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ABSTRACT This paper reports on-chip rail-to-rail timing signals generation thin-film circuits for the

first time. These circuits, based on a-IGZO thin-film transistors (TFTs) with a simple staggered bottom

gate structure, allow row and column selection of a sensor matrix embedded in a flexible radiation

sensing system. They include on-chip clock generator (ring oscillator), column selector (shift register)

and row-selector (a frequency divider and a shift register). They are realised with rail-to-rail logic gates

with level-shifting ability that can perform inversion and NAND logic operations. These logic gates

are capable of providing full output swing between supply rails, VDD and VSS, by introducing a single

additional switch for each input in bootstrapping logic gates. These circuits were characterised under

normal ambient atmosphere and show an improved performance compared to the conventional logic gates

with diode connected load and pseudo CMOS counterparts. By using these high-performance logic gates,

a complete rail-to-rail frequency divider is presented from measurements using D-Flip Flop. In order to

realize a complete compact system, an on-chip ring oscillator (output clock frequency around 1 kHz) and

a shift register are also presented from simulations, where these circuits show a power consumption of

1.5 mW and 0.82 mW at a supply voltage of 8 V, respectively. While the circuit concepts described here

were designed for an X-ray sensing system, they can be readily expanded to other domains where flexible

on-chip timing signal generation is required, such as, smart packaging, biomedical wearable devices and

RFIDs.

INDEX TERMS Rail-to-rail logic gates, IGZO TFT, timing signals, flexible radiation sensing system.

I. INTRODUCTION

Design of flexible electronic systems with emerging hybrid

technologies is gaining significant interest [1]–[3]. One good

example is organic p-type and oxide n-type semiconduc-

tors to create complementary metal-oxide semiconductor

(CMOS) thin-film circuits at low temperature [2], [3].

Another case of an hybrid system is an X-ray sensor based on

oxide thin-film transistor (TFT) readout circuitry and organic

photoconductors [4]. The flexible X-ray radiation detectors

can find potential applications in different domains including

health, radioactive plants and security systems. State-of-the-

art work is limited to rigid systems, where mostly readout

circuits are being developed with standard crystalline sili-

con CMOS technologies [5], limiting the applicability of the

sensing systems.

Leveraging on the benefits of hybrid technologies in devel-

oping flexible systems, circuits are being designed with either

a-Si:H or indium-gallium-zinc-oxide thin-film-transistors
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FIGURE 1. Radiation sensing system with on-chip timing signals and
signal conditioning blocks to measure dose level.

(IGZO TFTs), whereas organic crystals are being consid-

ered to be radiation sensors [6], [7]. In order to implement

a self-contained flexible electronic system, all the required

signals should be generated on-chip, which eliminates com-

plex interfacing and results in a compact system with high

reliability. With the invention of printed batteries [8], it is

possible to have on-chip power supply (consisting of DC-DC

converters, clock generators and printed batteries). Operating

circuits at low supply voltages will relax constraints on the

supply voltage generation block. Literature [9]–[12] reports

driving and other analog circuits using a-Si:H TFT technol-

ogy. However, the intrinsic mobility of a-Si:H TFT device

is almost one order of magnitude lower than the oxide TFT

devices. Therefore, a-Si:H TFT based circuits need high

operating voltage. As a result, oxide TFT circuits are the

preferred choice for the application under consideration. In

addition, the large-area flexible devices with IGZO TFT tech-

nology are immune to permanent damages due to high doses

of radiation [13], [14]. Therefore, IGZO TFT based cir-

cuits are believed to exhibit robust performance even if they

are close to the X-ray radiation sensor matrix. IGZO TFTs

are inherently n-type transistors, as the channel is formed

by accumulation of electrons in the active layer. When cir-

cuits need to be designed using unipolar devices, new circuit

design techniques must be developed [15], as CMOS design

techniques cannot be adapted directly.

