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In this paper we describe a two-stage optimization model for determining robust rolling stock circulations
for passenger trains. Here robustness means that the rolling stock circulations can better deal with large

disruptions of the railway system. The two-stage optimization model is formulated as a large mixed-integer
linear programming (MILP) model. We first use Benders decomposition to determine optimal solutions for
the LP-relaxation of this model. Then we use the cuts that were generated by the Benders decomposition
for computing heuristic robust solutions for the two-stage optimization model. We call our method Benders
heuristic. We evaluate our approach on the real-life rolling stock-planning problem of Netherlands Railways,
the main operator of passenger trains in the Netherlands. The computational results show that, thanks to
Benders decomposition, the LP-relaxation of the two-stage optimization problem can be solved in a short time
for a representative number of disruption scenarios. In addition, they demonstrate that the robust rolling stock
circulation computed heuristically has total costs that are close to the LP lower bounds. Finally, we discuss the
practical effectiveness of the robust rolling stock circulation: When a large number of disruption scenarios were
applied to these robust circulations and to the nonrobust optimal circulations, the former appeared to be much
more easily recoverable than the latter.
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1. Introduction
The optimization of passenger and freight transporta-
tion networks has been a fruitful area of applied
operations research in the past decades. Numerous
papers address and solve real-life problems of air-
line and railway operators. The first applications con-
centrated on solving operational scheduling problems
with a relatively short planning horizon, and usu-
ally considered a static and deterministic problem
setting. However, recently a significant amount of
effort has been put into dealing with the inherent
uncertainties in such networks. This broadened the
research area in two directions: On one hand, many
papers addressed short-term and real-time reschedul-
ing problems and disruption management; on the
other hand, the robustness of the operational sched-
ules has become a research target.

Informally speaking, robust scheduling attempts to
find a schedule that is insensitive to irregularities of
the operations. Such irregularities may include delays
of flights and trains, but also large disruptions where
significant parts of the network are temporarily out of
order. Robustness can refer to the absorption capacity
or to the recoverability of a schedule. On one hand,
the absorption capacity expresses how a schedule can
cope with relatively small disturbances without struc-
tural changes—for example, by applying a push-back
strategy. On the other hand, recoverability measures
how easily the schedule can be adjusted to cope with
a large disruption. In this paper we are particularly
interested in recoverability of a railway rolling stock
circulation. That is, we focus on the question how the
rolling stock circulation can be designed in such a
way that it can be recovered relatively easily in case
of a large disruption.
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1.1. Robust Rolling Stock Planning
In this paper we address the medium-term rolling
stock planning problem of Netherlands Railways
(NS), the main operator of passenger trains in
the Netherlands. This planning problem arises
two–six months before the actual railway operations,
and amounts to assigning the available rolling stock
to the trips in a given timetable. The traditional
objectives of this rolling stock planning problem are
related to service quality, efficiency, and—to a limited
extent—robustness. In this nominal version, all data
are assumed to be known, and disturbances or dis-
ruptions are not taken into account. Fioole et al. (2006)
describe a mixed-integer linear programming (MILP)
model for solving this nominal problem. Using com-
mercial MILP software, the solution times on real-life
instances of NS are quite low, ranging from a few
minutes (for most instances) to a couple of hours (for
some particularly complex instances). A software tool
based on this model has been in operation within NS
since 2004.

The solutions of the nominal rolling stock plan-
ning problem are optimal under undisrupted oper-
ations only. However, infrastructure failures, rolling
stock breakdowns, and accidents are regularly recur-
ring large disruptions of the railway system, causing
the nominal solution to become infeasible. In such
cases, disruption management must come up with an
adjusted timetable, rolling stock circulation, and crew
schedules. In this paper, we focus on the recovery
of the rolling stock circulation after the timetable has
been recovered first. This latter assumption is moti-
vated by the fact that in most European countries
infrastructure management is carried out by authori-
ties that are independent of the railway operators.

In recovering the rolling stock circulation, the nom-
inal objective criteria are of marginal importance.
Instead, the goal is to quickly find such a feasi-
ble recovered solution that fits with the recovered
timetable, is close to the original one, and can be
implemented easily in practice. As will be explained
later, the deviation of a recovered solution from the
nominal solution is measured in terms of the number
of additionally canceled trips, the number of modi-
fied shunting operations, and the number of end-of-
day off-balances of the rolling stock inventories at the
stations.

Figure 1 shows an example of a disrupted timetable
in a time-space diagram. A disruption in this exam-
ple occurs between the stations Alkmaar (Amr) and
Amsterdam (Asd) from 17:30 until 19:30. Some trips
of the original schedule between these stations have
been canceled, thus requiring the rolling stock circu-
lation to be modified as well.

In this paper, we model the robust optimization
of the rolling stock circulation as a two-stage opti-
mization problem. In the first stage, the robust rolling
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Figure 1 An Example of Disruption Between Stations Alkmaar (Amr)
and Amsterdam (Asd) from 17:30 Until 19:30

stock circulation is generated. In the second stage, the
optimal recovery actions in response to a finite set
of disruption scenarios are represented. The model
aims at minimizing the sum of the nominal costs
and the maximum of the recovery costs over the dis-
ruption scenarios. Under mild assumptions, this two-
stage optimization problem can be described as a
large MILP model. To solve this model, we propose
a Benders decomposition approach for solving the
LP-relaxation, leading to a subproblem for each dis-
ruption scenario. Then we compute heuristic robust
rolling stock circulations based on the cuts that were
generated by the Benders decomposition. We call our
method Benders heuristic. Our computational results
on relevant real-life rolling stock planning instances of
NS indicate that the Benders decomposition approach
takes relatively short computation time, thereby out-
performing the straightforward solution of the whole
LP-relaxation by a state-of-the-art solver. Moreover,
the Benders heuristic takes very little additional time
after the solution of the LP-relaxation, providing near-
optimal solutions.

