krämer et al., 
2001] 
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