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ABSTRACT 

We present a method for detecting and modelling rails in mobile laser scanner data. The detection is based on the properties of the 

rail tracks and contact wires such as relative height, linearity and relative position with respect to other objects. Points classified as 

rail track are used in a 3D modelling algorithm. The modelling is done by first fitting a parametric model of a rail piece to the points 

along each track, and estimating the position and orientation parameters of each piece model. For each position and orientation 

parameter a smooth low-order Fourier curve is interpolated. Using all interpolated parameters a mesh model of the rail is 

reconstructed. The method is explained using two areas from a dataset acquired by a LYNX mobile mapping system in a 

mountainous area. Residuals between railway laser points and 3D models are in the range of 2 cm. It is concluded that a curve fitting 

algorithm is essential to reliably and accurately model the rail tracks by using the knowledge that railways are following a continuous 

and smooth path. 

 

1. INTRODUCTION 

Rail track irregularities have a large effect on railway safety and 

operation. To ensure a good maintenance of the rails, frequent 

measurements are needed, which are costly and require specific 

tools for different aspects of the rails geometry. Mobile laser 

scanning (MLS) offers the advantage of acquiring accurate 3D 

measurements of all the objects present in the railway 

environment in a short operational time. Another advantage of 

using mobile laser scanner data mounted on a train vehicle is 

that there is no need for surveyors to enter the rail track. 

 

Producing 3D models of the rail environment is useful for many 

applications such as asset inventories, analysing the minimum 

free passage space, and determination of measurements such as 

platform position in relation to the rail track. Manual detection 

and modelling of the rail tracks in a point cloud is largely 

impractical for two main reasons. Firstly, recognizing and 

precisely delineating the tracks in sparse points is difficult for a 

human user. Secondly, the extensive length of the rails makes 

their detection and modelling a very tedious task. 

 

The idea is to apply a knowledge based classification which 

takes advantage of the regularity in a railway environment to 

classify points on the objects of interest. The focus in this paper 

is on detection of points on railway tracks, followed by a 3D 

modelling step. Local properties are piecewise linearity of rail 

tracks. Two parallel tracks form a pair at a certain fixed 

distance, i.e. the gauge. Globally railways follow a continuous 

and smooth pattern. Our contribution is the integration of local 

and global geometric properties of the railway during both the 

detection and modelling steps. After describing the related work 

(section 2) our detection algorithm is explained in section 3. 

Section 4 handles the modelling steps, followed by an 

explanation and analyses of our results in section 5. 

Conclusions and future work are presented in section 6.  

 

2. RELATED WORK 

Classifying laser data has been a research topic for several 

years. In airborne laser scanner (ALS) data the challenges are 

on analyzing the influences of training sizes, feature selection 

(Pal and Foody, 2010) and the classifier itself (Pal and Foody, 

2012). Often the aim of classifying ALS data is to find specific 

objects, such as buildings and vegetation (Xu et al., 2012), or to 

filter non ground points (Tovari and Pfeifer, 2005). Automation 

in finding the rail track centre lines using high resolution aerial 

imagery and lidar can be found in Beger et al., (2011). Jeon 

(2010) detects and models catenary wires from airborne laser 

scanner systems. Rutzinger et al (2011) describe the feasibility 

of building footprint extraction from MLS data. Several studies 

show that MLS data can be used for asset inventory of the rail 

side hardware and engineering design work, and to extract 

highly accurate spatial information for construction applications 

and maintenance (Leslar et al, 2010). Although these studies 

show the potential of using MLS data for applications, the 

measurements themselves are still based on manual 

interpretations. Chan and Lichti (2011) explain how to fit 

catenary curves to power cables, in order to calibrate a mobile 

mapping system. Arastounia (2012) describes two methods for 

detecting rail points, based on a template-based matching and a 

region growing approach. The template matching emphasizes 

the detection of points on parallel tracks, whereas the region 

growing approach uses the knowledge on the continuous shape 

of the tracks. Fitting parametric models to points has been 

described in many reverse engineering projects, for example 

curve fitting (Werman and Keren, 2001), for modelling 3D 

buildings (Verma et al, 2006), (Maas and Vosselman, 1999) and 

industrial installations (Rabbani and Van den Heuvel, 2004). 