Due to computation time and space limitations, the
generation of the robust rolling stock circulations is
based on a limited number of disruption scenarios
(about 30). Therefore, we also propose an evaluation
framework where solutions to the rolling stock plan-
ning problem can be evaluated on a much larger
number of disruption scenarios (3,500 in our case).
It turns out that the robust rolling stock circulations
admit much easier recovery than the nonrobust solu-
tions. However, they have only slightly higher nomi-
nal costs.

The current paper is related to Nielsen, Kroon, and
Maróti (2009), but has a different focus. Indeed, the
earlier paper focuses on the operational problem of
finding a recovered rolling stock circulation in case of
a large disruption of the railway system. The current
paper focuses on the tactical problem of designing the
original rolling stock circulation in such a way that
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the recoverability of this circulation in case of a large
disruption is increased.

This paper is structured as follows. In the remain-
der of this section, we give an overview of the lit-
erature on robust resource planning in airlines and
railway systems. In §2 we describe our robust opti-
mization approach based on Benders decomposi-
tion. We also present our Benders heuristic, which is
used to calculate robust integer solutions. Section 3
describes the railway rolling stock scheduling prob-
lem of NS. Section 4 is devoted to our computational
results. We present our evaluation framework and its
results in §5. Finally, §6 outlines some conclusions and
final remarks.

1.2. Literature
Most robust scheduling applications in the passen-
ger railway context concern the timetabling problem.
Kroon et al. (2007) describe a stochastic program-
ming model for improving the absorption robustness
of a cyclic timetable. Similar results are presented
by Liebchen et al. (2010). Fischetti, Salvagnin, and
Zanette (2009) propose the notion of light robustness
as an alternative to solving large-scale stochastic pro-
grams. Cacchiani, Caprara, and Fischetti (2012) solve
the robust noncyclic timetabling problem by adding
a simple buffer time measure to a Lagrangian relax-
ation framework. De Almeida et al. (2008) describe a
model for robust rolling stock scheduling in case of
relatively small train delays. These papers focus on
delay absorption, and consider retiming of trains as
the only way to react to the disturbances.

Robustness can be formalized mathematically in
many different ways. Some applications consider
simple, practice-driven measures, such as time sup-
plements in process times or buffer times between
flights or trains. More explicit robust models are
based on stochastic programming (see Birge and Lou-
veaux 1997) or on robust optimization (see Ben-
Tal and Nemirowski 1998; Ben-Tal, El Ghaoui, and
Nemirowski 2009; Bertsimas and Sim 2004). However,
stochastic programming requires the use of probabil-
ities for the occurrences of the different disruption
scenarios, which may be hard to obtain in practice.
Robust optimization may result in conservative solu-
tions, because it aims at finding solutions that are fea-
sible under all disruption scenarios. These approaches
mainly focus on absorption robustness.

Liebchen et al. (2009) recently introduced the con-
cept of recoverable robustness as a generic frame-
work for modeling robustness with a focus on
recoverability. In case of a disruption, they allow a
feasible solution to be modified by a recovery algo-
rithm. As a measure of robustness, the authors use
the maximum deviation of the recovered solutions from
the original solution, where the maximum is taken

over a set of disruption scenarios. The deviation is an
indication of the effort required to modify the nomi-
nal solution into a recovered solution. The approach
based on the maximum deviation relieves them from
the use of probabilities for the occurrences of the dif-
ferent disruption scenarios. In principle, the number
of disruption scenarios may be infinite. Liebchen et al.
(2009) also define the price of robustness as the rel-
ative increase in nominal costs due to the improved
recoverability.

Cicerone et al. (2007) consider the recoverable
robustness of several railway shunting problems.
They analyze the price of robustness for a few
concrete recovery algorithms and prove lower and
upper bounds. In Cicerone et al. (2009) also
timetabling problems are considered. Caprara et al.
(2008) propose an exact method for computing recov-
erable robust solutions by optimally buffering a
network for the train platforming problem. Other ref-
erences to recoverable robustness are Stiller (2008) and
Erera, Morales, and Savelsbergh (2009).

In the airline context, robustness has been a
research topic for quite some time. Relatively recent
work on robust airline-crew scheduling includes
Ehrgott and Ryan (2002) and Shebalov and Klabjan
(2006). These approaches describe measures to esti-
mate how well a crew schedule is likely to be able
to deal with flight delays, the first being related to
absorption capacity, the second to recoverability. To
that end, Shebalov and Klabjan (2006) introduce the
concept of move-up crews. Furthermore, Yen and Birge
(2006) propose a stochastic programming model for
airline crew scheduling, minimizing the sum of the
operational costs and the expected recovery costs. The
methods of these papers focus primarily on mini-
mizing passenger delays and are tailored to crew-
scheduling applications.