To conceive an X-ray detector testbed as shown in Fig. 1,

it is required to develop circuits enabling timing signals gen-

eration. This is fundamental to select rows and columns of a

n×n sensor matrix. Moreover, the transimpedance amplifier

depicted in Fig. 1, was also reported using IGZO TFTs [4],

which together with the circuit reported here, completes the

full system integration of readout and signal conditioning.

For row and column selector implementation, it is required

to have clock signals of different frequencies to achieve

sequential row and column scanning, similar to displays. The

complete system demands two rail-to-rail clock signals with

different frequencies and shift register(s). To date, most of the

work has been limited to individual building blocks demon-

stration. Ring oscillators (RO) or clock generators have been

reported with IGZO TFTs [16], [17]. However, the former is

FIGURE 2. Proposed on-chip rail-to-rail n X n matrix row and column
selector for a flexible radiation sensing system: (a) Ring oscillator for
generation of on-chip clock and column selector (b) n-stage frequency
divider for generation of row selector clock from on-chip clock. (c) Row
selector.

limited by output swing and is not suitable for clock genera-

tion, while the latter uses dual gates, demanding higher mask

count and processing steps. Both these designs are employ-

ing high supply voltages (> 20 V) and the performance is

being degraded at low voltages. Similar challenges exist with

shift registers [18]. Then, in order to implement the flexi-

ble radiation sensing system, this paper proposes on-chip

row and column selectors with rail-to-rail functionality (see

Fig. 2), where these blocks use full swing logic gates as

described below.

The absence of stable p-type oxide TFTs imposes lim-

itations on circuit performance, particularly in achieving

rail-to-rail output of logic gates. Conventional ‘NMOS’ based

loads are formed with diode connected transistors, where

the driver is made wider than the load to favour some gain.

However, this configuration cannot ensure full output volt-

age swing. The dynamic logic gates reported in [19], while

improving power consumption and circuit area compared to

static logic circuits, have limited voltage swing. The maxi-

mum voltage reached by the gates is one threshold voltage

less than the supply voltage. In addition, it requires two

explicit signals for controlling the operation in pre-charge

and evaluation phase. On the other hand, the gates reported

in [20] employ a large number of transistors for implemen-

tation of simple gates. For a single inverter, 7 TFTs were

used to obtain the desired performance. Pseudo-CMOS NOT

gate reported in [21] requires two different supply voltages

to get the complete swing at the output. On the other hand,

only bootstrapped pseudo-CMOS NOT gate with dual gate

IGZO TFT is reported in [22]. The dual gate structure adds

to fabrication cost. It can be noticed from the literature that

the previously reported gates are not suitable for the targeted

application, which requires low voltage operation for self-

contained electronics. In addition, the gates should operate

158 VOLUME 8, 2020



BAHUBALINDRUNI et al.: RAIL-TO-RAIL TIMING SIGNALS GENERATION USING InGaZnO TFTs

without any external excitation and with standard device

structures to minimize the effective cost and complexity of

the system. Then, this work demonstrates high performance

logic gates by introducing a switching TFT for each input in

capacitive bootstrapping based logic gates. They can ensure

complete rail-to-rail operation with standard device structure

for lower values of VDD without using any external control

signal and hence, they have the level shifting ability, as the

output logic ‘1’ level can be made equal to VDD, indepen-

dent of the input signal logic ‘1’ level. Furthermore, this

work compares the performance of these gates (NOT and

NAND) with diode connected load and pseudo CMOS con-

figurations from measured characteristics. Then, rail-to-rail

swing on-chip row and column selectors for a 2 x 2 sensor

matrix are also demonstrated as a proof of concept, from

measurements and simulations, respectively.

II. CIRCUIT FABRICATION

Circuits were fabricated on PEN substrates based on oxide

TFTs with a staggered bottom-gate, top contact structure.