 

To our knowledge there is no approach that detects and models 

rail tracks by fitting parametric models, using both local and 

global properties of the rail way environment.  

 

3. KNOWLEDGE BASED DETECTION OF RAIL 

TRACKS 

The aim of this step is to detect and select laser points on a 

railway track. These points will be used to fit 3D models of the 

railway. As the rail modelling stage (described in section 4) 

includes a curve fitting stage, it is considered to be less harmful 

to miss a few railway points (false negatives), than to include 

too many false railway points (false positives). Our detection 

algorithm is based on object specific properties of the railway 

environment, which are listed in Table 1. Although in this paper 

the focus is particularly on rail tracks, the presence of contact 
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wires above potential rail track points is considered beneficial 

for improving the detection rate of rail tracks as it can remove 

several false positives. That is the reason why the detection of 

contact wires is included as well. 

 

Property type Rail track points Contact wire points 

Relative 

height 

Rail tracks are slightly 

higher than terrain 

level. 

Directly above the rail 

track (+4.5 m) there 

are only a few laser 

points. 

Wires are at a certain 

minimum height 

above terrain level. 

Directly underneath 

the wire (-4.5m) 

there are only a few 

laser points. 

Linearity Majority of rail track 

points within 1x1 m fit 

to a line with a certain 

thickness 

Majority of wire 

points within 1x1 m 

fit to line with a 

certain thickness 

Relative 

position to 

other objects 

For each rail track 

point, there are wire 

points within a certain 

planimetric and 

vertical distance 

For each wire point, 

there are rail track 

points within a 

certain planimetric 

and vertical distance  

Relative 

position to 

other rail 

track 

Other rail track points 

are parallel and at a 

certain distance (the 

gauge) 

 

Table 1. Properties of points on rail tracks and contact wires.  

 

These properties are implemented in a four step approach. In 

the first step the height distribution of all laser points are 

analyzed per 1 by 1 m grid cell. The reason for this grid size is 

that the expectation is that there is maximum one rail track 

within a grid cell. In figure 1, points can be seen from 3 

neighboring grid cells, in a horizontal viewing direction. The 

purpose of this initialization step is to roughly indicate whether 

in this grid cell there are points on rails and/or wires. Basic 

assumption for the rough detection of rail points is that the grid 

cell contains points on the terrain, there are several points 

slightly above the terrain (potentially the points on the railway 

track), there are almost no points between the rail track and the 

wires, and there may be some points on the wires at a certain 

height above the terrain. Starting point is the determination of 

DTM height per grid cell. As an initial guess the 10%-ile height 

of all points within the grid cell. If there are less than 10 % of 

the points within 0.5 and 4.5 m above DTM height, there may 

be rail and or wire points.  

 

 
Figure 1. Starting point is determination of DTM height, 

followed by checking empty space between 0.5 and 

4.5 m above DTM height. Distance between two 

ticks at the axis is one meter.  

 

For roughly detecting points on wires the assumption is that 

points on wires are between 5.5 and 6.5 m above terrain level, 

only the lowest 5 cm of those points are taken as potential 

contact wire points. All points within 0.5 meter above DTM 

height (called “the terrain points”) are further analyzed for rail 

point detection, see figure 2. If the difference between the 98%-

ile height of the terrain points and the 10%-ile point is larger 

than 10 cm, there may be a rail track inside the grid cell. All 

points within 10 cm of the 98%-ile point are potentially rail 

track points, but only if this is not the majority within the grid 

cell, see figure 2. These criteria come from the knowledge that 

in most situations the railway is about 10-15 cm elevated above 

the terrain. For the exceptions, e.g. at road crossings, our 

modeling strategy (see section 4) is designed to bridge the gaps 

in the detected railway points. 

 

 
Figure 2. Potential rail track points are detected by histogram 

analyses of terrain points. 