With respect to the existing literature, the main con-
tribution of the current paper consists of deriving
robust solutions for an important real-world railway
planning problem. In fact, we are able to practically
prove that our robust solutions obtained on a lim-
ited but representative set of scenarios are also robust
for a much larger set of scenarios. On one hand, our
approach is similar to two-stage stochastic optimiza-
tion and recoverable robustness, because we consider
the rescheduling phase as a second optimization stage.
On the other hand, in contrast with stochastic opti-
mization and recoverable robustness, we prefer not to
rely on any probability distribution nor to restrict our-
selves to a limited set of recovery algorithms.

2. Two-Stage Optimization and
Benders Decomposition

In this section we describe a two-stage optimiza-
tion model to improve the robustness of rolling stock
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circulations. The model is a large MILP. We use a
solution approach based on Benders decomposition to
solve the associated LP-relaxation. Moreover, the cuts
generated by the Benders decomposition are used for
generating robust integer solutions in a heuristic way.

Our objective is to find a solution to the rolling
stock planning problem that is robust under a finite
set of disruption scenarios. That is, we want to find a
feasible initial rolling stock circulation and at the same
time a feasible recovered solution for each disruption
scenario. Here we minimize the sum of the cost of the
initial rolling stock circulation problem and the max-
imum recovery cost for transforming this initial solu-
tion into a recovered solution, where the maximum is
taken over all disruption scenarios.

Given that the notions presented in this section
apply to a generic planning problem, we postpone all
details about our specific application to §3, mention-
ing this application here only as a concrete example.

2.1. Definitions
We consider a generic planning problem, shortly, the
nominal problem (NP), given in the following form:

NP = min8c4x5 � x ∈K90 (1)

Here x ∈�n is the vector of decision variables, K ⊆�n

is the feasible region, and c2 K →�+ is the cost func-
tion. In general, some components of the variable vec-
tor x are required to be integer valued, which is the
case for the nominal rolling stock circulation problem.

Moreover, there is a finite set è of disruption sce-
narios, where each disruption scenario � ∈ è has its
own feasible region K� . For example, a disruption sce-
nario may refer to the case of canceling some trains
due to infrastructure or rolling stock failures, thereby
requiring some kind of recovery action. Furthermore,
there is a recovery algorithm A. This recovery algo-
rithm takes as input a nominal feasible solution x ∈K
and a disruption scenario � ∈ è, and produces a
recovered solution x� = A4x1�5 ∈ K� that is feasible
for disruption scenario � . Finally, there are functions
ã� 2 K ×K� →�+ measuring the deviation ã� 4x1x� 5 of
a recovered solution x� for disruption scenario �
from a nominal solution x, and a monotone nonde-
creasing function f 2 �è

+
→ �+ penalizing the devi-

ation over all disruption scenarios. The aim is to
minimize the deviations from the nominal solution.
For a given nominal solution x, the deviations of the
recovered solutions x� from x are denoted by a vector
z= 4z�1

1 z�2
1 0 0 05 ∈�è

+
of auxiliary variables. All devi-

ations z�i
are nonnegative.

Then the two-stage optimization problem (TSOP) that
we consider in this paper is formulated as follows:

TSOP = min
{

c4x5+ f 4z5 � x ∈K1 x� =A4x1�5 ∈K�1

z� =ã� 4x1x� 5 ∀� ∈è
}

0 (2)

In this paper we choose f 4z5 = max�∈è z� . That is,
we penalize the maximum deviation in the objective
function. This is in line with the recoverable robust-
ness approach of Liebchen et al. (2009), and it relieves
us from the use of probabilities for the different dis-
ruption scenarios. Although this approach may seem
to be rather conservative, our computational results
show that it allows us to compute robust solutions
that are more easily recoverable than the nonrobust
solutions, and that do not have much higher nomi-
nal costs. A stochastic programming approach would
be to use a probability p� for each disruption sce-
nario � ∈è and to consider f 4z5=

∑

�∈è p�z� , thereby
penalizing the expected (or average) deviation.

2.2. Reformulation as an MILP
Our two-stage optimization model can be applied if
the following conditions hold:

• For the recovery costs f 4z5 we have f 4z5 =

max�∈è z� , i.e., the largest deviation from the nominal
solution is penalized in the objective function.

• For the nominal objective function c4x5 we have
c4x5 = cTx for a given c ∈ �n. Furthermore, the set K
of feasible solutions to the nominal problem can be
expressed as 8x � Ax ≥ b1xinteger9 for given A ∈�m×n

and b ∈ �m. Thus, the nominal problem can be
described as an MILP.

• For each disruption scenario � ∈ è, the set of
feasible recovered solutions K� can be expressed as
8x� � A�x� ≥ b�1x� integer9 for given A� ∈ �m�×n and
b� ∈�m� . Furthermore, the deviation z� =ã� 4x1x� 5 of
a recovered solution x� from a nominal solution x can
be expressed as a generic linear function of x and x� ,
as follows: z� = dT

�x + eT�x� + k� , where d�1 e� ∈ �n

and k� ∈ � are given coefficients that depend on the
specific problem. Thus, finding a recovered solution
with minimal deviation from a nominal solution can
be described as an MILP.

In our rolling stock application described in §3, we
show that these assumptions are satisfied indeed, and
we indicate how the required coefficients are actually
computed. For example, (27) defines the deviation z�
for this application. Note that (27) is defined in terms
of the parameters and the variables of the applica-
tion, so that the abstract variable z� is not mentioned
explicitly there.