For gate, source, and drain electrodes a 60 nm-thick Mo

layer was deposited by RF magnetron sputtering. The oxide

semiconductor was a 30 nm-thick IGZO layer, and the dielec-

tric layer was a 175 nm-thick multicomponent/multilayer

stack based on Ta2O5 and SiO2. Both the semiconductor and

dielectric layers were deposited by RF magnetron sputtering.

On the top of the TFT stack a 1 µm–thick parylene-C film

was produced by chemical vapour deposition (CVD), acting

as a passivation layer. All layers were patterned by optical

lithography and wet etching (IGZO) or reactive ion etch-

ing (Mo, Ta2O5-SiO2 and parylene-C). The samples were

annealed on a hot-plate for one hour at 180◦C.

III. CIRCUIT DESIGN

A. LOGIC GATES

Inverter and NAND gates circuit schematics and micrographs

with diode connected load and pseudo CMOS configurations

are presented in Fig. 3. The newly proposed gates, where a

switch is added for each input to the bootstrapping capacitive

load are depicted in Fig. 4. For the inverter, output rails

are given by: diode load (1), pseudo cmos (2), capacitive

bootstrapping load (3) and high performance gates (4).

VOHd ≈ VDD − VTH;VOLd ≈ VDD −

(

1

gmT2

· IDS

)

(1)

VOHcm ≈ VDD − 2VTH;VOLcm ≈ VDD −
(

roffT4 · IDS
)

(2)

VOHbs ≈ VDD;VOLbs ≈ VDD − (rdsT2 · IDS) (3)

VOHprop ≈ VDD;VOLprop ≈ VDD −
(

roffT2 · IDS
)

(4)

where VOH and VOL are output logic high and low levels,

respectively, whereas, rds and roff are output/drain to source

resistance and effective off resistances of the TFT, while gm
represents transconductance of the transistor. The subscripts

d, cm, bs and prop represent different logic gate configura-

tions, namely, diode load based, pseudo cmos, bootstrapping

load based and proposed gates.

FIGURE 3. Conventional logic gates circuit schematics and micrographs
using IGZO TFTs: (a) Inverter with diode load (b) Inverter in pseudo CMOS
configuration (c) NAND with diode load (d) NAND in pseudo CMOS
configuration.

FIGURE 4. High performance logic gates formed by adding a switch for
each input to the bootstrapping capacitive load (a) Inverter circuit
schematic (b) Inverter micrograph (c) NAND circuit schematic (d) NAND
micrograph.

As per (1), an inverter based on diode load (Fig. 3(a))

limits the swing and demands higher driver size compared to

the load to favour some gain. On the other hand, the pseudo
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FIGURE 5. Frequency division from a positive edge triggered DFF and DFF
circuit schematic with NAND gates.

CMOS configuration limits the VOH value as per (2). The

bootstrapped inverter (Fig. 4) can ensure VOH very close

to VDD value due to capacitive bootstrapping operation as

the voltage at node v1 is almost 2VDD − VTH − VOL, where

VTH refers to the threshold voltage of the biasing transistor

T3. However, VOL is limited as per (3). In the bootstrapping

inverter, by introducing a switch (S1) between node v1 and

ground, which is controlled by the same input as the inverter,

the logic low level can be made almost zero, when the input

is logic ‘1’. For this condition, the switch closes and v1 is

pulled down to ground potential. Therefore, T2 will be turned

off, turning the effective load resistance (roff ) very high.

This leads to complete rail-to-rail operation (VOH = VDD
and VOL = VSS/Gnd). Here the switch is implemented with

a n-type oxide TFT.

B. RING OSCILLATOR

In order to obtain on-chip rail-to-rail clock, a ring oscillator

is being used, as it is simple in architecture. In this work, a

31-stage RO is used, where each inverter is implemented with

the high performance configuration as shown in Fig. 4(a).

The output of the RO is directly used as a clock for the

column selector block, named as col-clk. The RO schematic

is presented in Fig. 2(a).