 

The second step is to keep only points that represent linear 

structures. Within a grid cell of 1 by 1 m there is maximum one 

piece of rail track and/or 1 piece of wire. For the line fitting a 

RANSAC algorithm (Fischler and Bolles, 1981) is used, where 

the assumption is that the majority of the roughly detected rail 

track points within a grid cell, actually fits to one line within a 

certain buffer (say 0.05 m). Two parameters are used here: the 

percentage of inliers and the maximum distance of inliers to the 

line. Results of a successful line fitting are the inlier points 

which represent the detected rail tracks and wires, plus a 3D 

fitted line through the inliers. When closely looking at this step, 

it is obvious that the detection algorithm is designed for 

detecting points at the top part of the rail track. The RANSAC 

line fitting selects points within a buffer of 0.05 m on points 

that are slightly elevated above the terrain. For reliably fitting a 

complete rail track model, it is desired to also include the points 

at the foot of the rail track. Only after a successful inlier 

detection of the rail points, other laser points are added if there 

are within 0.12m distance, i.e. the height of the body of the 

track, to the line. For rail tracks it always implies the addition of 

the points directly beneath the top of the rail track. 

Until this point, the processing has been done grid cell wise, 

analyzing all points within a square meter. The result is a rough 

classification of the point cloud based on histogram analysis in 

combination with linearity restrictions. From now, the 

processing will be done on the roughly classified point cloud.  

 

The third step is optional and contains an extra filtering step by 

keeping rail points only if there are wire points within a certain 

2D and 3D distance, and vice versa.  The assumption is that 

there is a wire somewhere near the rail track, for example 

within 2 m in the horizontal plane and between 5 and 6 meter in 

vertical direction. As a result one can immediately assign a wire 

ID to the rail points on a pair of rails, making it possible to 

determine the number of tracks in a certain area. Assumption is 

that there is one contact wire for each pair of rails. 

 

The fourth step is to check whether two rail tracks are parallel 

and at a certain constant distance from each other. For each 

RANSAC line it is checked whether there is another parallel 

line at a certain distance (the gauge in this dataset is about 1.45 
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m). This is done by projecting mid points of the lines to other 

parallel lines and see whether the distance is between 1.3 and 

1.6 m. If this is the case, it is a strong indication that this pair of 

lines, and thus two pairs of inlier points, are actually 

representing rail track pieces. If a corresponding line cannot be 

found, there can be two reasons: firstly the processed line can 

represent some false positives, or secondly, at the location of 

the corresponding rail track there is no line detected by the 

RANSAC algorithm. So, at that location the roughly classified 

points are checked whether they fit to the railway track, but for 

some reasons were not yet classified as such or not considered 

to fit to a RANSAC line. These potential points are added to the 

detected rail track points. A connected component analyses is 

performed to group points on each railway track. Only points at 

large components are finally classified as rail track points. The 

main purpose of this fourth step is to decrease both the number 

of false negatives (by adding potential points) and the number 

of false positives (by removing the small components). After 

finding correspondences between two tracks, it is determined 

for each pair whether points belong to the left or to the right 

track.  

 

 
Figure 3 Detection steps for rail tracks: rough classification of 

terrain points after step 1 (upper left, green are 

potential rail track points, cyan are points lower than 

the DTM height, yellow are other points within a 

grid cell with rail points, orange are points in a grid 

cell without rails or wires). Middle left: result after 

RANSAC line fitting (step 2). Lower left: including 

points (yellow) within 0.12 m of fitted line. Upper 

right: filtering step by keeping only rail track points 

(green) within a certain distance of wire points 

(orange) (step 3). Lower right: red lines indicate 

which fitted lines are parallel with a perpendicular 

distance between 1.4 and 1.6 m (step 4). Red points 

are on one side of the track, green at the other side. 

 

At this stage it is known per laser point whether it belongs to a 

rail track and to which of the two rail track within a pair. This 

will be the input for the railway modeling stage. 

 

4. 3D RAIL TRACK MODELLING  

4.1 Parametric model of a rail piece 

A rail track is modelled as a set of smaller rail pieces. A rail 

piece is defined by seven shape parameters, as shown in Figure 

4, and six orientation parameters that specify the position and 

rotations of the local coordinate system of the piece with respect 

to the global coordinate system of the point cloud. 