Given the above assumptions on TSOP, the prob-
lem (2) can be formulated as in (3)–(9) below. We call
this model the robust model. Here � is an auxiliary
variable expressing the recovery cost for the worst-
case disruption scenario. We want to point out that
an arbitrary feasible nominal solution x with arbi-
trary feasible recovered solutions x� and a sufficiently
large � forms a feasible solution to (3)–(9).

min cTx+� (3)

s0t0 Ax ≥ b (4)
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x ≥ 01 integer (5)

�≥ 0 (6)

−dT
�x− eT�x� +�≥ k� ∀� ∈è1 (7)

A�x� ≥ b� ∀� ∈è1 (8)

x� ≥ 0 integer ∀� ∈è0 (9)

In the computational experiments carried out in this
paper, we will initially restrict our attention to the
case in which the integrality restrictions on x and x�
are not imposed at all. This yields a lower bound on
TSOP. Then, we propose a heuristic method called
Benders heuristic that uses the cuts generated by the
Benders decomposition (which is described in the
next section) to find integral solutions for the robust
model (3)–(9).

2.3. Benders Decomposition for Solving the
LP-Relaxation

For solving the LP-relaxation of (3)–(9) one can apply
various mathematical programming techniques.
In this paper we focus on Benders decomposition, a
cutting plane method that exploits the block-diagonal
structure of (3)–(9). This method is also known as the
L-shaped method (see Benders 1962; Geoffrion 1972).
It is an approach that is widely used for solving
such problems, for example, for solving stochastic
programming problems.

Briefly, the Benders decomposition approach solves
the (gradually extended) LP-relaxation of (3)–(6)
called the master problem. Note that the initial mas-
ter problem is equivalent to the LP-relaxation of the
nominal problem, because � = 0 yields the nominal
objective function. Based on the optimal solution of
the current master problem, the feasibility of the LP-
relaxations of the subproblems (7)–(9) is checked. The
procedure terminates if the LP-relaxations of the sub-
problems are feasible, in which case the current opti-
mal solution is optimal also for the LP-relaxation of
(3)–(9). In case of infeasibility, inequalities in terms of
x and � are derived and added to the master problem,
and the updated master problem is reoptimized.

2.3.1. Benders Heuristic. Here we describe our
Benders heuristic, which results in a heuristic integer
solution to the robust model (3)–(9). We take advan-
tage of the Benders cuts derived when solving the
LP-relaxation of (3)–(9), using these cuts to guide the
search method rather than dealing with the disrup-
tion scenarios explicitly.

More precisely, we first apply the Benders decom-
position method to solve the LP-relaxation of (3)–(9).
This yields the following Benders cuts:

Bx+ g�≥ h0 (10)

Next we solve the following MILP, in which the
Benders cuts (10) encode relevant information about
the considered disruption scenarios:

min cTx+� (11)

s0t0 Ax ≥ b (12)

x ≥ 01 integer (13)

�≥ 0 (14)

Bx+ g�≥ h0 (15)

Note that this MILP has only variables associated
with the nominal problem, which makes it much
smaller than (3)–(9). In our application, it is much
faster to solve this MILP (11)–(15) than the LP-
relaxation of (3)–(9) itself. Representing the scenar-
ios through inequalities involving only the nominal
variables is another major advantage of using
Benders decomposition, in addition to the smaller LP-
relaxation solution times.

Let 4x̄1 �̄5 be the optimal solution to (11)–(15). Then
x̄ is a feasible solution to the nominal problem (3)–(6),
but �̄ is merely an estimate (a lower bound) on the
actual recovery costs for x̄. Nevertheless, one can com-
pute a feasible recovered solution x̄� and the actual
recovery cost for each disruption scenario � ∈ è by
solving the following MILP:

x̄� = arg min8ã� 4x̄1 x� 5 2 x� ∈K� 90 (16)

Then, letting
�̂= max

�∈è
ã� 4x̄1 x̄� 5 1 (17)

the variable �̂ and the vectors x̄, x̄� form a feasible
solution to the TSOP (3)–(9). This solution is the out-
put of our Benders heuristic.

So, to summarise, our Benders heuristic consists of
three phases:

1. Apply Benders decomposition to solve the LP-
relaxation of (3)–(9) and hence derive the Benders
cuts (10);

2. Solve MILP (11)–(15) and get the estimated
recovery costs �̄ and the corresponding solution x̄;

3. For each disruption scenario � ∈ è, solve MILP
(16) and, finally, compute the actual recovery costs �̂
of solution x̄ using (17).

To compare the heuristic robust solution to the opti-
mal solution x∗ of the nominal problem, we compute
the maximal recovery cost �∗ of x∗ over all disruption
scenarios, similarly to (16) and (17):

x∗

� = arg min8ã� 4x
∗1x� 5 2 x� ∈K� 91 ∀� ∈è

�∗
= max

�∈è
ã� 4x

∗1x∗

� 5 0

The comparison of �̂ and �∗ indicates how much eas-
ier it is to perform recovery for the robust solution
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than for the optimal nominal solution. Note that if
the robust model (3)–(9) could be solved to optimality,
then obviously �̂≤ �∗. However, in general the model
(11)–(15) will only lead to a heuristic solution for the
robust model (3)–(9).

3. Application: Robust Rolling Stock
Planning

This section is devoted to the description of the spe-
cific real-world case study on which we focus our
attention.