C. FREQUENCY DIVIDER

In the radiation sensor scanning process, each row is scanned

sequentially and while scanning each row, all the columns

should be scanned in a sequential manner. In the proposed

system a single clock generator is used and by using a

frequency divider, it is possible to generate the clock for

row selection (clk-row). When the radiation sensor matrix

size is 2 × 2, clk-row = (clk-col)/2. This needs a frequency

divider by a factor of 2, which is implemented with 1 positive

edge triggered data flip flop (D-FF) as shown in Fig. 2. The

D-FF circuit schematic is depicted in Fig. 5, and all NAND

gates there represented are designed according to the high

performance configuration in Fig. 4(c).

FIGURE 6. Measured VTCs of (a) inverter and (b) NAND by using the high
performance logic gates, demonstrating rail-to-rail operation and level
shifting ability.

FIGURE 7. Measured dynamic characteristics under normal ambient, for
the different gate designs, namely based on diode connected loads (diode
graph), pseudo-CMOS (CMOS graph) and rail-to-rail (proposed graph)
demonstrating level shifting ability with different supply voltages:
(a) Inverter (b) NAND.

D. SHIFT REGISTER

The n-bit shift register using positive edge triggered D-FFs is

presented in Fig. 2. This circuit can be used for row/column

selection by providing proper clock signal (either clk-row

or clk-col). Since the basic logic gates are ensuring high

performance, the shift register is also able to show complete

rail-to-rail operation. Whenever the circuit encounter a pos-

itive edge of the clock, the input is shifted to the right by

1-bit so that the corresponding row/column can be selected.
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FIGURE 8. (a) Micro-graph of the frequency divider (b) Measured response
of frequency divider at 1 kHz.

It should be noted that for the proof of concept, a 2-bit shift

register is considered.

IV. RESULTS AND DISCUSSION

All logic gates were characterised from measurements under

typical room environment. As expected a complete rail-to-rail

operation together with level shifting ability is being noticed

from the voltage transfer characteristics (VTCs) of inverter

and NAND gates (one input is set to logic ‘1’) from Fig. 6.

Expected trend is also being noticed from the measured

dynamic characteristics from Fig. 7, validating the output

rails described in equations (1), (2) and (4). In case of diode

load based gates, (W)driver = 240 µm and (W)load = 20 µm.

In pseudo-CMOS and in the proposed high-performance con-

figurations all TFTs have W = 40 µm. In addition, the device

channel length (L) for all the circuits is 10 µm.

If a single clock is used for the entire system, then

frequency dividers are used to address rows and columns

selection. Therefore, by using high performance NAND

gates, frequency divider is reported (for a 2 x 2 matrix) whose

micropgraph and measured response at 1 kHz frequency are

shown in Fig. 8. The frequency divider has shown a power

consumption of 380 µW. Finally, to have entire timing signal

generation circuitry, a 31-stage RO and 2-bit shift registers

are needed (for a 2 x 2 matrix). Given the higher transistor

count of these blocks, the fabrication process is still being

FIGURE 9. Proposed rail-to-rail row/column selector response from
simulations with a power supply voltage of 8 V. 31-stage ring oscillator
response (clk-col at 1 kHz) for column selector clock and shift register
response (Q1 and Q2) for either row/column selection.

optimized to turn their effective fabrication possible. Still,

simulation results using IGZO TFT model with a supply

voltage of 8 V [23] show rail-to-rail operation (Fig. 9). The

RO is generating almost 1 kHz and showing a power con-

sumption of 1.5 mW. The power consumption of a 2-bit

shift register was observed to be 820 µW. From this char-

acterization, it can be concluded that the proposed selector

is able to provide complete rail-to-rail operation using high

performance logic gates.