 
Figure 4 Rail piece coordinate system and model parameters 

 

4.2 Parameter estimation by Markov Chain Monte Carlo 

To fit the rail pieces, first the points detected on each track are 

partitioned into straight segments using a planimetric grid of 50 

m cell size. For the points within each cell the eigen vector 

corresponding to the largest eigen value is calculated as the 

main axis of the segment. The points are then again subdivided 

into segments of size L (piece length) along the main axis.  

 

In the fitting of the piece model to the segmented points, the 

shape parameters are considered fixed and only the orientation 

parameters of the model are estimated. The least-squares 

method for the estimation of the orientation parameters often 

fails because of the sparsity of the points. We therefore use a 

Markov Chain Monte Carlo (MCMC) algorithm to obtain an 

estimate by sampling the joint probability distribution of the 

orientation parameters. Formally, for a given point segment D 

the aim is to find a model Mi that maximizes the probability 

P(Mi|D) = ηP(D|Mi)P(Mi), where P(D|Mi) is a measure of how 

well the model fits the data points D, P(Mi) is the model prior, 

and η is a normalization factor that is independent of Mi.  

We define:  

 

P(D|Mi) = exp(-d) (1) 

 

where d is the mean distance from the points to the model Mi. 

The point-model distance is defined as the smallest distance 

between the point and each of the planar patches of the model 

(see Fig. 4). However, distance calculation based on the 

mathematical equation of a plane may lead to small distances 

for points that are outside the patch boundary but lie on the 

extension of the patch plane. To exclude such incorrect 

distances we introduce the following additional condition: for a 

point-plane distance to be accepted the point should 

orthogonally project inside the polygon that encloses the patch. 

Distances not fulfilling this condition are excluded from the 

calculation of d in Eq. (1). The prior P(Mi) is used to 

incorporate our prior knowledge of the model parameters. We 

expect with a high probability that the rotation parameters of 

each rail piece are only slightly different from the previous 

piece, and that the position of a piece is close to the center of its 

corresponding point segment. To include these we model the 

prior with a normal distribution centered around the expected 

rotation and position parameters of the piece model: 

 

P(Mi) ~ N(u, µ, ∑) (2) 

 

where u = [xo, yo, zo, v, f, k]T is the vector of six orientation 

parameters of model Mi , µ is the mean vector and ∑ is the 

covariance of the parameters in u. The mean vector contains the 

expected rotation (i.e. the rotation of the previous piece) and 

position parameters (i.e. the center of the point segment). For 

the first piece in each track we set v=0 and f=0, while k is 

obtained as the orientation of the main axis of the point segment 

(eigen vector corresponding to the largest eigen value of the 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W2, 2013

ISPRS Workshop Laser Scanning 2013, 11 – 13 November 2013, Antalya, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W2-223-2013 225



 

 

segment). The covariance of the prior distribution ∑ is chosen 

by assuming large variances for the expected orientation 

parameters and no correlation between them. The large 

variances ensure that the Markov chain does not get stuck at the 

mean of the prior distribution. 

 

For the MCMC sampling we use the Metropolis-Hastings 

algorithm (Hastings, 1970), which starts at a random initial 

point and recursively provides samples µt, t=1,…,n from the 

target distribution P(Mi|D). The samples are drawn from a 

proposal distribution, which is chosen as a Gaussian with 

variances larger than the prior distribution. An estimate of the 

expectation of model parameters is then obtained by the ergodic 

mean of the samples: θ ∑ θ , where m specifies the 

number of so-called burn-in samples. Further details about the 

Metropolis-Hastings algorithm can be found in (Gilks et al., 

1995). 