3.1. The Nominal Problem
We consider the medium-term railway rolling stock
scheduling problem of NS (the main operator of pas-
senger trains in the Netherlands). It arises two–six
months before the actual railway operations and has
the task of assigning the available rolling stock to the
trips of a given timetable. In this section we give a
brief problem description. Further details about the
problem can be found in Fioole et al. (2006) and
in Maróti (2006). Moreover, for a literature survey
on rolling stock scheduling the reader is referred to
Caprara et al. (2007). We note that the purpose of the
present paper is not to improve the existing methods
for nominal rolling stock scheduling, but to show how
our two-stage optimization model applied on top of
an existing successful method for solving the nomi-
nal rolling stock scheduling problem can lead to more
robust solutions.

The rolling stock consists of train units. Each unit
has driver’s seats at both ends and an own engine so
that it can operate autonomously in both directions.
It is composed of a number of carriages and cannot be
split up in everyday operations. Units are available in
different types and can be combined with each other
to form compositions. This allows a fine adjustment of
the seat capacity to the passenger demand. For exam-
ple, if there are train types a and b, then aab and
aba are compositions consisting of three train units.
These compositions have the same capacity. However,
their shunting possibilities are different: from the first
composition, the unit of type b can be uncoupled eas-
ily, which is not the case for the second one. Thus,
the order of the train units in the trains is an impor-
tant issue.

The timetable of NS is quite dense, and the turning
times of the trains at the end points of a line are short,
often less than 20 minutes. The timetable is given in
the form of a number of trips, each one with a start
and end station, and with a start and end time. A trip
starts and ends at a station where the composition
of a train can be modified by a shunting operation.
Because of the short turning times, the possibilities to
modify a train composition are limited to coupling or
uncoupling of one or two units at the appropriate side
of the train. Each trip also has a successor trip: the units

that serve in a trip generally go over to the successor
trip, although a composition change may take place in
between a trip and its successor. Similarly, each trip
also has a predecessor trip. We note that the last trips
of the day have a dummy successor trip, whereas the
first trips of the day have a dummy predecessor trip.
Finally, the end-of-day rolling stock balances must be
such that by the end of the day the train units are at
the right stations for the next day’s operations.

The objective of the nominal problem is threefold.
Service quality is measured by seat shortage kilome-
ters. It is computed for each trip by comparing the
assigned seat capacity to the a priori given antici-
pated number of passengers; by multiplying the antic-
ipated number of unseated passengers by the length
of the trip; and, finally, by summing these values over
all trips. Efficiency is expressed by the sum over all
units of the kilometers traveled, which accounts for
the operating costs due to electricity or fuel consump-
tion and maintenance. Robustness is taken into account
by counting the number of composition changes.
Indeed, coupling or uncoupling of units causes addi-
tional traffic through the railway nodes, and thereby
may lead to delay propagation if some passing trains
are late.

We note again that the nominal problem is solved
several months before the operations. This leaves
enough time to plan the detailed shunting operations
at the railway nodes. In particular, shunting drivers
are scheduled to carry out the coupling and uncou-
pling operations.

3.1.1. Model Description. The model for solving
the nominal rolling stock circulation problem is very
similar to the model described by Fioole et al. (2006).
It is basically an integer multicommodity flow model
with several additional constraints, which are needed
to describe the limited shunting possibilities in the
stations. The unique simplification used here with
respect to Fioole et al. (2006) concerns the fact that we
do not consider the reallocation time that one has to
wait before reusing a train unit that was uncoupled.
Given that the two models are almost identical, we
use here an almost identical notation (by only chang-
ing the variable names).

To formulate the nominal rolling stock circulation
problem as an MILP, the set of trips is denoted by T ,
the set of train unit types by M , the set of all possi-
ble compositions by P , and the set of stations by S.
Let kp1m denote the number of train units of type m
in composition p. The time horizon covered by the
model is typically one day. Thus, the set T contains
all trips to be carried out in a single day. Each trip
t ∈ T has a departure station d4t5, an arrival station
a4t5, and a successor trip �4t5. For each train unit
type m ∈M , the parameter nm denotes the number
of available train units of type m. Furthermore, we
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introduce the set P s as the set of composition changes
4p → p′5 from composition p to composition p′ involv-
ing a shunting operation. That is, at least one train
unit is coupled or uncoupled to/from composition p
to get composition p′.

The main binary decision variables are the variables
ut1 p, whose value is 1 if composition p is assigned
to trip t. Moreover, we have binary variables vt1 p1 p′

whose value is 1 if composition p is assigned to
trip t and composition p′ is assigned to the succes-
sor trip �4t5 of trip t. These v-variables are only
defined for those triples 4t1 p1 p′5 where the composi-
tion change from composition p to composition p′ is
allowed between trips t and �4t5. Thus, the local con-
straints on the composition changes are represented
by these v-variables.

The stations are modeled as inventories of train
units. The inventory of a station at a certain time
instant consists of all train units that are temporar-
ily located at that station because they have not been
assigned to any trip at that moment. Train units cou-
pled to a train are subtracted from the inventory, and
train units uncoupled from a train are added to the
inventory. The start-of-day and end-of-day invento-
ries of station s of train units of type m are repre-
sented by the variables y0

s1m and y�
s1m. Whereas the

former represent a decision to be taken, the latter
are a linear function of the other variables and are
introduced only for convenience because the recov-
ery cost takes into account the discrepancies between
end-of-day inventories in the nominal and disrupted
scenarios.