V. CONCLUSION

For the first time on-chip rail-to-rail timing signal genera-

tion blocks to address a sensor matrix in a radiation sensing

system are demonstrated. All these circuits used novel high-

performance logic gates that can ensure complete rail-to-rail

operation with IGZO TFTs. Their performance is compared

with other well known techniques, such as, diode load and

pseudo CMOS gates from measurements. Proposed gates

have shown superior performance in terms of voltage swing

(between VDD and VSS). Using high performance gates, row

and column selectors for a 2 x 2 sensor matrix have been

demonstrated. The simulation and measurement results of

the selectors have shown a complete rail-to-rail operation

even with a supply voltage of only 6 V. Moreover, the cir-

cuits reported here only require a simple staggered bottom

gate TFT structure and a lower transistor count compared to

literature to achieved such level of performance. Proposed

on-chip row/column selector with high performance gates

find direct application in the flexible hybrid radiation sensing

system, which is useful in health and security domains.

REFERENCES

[1] H. Chen, Y. Cao, J. Zhang, and C. Zhou, “Large-scale complementary
macroelectronics using hybrid integration of carbon nanotubes and
IGZO thin-film transistors,” Nat. Commun., vol. 5, no. 1, Jun. 2014,
Art. no. 4097.

[2] J. H. Na, M. Kitamura, and Y. Arakawa, “Organic/inorganic hybrid
complementary circuits based on pentacene and amorphous indium
gallium zinc oxide transistors,” Appl. Phys. Lett., vol. 93, no. 21,
2008, Art. no. 213505, doi: 10.1063/1.3039779.

VOLUME 8, 2020 161

http://dx.doi.org/10.1063/1.3039779


BAHUBALINDRUNI et al.: RAIL-TO-RAIL TIMING SIGNALS GENERATION USING InGaZnO TFTs

[3] K. Nomura et al., “Three-dimensionally stacked flexible integrated
circuit: Amorphous oxide/polymer hybrid complementary inverter
using n-type a-In-Ga-Zn-O and p-type poly-(9, 9-dioctylfluorene-co-
bithiophene) thin-film transistors,” Appl. Phys. Lett., vol. 96, no. 26,
2010, Art. no. 263509, doi: 10.1063/1.3458799.

[4] P. G. Bahubalindruni et al., “High-gain transimpedance ampli-
fier for flexible radiation dosimetry using InGaZnO TFTs,”
IEEE J. Electron Devices Soc., vol. 6, pp. 760–765, Jun. 2018,
doi: 10.1109/JEDS.2018.2850219.

[5] R. Ballabriga et al., “Review of hybrid pixel detector readout ASICs
for spectroscopic X-ray imaging,” J. Instrum., vol. 11, no. 1, 2016,
Art. no. P01007.

[6] B. Fraboni, A. Ciavatti, L. Basiricò, and A. Fraleoni-Morgera,
“Organic semiconducting single crystals as solid-state sensors for
ionizing radiation,” Faraday Discussions, vol. 174, pp. 219–234,
Jun. 2014, doi: 10.1039/C4FD00102H.

[7] A. Ciavatti et al., “Toward low-voltage and bendable X-ray
direct detectors based on organic semiconducting single crys-
tals,” Adv. Mater., vol. 27, no. 44, pp. 7213–7220, 2015,
doi: 10.1002/adma.201503090.

[8] M. Koo et al., “Bendable inorganic thin-film battery for fully flexible
electronic systems,” Nano Lett., vol. 12, no. 9, pp. 4810–4816, 2012,
doi: 10.1021/nl302254v.

[9] A. Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan, and
D. Striakhilev, “Amorphous silicon thin film transistor circuit integra-
tion for organic LED displays on glass and plastic,” IEEE J. Solid-State
Circuits, vol. 39, no. 9, pp. 1477–1486, Sep. 2004.

[10] S. Sambandan, A. Kumar, K. Sakariya, and A. Nathan, “Analogue
circuit building blocks with amorphous silicon thin film transistors,”
Electron. Lett., vol. 41, no. 6, pp. 314–315, Mar. 2005.

[11] A. Nathan, G. R. Chaji, and S. J. Ashtiani, “Driving schemes for
a-Si and LTPS AMOLED displays,” J. Display Technol., vol. 1, no. 2,
pp. 267–277, Dec. 2005.