 

4.3 Curve fitting 

The rail pieces modelled by the MCMC sampling do not 

necessarily form a continuous and smooth rail track. A typical 

rail track is a combination of linear segments and smooth 

circular curves. Therefore, to obtain a continuous and smooth 

model of the entire rail track we interpolate the rail pieces with 

a Fourier series: cos sin  (3) 

where uj ,j=1,..,6 is jth orientation parameter, i=1,..,m is the rail 

piece number, ak, bk, w are unknown coefficients of the 

interpolation function and n is its order. By evaluating Eq. (3) 

with uj of all pieces a system of equations is obtained, which is 

then solved for the unknown coefficients. The estimated 

coefficients minimize the sum of squared differences between 

the piece parameter and the interpolated parameter. The 

interpolation coefficients are estimated for each parameter 

separately, and can be used to evaluate the parameter at any 

point along the rail track. The order of the Fourier series defines 

the flexibility in the fitted curve. Note that we want to avoid 

higher order Fourier series to prevent the occurrence of 

oscillation and waviness in the final model. When analysing the 

geometry of the rail pieces, the rotation parameter around the 

Y-axis of the rail model (see Figure 4), i.e. the φ angle, is the 

most sensitive to the random error and scarcity of the laser 

points. This can also be seen in the evaluation of the φ 

parameter. Therefore, it has been decided to determine φ by 

calculating the slope between two parallel rail pieces. This can 

easily be done as the position of the rail pieces is very well 

determined. This newly determined φ is assigned to both 

parallel rail pieces. In Díaz Benito (2012) a Bezier curve fitting 

approach has been described. This works well for almost 

straight rails giving continuity and smoothness to the piece 

model, however Bezier curves are tangent only to the initial and 

end sections, and not bounded at all to the local parameters of 

intermediate pieces. Therefore, such a model behaves poorly in 

intermediate sections of curved tracks, as it cannot closely 

follow the railpoints. 

 

5. RESULTS AND ANALYSIS 

The proposed methods were evaluated by processing two point 

clouds obtained by a mobile laser scanner on the Austrian 

railway. 

5.1 Mobile laser scanner dataset used 

The data has been acquired by Topscan, using an Optech Lynx 

V1 mobile mapping system. The system, containing two 

scanners, was mounted on a car which was placed on a train 

waggon. Point densities near the rail track are about 700 p/m2, 

containing points from both scanners. The target object is a 

curvy rail track in a mountainous area. Two areas are selected 

from this dataset. Area 1 is a track of 200 m, containing one 

curve. The rail track from area 2 follows a S-curve with a total 

length of 400 m.   

 
Figure 5. Oblique view on the point cloud from Area 1 (left, 

2.2M points) and Area 2 (right, 4.2M points). 

 

5.2 Detection of points on rail tracks 

In figure 6 the (intermediate) results of the detection algorithm 

are shown. It can be seen that the result of the histogram 

analyses is giving a rough idea on the potential locations of 

railways (b) and wires (c). However, information on linearity 

and relative distances to other objects are needed to remove 

many false positives. The detected wire points are used to keep 

only nearby rail track points and thus to filter points that were 

falsely classified as rail track points. The final detection results 

are shown in figure 6f. As there was no reference data and the 

selection of test data would be a tedious work, we have 

estimated the number of false positives and false negatives by 

analysing the data gaps and outliers during the modelling steps, 

see section 5.4 and 5.5.    

 

 
Figure 6. Detection of rail points per step. Input point cloud (a), 

rough detection of rail points (b) and contact wires (c), inliers of 

RANSAC fitting (d), large segments of inliers on wires (e), 

final rail points (f) after checking parallelism and checking 

nearby wire points. 
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5.3 Rail piece fitting 

Results of fitting about 60 points to a single rail piece with a 

length of 1.2m are shown in figure 7 for four different 

perspectives. Per piece the number of points and their 

distribution over the model may vary.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Rail piece fitting result from the perspective view (a), 

X-Y view (b), Y-Z view (c) and X-Z view (d). 

 

5.4 Curve fitting 

Figure 8 highlights the working of the curve fitting to individual 

fitted rail pieces. The rail track now forms a continuous and 

smooth curve. We have analysed the RMS residual between 

piece parameters and interpolated parameters for different 

number of terms in the Fourier series. It was found that for area 

1 three Fourier terms, for area 2 five Fourier terms, for the 

position parameters, and one Fourier term for rotation 

parameters in both areas are a suitable choice as we do not see a 

substantial improvement of the residuals with increasing 

number of terms. Nearly 5% of the individual pieces did not 

have enough laser points to accurately fit a single piece, 

however the other 95% was more than enough to bridge the 

gaps after the curve fitting. A triangular mesh is built from the 

curve fitting result to conveniently visualize the final model. 