The parameter �t′1 p1p′1 s1m measures the effect on the
end-of-day inventory of train unit type m at station
s as a result of a shunting operation after trip t′ that
transforms composition p on trip t′ into composition
p′ on trip �4t′5:

�t′1 p1p′1 s1m =











kp1m − kp′1m if station s is the arrival
station of trip t′1

0 otherwise0

Similarly, the parameters �t1 t′1 p1p′1m indicate how
the inventory of train unit type m at the departure
station of trip t right after the departure time of trip t
increases or decreases as a result of an earlier shunt-
ing operation that transforms composition p on trip t′

into composition p′ on trip �4t′5:

�t1 t′1 p1p′1m

=































kp1m − kp′1m if the arrival station of trip t′ is the
departure station of trip t, and if
trip t′ arrives earlier at this station
than the departure time of trip t,

0 otherwise0

The objective function coefficients cct1 p describe
aspects such as seat shortages and carriage kilome-
ters; the objective function coefficients cst1 p1 p′ describe
the complexity and risk of the shunting operations.
Then the MILP formulation that we consider here is
the following.

min
∑

t∈T

∑

p∈P

cct1 p ·ut1 p +
∑

t∈T

∑

4p→p′5∈P s

cst1 p1 p′ · vt1 p1 p′ (18)

s0t0
∑

p∈P

ut1 p = 1 ∀ t ∈ T 1 (19)

ut1 p =
∑

p′∈P

vt1 p1 p′ ∀ t ∈ T 1 p ∈ P1 (20)

u�4t51 p′ =
∑

p∈P

vt1 p1 p′ ∀ t ∈ T 1 p′
∈ P1 (21)

y�

s1m = y0
s1m +

∑

t′∈T

∑

4p→p′5∈P s

�t′1 p1p′1 s1m · vt′1 p1p′

∀ s ∈ S1 m ∈M1 (22)

y0
d4t51m +

∑

t′∈T

∑

4p→p′5∈P s

�t1 t′1 p1p′1m · vt′1 p1p′ ≥ 0

∀ t ∈ T 1 m ∈M1 (23)
∑

s∈S

y0
s1m = nm ∀m ∈M1 (24)

ut1 p1vt1 p1 p′ binary ∀ t ∈ T 1 p ∈ P1 p′
∈ P1 (25)

y0
s1m1y

�

s1m ≥ 01 integer ∀ s ∈ S1 m ∈M0 (26)

The objective function (18) takes into account the
assignment of compositions to trips and the shunting
operations between successive trips. This objective
function can incorporate a wide variety of objec-
tive criteria related to service quality, efficiency, and
robustness. Constraints (19) state that each trip must
be assigned exactly one composition. Constraints (20)
state that if composition p is assigned to trip t, then
the composition p′ that is assigned to the succes-
sor trip �4t5 is selected from one of the composi-
tions p′ that can be reached from composition p via
an allowed shunting operation. Similarly, constraints
(21) link the compositions on a trip to compositions
on its predecessor trip. Constraints (22) describe that,
by the end of the day, the final inventory y�

s1m of
train units of type m at station s equals the initial
inventory y0

s1m plus the increases and decreases of
the inventory depending on the local shunting opera-
tions, as was explained in the definition of the param-
eters �t′1 p1p′1 s1m. In a very similar way, constraints (23)
consider the increases and decreases of the inventory
of train units of type m at station d4t5 right after the
departure time of any trip t, imposing that this inven-
tory is always nonnegative. Finally, constraints (24)
specify that all available rolling stock is in the inven-
tory of one of the stations by the start of the day.
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Experience has shown that for practically mean-
ingful objective coefficients, the LP-relaxation of the
model (18)–(26) is very tight, the associated lower
bound being always within a few percent of the MILP
optimum. As a consequence, for most instances of NS
the MILP model (18)–(26) can be solved to optimality
within a reasonable computing time with CPLEX (see
Fioole et al. 2006).

3.2. The Disruption Scenarios and
the Associated Deviations

In our robustness framework, the solutions of the
nominal problem are to be operated subject to a num-
ber of disruption scenarios. Each disruption scenario
is obtained by assuming that a certain part of the
network is blocked for a certain time interval of sev-
eral hours. All trips that interfere directly with the
infrastructure blockage are canceled. Such disruptions
are quite common in practice; these are the ones that
require significant resource rescheduling.

In the Netherlands, in case of a disruption, the
timetabling and resource-rescheduling decisions are
taken consecutively. The modification of the timetable
is determined first. Thereafter, the rolling stock cir-
culation is modified so that it again fits with the
timetable. The crew duties are rescheduled in a third
step. Therefore, the adjusted timetable that takes care
of the disruption is to be considered as input when
rescheduling the resources.

We assume that a disruption becomes known at the
start of the blockage. Furthermore, we also assume
that the timetable has been modified accordingly. The
task is then to reschedule the rolling stock from that
point on until the end of the day. The solution has to
fulfill the same requirements as the nominal problem,
the only additional option being the cancellation of
trips if there is not enough rolling stock to cover all
trips. However, canceling additional trips due to lack
of rolling stock is highly undesirable.

In this research we also assume that the exact dura-
tion of the disruption is known at its start. Admit-
tedly, on one hand this assumption is rather optimistic
for practical purposes. On the other hand, it simplifies
the mathematical model, and still enables us to gain
insight into the recovery capacity of the rolling stock
circulation.

The three main criteria in rescheduling are the fol-
lowing (in decreasing order of importance): (i) min-
imize the number of canceled trips; (ii) minimize
the number of newly introduced shunting operations
(units that are coupled or uncoupled in the recovered
plan, and not in the original one); and (iii) minimize
the deviations from the planned end-of-day rolling
stock balances. The first criterion limits the passenger
inconvenience. The second criterion aims at keeping
the schedule of the shunting drivers intact. The third

criterion tries to restrict the consequences of the dis-
ruption to a single day.