[12] K. K. Moez, “Design of a-Si TFT demultiplexers for driving gate
lines in active matrix arrays,” IEEE Trans. Electron Devices, vol. 52,
no. 12, pp. 2806–2809, Dec. 2005.

[13] T. Cramer et al., “Radiation-tolerant flexible large-area electronics
based on oxide semiconductors,” Adv. Elect. Mater., vol. 2, no. 7,
2016, Art. no. 1500489, doi: 10.1002/aelm.201500489.

[14] A. Koyama et al., “Radiation stability of an InGaZnO thin-film tran-
sistor in heavy ion radiotherapy,” Biomed. Phys. Eng. Exp., vol. 3,
no. 4, 2017, Art. no. 045009.

[15] P. G. Bahubalindruni et al., “Analog circuits with high-gain topologies
using a-GIZO TFTs on glass,” IEEE/OSA J. Display Technol., vol. 11,
no. 6, pp. 547–553, Jun. 2015, doi: 10.1109/JDT.2014.2378058.

[16] D. H. Kang, I. Kang, S. H. Ryu, and J. Jang, “Self-aligned coplanar
a-IGZO TFTs and application to high-speed circuits,” IEEE Electron
Device Lett., vol. 32, no. 10, pp. 1385–1387, Oct. 2011.

[17] Y. Chen, D. Geng, T. Lin, M. Mativenga, and J. Jang,
“Full-swing clock generating circuits on plastic using a-IGZO
dual-gate TFTs with pseudo-CMOS and bootstrapping,” IEEE
Electron Device Lett., vol. 37, no. 7, pp. 882–885, Jul. 2016,
doi: 10.1109/LED.2016.2571321.

[18] B. Kim et al., “New depletion-mode IGZO TFT shift register,” IEEE
Electron Device Lett., vol. 32, no. 2, pp. 158–160, Feb. 2011.

[19] J.-S. Kim et al., “Dynamic logic circuits using a-IGZO TFTs,” IEEE
Trans. Electron Devices, vol. 64, no. 10, pp. 4123–4130, Oct. 2017.

[20] N. P. Papadopoulos, C.-H. Lee, A. Tari, W. S. Wong, and M. Sachdev,
“Low-power bootstrapped rail-to-rail logic gates for thin-film appli-
cations,” J. Display Technol., vol. 12, no. 12, pp. 1539–1546,
Dec. 2016.

[21] T.-C. Huang et al., “Pseudo-CMOS: A design style for low-cost and
robust flexible electronics,” IEEE Trans. Electron Devices, vol. 58,
no. 1, pp. 141–150, Jan. 2011, doi: 10.1109/TED.2010.2088127.

[22] Y. Chen, D. Geng, T. Lin, M. Mativenga, and J. Jang, “Full-swing
clock generating circuits on plastic using a-IGZO dual-gate TFTs
with pseudo-CMOS and bootstrapping,” IEEE Electron Device Lett.,
vol. 37, no. 7, pp. 882–885, Jul. 2016.

[23] P. Bahubalindrun, V. Tavares, P. Barquinha, P. G. De Oliveira,
R. Martins, and E. Fortunato, “InGaZnO TFT behavioral model for
IC design,” Analog Integr. Circuits Signal Process., vol. 87, no. 1,
pp. 73–80, 2016.

162 VOLUME 8, 2020

http://dx.doi.org/10.1063/1.3458799
http://dx.doi.org/10.1109/JEDS.2018.2850219
http://dx.doi.org/10.1039/C4FD00102H
http://dx.doi.org/10.1002/adma.201503090
http://dx.doi.org/10.1021/nl302254v
http://dx.doi.org/10.1002/aelm.201500489
http://dx.doi.org/10.1109/JDT.2014.2378058
http://dx.doi.org/10.1109/LED.2016.2571321
http://dx.doi.org/10.1109/TED.2010.2088127