 
Figure 8. Individual rail pieces before (left) and after (right) 

Fourier curve fitting for area 1. 

 

 

 

 
Figure 9. Curve fitting parameters from top to bottom X, Y, Z 

(left) and omega, phi and kappa (right). 

 

Figure 9 shows the curve fitting to each orientation parameter of 

the pieces. Each dark circle represents an orientation parameter 

of a piece and each red curve represents the interpolation 

function (Fourier series) for that parameter. 

 

5.5 Final 3D rail model results 

The meshes of the rail models are shown in figure 10 and 11. 

When overlaying the models to the point cloud, one can 

globally see that the models fits nicely, although for accuracy 

analyses one needs to rely on quantitative measures.   

 
Figure 10. Point cloud (left) overlaid with 3D rail models 

(right), of part of area 1. 

 
Figure 11. 3D models overlaid on points from area 2.  

 

To analyze how well the models fit to the laser data, point-to-

model distances are calculated and shown in figure 12 and table 

2. The two figures below show the distances between the points 

and the models visualized by color. It can be seen that the 

residual distances are more or less evenly distributed along the 

rails, except for a few outlier points (3.7-5.1%), which are seen 

in dark red. While the influence of outliers is evident from the 

large mean values, the median distances provide a reliable 

measure of the accuracy of the final models. It can be concluded 

from the median distances that the accuracy of modeling the 

railway tracks is below 2 cm. 

 

Figure 12. Distances between final model and railway points for 

dataset 1 (top) and 2 (below). 
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Table 2. Statistics on point-to-model distances for both areas. 

 

6. CONCLUSION AND FUTURE WORK 

We have described a method that can detect and model railways 

in an automated way. Combining three types of properties of 

the railway track, relative height, linearity and relative position 

to other objects, resulted in a highly accurate detection of rail 

points. The accuracy of the end results is in the order of 2 cm, 

which is acceptable for many applications that deal with the rail 

environment, such as asset inventories and visualisations. 

However, for highly detailed measurements with mm precision, 

e.g. calculation of wear of rail tracks, it is recommended to have 

more accurate measurements. 

 The piece wise determination of rail models can only be 

used if it is followed by a fitting algorithm that analyses the 

more global shape of the rail track. The reason is that for small 

pieces there are too few points to accurately determine all 

model parameters. Using a curve fitting algorithm is essential to 

fully use the knowledge that rail tracks are following a smooth 

path. This can visually be seen, and is grounded by the 

correction of the parameters without increase of the residuals 

between points and model. After back-projecting the 3D model 

of the rail tracks to the original point cloud it is possible to 

better analyse the detection strategy, and even calculate the 

number of false positives. This is useful to know the sensitivity 

of some of the parameters, such as the determination of DTM 

height per grid cell and setting a certain minimum number of 

inliers for RANSAC line fitting. Future work will focus on 

optimizing the detection strategy. Also, the influence of the 

length of individual rail pieces on the accuracy of the model 

parameters and the use of clothoids for transitions between 

straight lines and curves will be analysed further. 

 The algorithms have shown their performances on 

relative simple rail environments. In practice, switches, bridges 

and train stations may ask for other parameter settings or even a 

modified workflow. Future work is to detect points near special 

objects such as switches, followed by a parametric model 

fitting. This is feasible as we can accurately determine where 

two tracks would meet, and the variety of switch types is 

limited, at least within one country.  
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area, 

track 

mean   

[cm] 

median 

[cm] 

Interquartile 

range 

[cm] 

95%ile 

[cm] 

No of 

outliers  

(>10 cm) 

 a1, 

t1 
10.08 1.67 1.45 7.91 

299 of 6.7k 

(4.4%) 

a1, 

t2 
3.53 1.43 1.35 5.95 

348 of 9.1k 

(3.8%) 

a2, 

t1 
6.13 1.93 1.91 10.91 

1.2k of 23.6k 

(5.1%) 

a2, 

t2 
3.64 1.99 1.35 6.76 

605 of 16.3k 

(3.7%) 
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