3.2.1. Extended Model Description. Although
the model (18)–(26) was originally developed for solv-
ing the nominal problem, it can be adjusted for
solving the recovery problem as well. That is, the
feasibility of a recovered solution and the associated
recovery costs can be computed as a variant of the
nominal model. We note that the real-time reschedul-
ing framework of Nielsen, Kroon, and Maróti (2009)
is based on a similar extension to the basic model of
Fioole et al. (2006).

Below, we describe how the nominal model
(18)–(26) must be extended to represent the complete
robust model. Note that a complete description of the
robust model is also given in the appendix of this
paper.

In addition to the constraints (19)–(26) for the nom-
inal part of the model (nom), these constraints (19)–
(26) are to be replicated for each scenario � with vari-
ables u�

t1p, v
�
t1p1p′ , and y�1�

s1m . Thus, for example, if u�
t1p =

1, then rolling stock composition p is assigned to trip t
in the recovered solution for scenario � . For the sce-
narios we also allow the assignment of the empty
composition �, where u�

t1�
= 1 means that trip t is

canceled in scenario � due to lack of rolling stock.
Next, one has to impose that in each scenario the

rolling stock circulation cannot be changed until the
start of the disruption. To this end, the set of trips for
which the assigned composition cannot be changed in
scenario � is called T̄ � , and we add the constraints
u�
t1p = unom

t1 p for each trip t ∈ T̄ � and composition p ∈ P
(please refer again to the appendix of this paper).

Finally, the model is extended to express the recov-
ery costs. Altogether, for each disruption scenario � ,
the following constraints must be satisfied:

�≥ c1

∑

t∈T

u�
t1�

+ c2

∑

t∈T

r�t + c3

∑

s∈S

∑

m∈M

q�s1m (27)

q�s1m ≥ y�1nom
s1m − y�1�

s1m ∀ s ∈ S1 m ∈M1 (28)

q�s1m ≥ y�1�
s1m − y�1nom

s1m ∀ s ∈ S1 m ∈M1 (29)

wnom
t =

∑

4p→p′5∈P s

vnom
t1 p1 p′ ∀ t ∈ T 1 (30)

w�
t =

∑

4p→p′5∈P s

v�
t1p1p′ ∀ t ∈ T 1 (31)

r�t ≥w�
t −wnom

t ∀ t ∈ T 1 (32)

y�1�
s1m 1 q�s1m integer ≥ 0 ∀ s ∈ S1 m ∈M1 (33)

r�t 1w
�
t binary ∀ t ∈ T 0 (34)

The auxiliary variables q�s1m measure the devia-
tion of the realized end-of-day rolling stock balances
for scenario � from the planned end-of-day rolling
stock balances in the nominal solution (constraints
(28)–(29)). The value of the auxiliary variable wnom

t
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is 1 if the nominal solution has a composition change
(i.e., coupling or uncoupling of units) between trips t
and �4t5, and it is 0 otherwise. A similar role is played
by the variable w�

t in the recovered solution for sce-
nario � . Thus, the value of the auxiliary variable r�t
equals 1 if the recovered solution for scenario � has
a composition change between trips t and �4t5, and
the nominal solution does not, and it is 0 otherwise
(constraints (30)–(32)).

The recovery costs (27) include the variables q�s1m
and r�t , as well as all variables u�

t1�
that assign an

empty composition to trip t in scenario � , i.e., trip t
has been canceled due to lack of rolling stock. The
objective function of the robust model consists of (18)
summed to �.

Note that with the given definitions, each disrup-
tion scenario has at least one feasible recovered solu-
tion. Indeed, one may cancel all trips from the start
of the disruption until the end of the day. Of course,
this solution has very high costs, so hopefully cheaper
recovered solutions also exist.

4. Computational Results
We implemented the model (3)–(9) for the case of
the rolling stock (re-)scheduling problem by using the
models described in §3. As indicated earlier, we will
refer to this model as the robust model.

In our application, we studied the so-called 3,000
line of NS from Den Helder to Nijmegen; see Figure 2.
This is an intercity line with a closed rolling stock

Hdr
Ana
Sgn

Amr

Asd

Ut Ah

Nm

Figure 2 The 3,000 line Connecting Den Helder (Hdr) to Nijmegen
(Nm) via Ana Paulowna (Ana), Schagen (Sgn), Alkmaar
(Amr), Amsterdam (Asd), Utrecht (Ut), and Arnhem (Ah)

circulation. Because all trains in our instance serve
only this intercity line, all trains have the same prior-
ity. The instance contains about 400 trips connecting
eight stations; that is, the line is divided into seven
subtrajectories.

The 3,000 line is served by two types of train units
with 11 and 24 units, respectively; restrictions on the
train lengths allow eight different compositions for
each trip. Denoting the two rolling stock types by a
and b, the feasible compositions are �, a, b, aa, ab, ba,
bb, and aaa. Composition changes (i.e., coupling or
uncoupling) are possible at the terminals Den Helder
(Hdr) and Nijmegen (Nm) as well as at the under-
way stations Alkmaar (Amr) and Arnhem (Ah). The
3,000 line is one of the medium-sized rolling stock
instances of NS.

All computations have been carried out on a PC
with a Pentium IV 3.2 GHz processor and with
2 GB memory, solving the LPs and MILPs by ILOG
CPLEX 10.0. Our computer codes are written in the
C language.

The nominal problem is based on the actual one-
day timetable of NS. The disruption scenarios have
been generated using a program of Nielsen (2008),
which also generates the decisions about train can-
cellations, including the possible changes in the
successors of the trips during the disruption. In each
disruption, one of the seven subtrajectories of the line
is blocked for a certain time period (from one to four
hours), and the timetable is modified accordingly.

As mentioned earlier, Figure 1 shows an example
of a disrupted timetable in a time-space diagram.
A disruption in this example occurs between stations
Alkmaar (Amr) and Amsterdam (Asd) from 17:30
until 19:30. Some trips of the original schedule are
thus canceled and new successors are defined for
some other trips.

Our solution method turns out to be able to deal
with a limited number of disruption scenarios. Specif-
ically, for the case study considered and the PC we
used, the solution of the LP-relaxation by Benders
decomposition runs out of memory for more than
28 scenarios. Accordingly, we selected a set of 28 rep-
resentative disruption scenarios to conduct our tests,
evenly spread throughout the day and among the
subtrajectories. Specifically, we generated a large set
of scenarios and then selected these 28 by guarantee-
ing that (i) for each subtrajectory and time instant,
there is a scenario in which the subtrajectory is
blocked in that instant, (ii) there is a wide variability
of the block durations, ranging from one to six hours.
The selection of such a restricted number of scenarios
is unavoidably a rough choice. To testify a posteriori
the representativeness of the selected scenarios, we
will also report on the quality of the solutions found
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Table 1 Coefficients for the Nominal Objective
Function as Well as for the Recovery Costs

Criteria in the nominal problem
Seat shortage km 100
Traveled km 9
Composition change 5

Criteria for recovery
Cancelation 110001000
Inventory deviation 201000
New shunting 101000

with respect to a much larger (two orders of magni-
tude) number of disruption scenarios.

As for the nominal objective functions and for the
recovery costs, we considered the objective coeffi-
cients given in Table 1. The reason for this choice is
to focus on service quality by heavily penalizing seat
shortages and additional trip cancelations. Note that
a number of trips must be canceled anyhow due to
the disruption of the railway system. The objective
function aims at reducing the number of additionally
canceled trips due to lack of rolling stock at the right
time and place. We want to emphasize that although
these cost coefficients are realistic for this particular
scheduling problem, they might not perfectly reflect
the decision makers’ preferences. However, finding
the best possible balance between the objective crite-
ria goes beyond the purpose of this paper.

4.1. Solving the LPs
As already discussed, the goal of our first set of
computational tests is to show how the suggested
optimization framework can be effective to compute
lower bounds on the optimal TSOP value.

We implemented two solution methods: (i) solving
the LP-relaxation of (3)–(9) directly as a single LP;
and (ii) applying a canonical Benders decomposition
approach as described in §2.3.

The nonrobust nominal model (3)–(6) for our case
study has about 14,600 variables, 8,400 constraints and
320,000 nonzeros in the coefficient matrix. The solu-
tion approaches have been tested with 1–28 disrup-
tion scenarios from the representative set discussed
above, implying that the LPs solved by method (i) fea-
ture about 44,000–440,000 variables, 27,000–305,000
constraints, and 950,000–9,400,000 nonzeros.

The computational results with the two solution
approaches are summarized in Table 2. In column No.
of scenarios we indicate the number of disruption sce-
narios considered (for example, “5” means that we
are dealing with the master problem and the first five
disruption scenarios). Note that the case “0” corre-
sponds to the nonrobust nominal model. Then we
present the value of the LP-relaxation obtained with
the two approaches and the corresponding computa-
tion time (expressed in seconds). The column Nominal

objective gives the value of (18) (i.e., the nominal value
of the corresponding robust solution), and the column
Recovery cost the value of �, equal to the maximum
right-hand side of (27) over all considered scenarios.
The column Robust objective is the sum of the nominal
objective and the recovery costs �.

It turns out that when dealing with a large num-
ber of disruption scenarios, the huge LPs in method
(i) require a rapidly increasing computation time.
The computation time of the Benders decomposition
approach in method (ii), on the other hand, increases
in a much slower way with the number of disruption
scenarios. The presented results prove that, at least
for our case study, the LP relaxation can be solved
within reasonable time for the considered 28 disrup-
tion scenarios.

The lower bounds obtained with the solution of
the LP-relaxation of the problem are useful to get
an idea of the increase in the costs when taking
into account the disruption scenarios. In particular,
because the objective value of the LP-relaxation of the
nominal problem (with zero disruption scenarios) is
7371198 and the robust objective of the LP-relaxation
is 7811296 when taking into account 28 disruption
scenarios, we have an increase of up to 6% in the
total costs of the solution. The 6% increase is almost
entirely due to the recovery costs, whereas the nomi-
nal objective value changes by less than 0.6%, namely,
from 7371198 to 7411296.

4.2. Solving the MILPs
Having dealt with the LP-relaxations, we tried to
compute integer solutions to the robust rolling stock
problem by solving the MILP (3)–(9). In Table 3 we
show a first attempt of computing integer solutions
using CPLEX directly. However, the computation time
exceeded one day if more than 10 disruption sce-
narios were taken into account. Similar to the linear
relaxation case, for the cases that could be solved by
CPLEX, the robust solution has at most 0.5% higher
nominal costs than the optimal nominal solution.
Moreover, the gaps with respect to the LP lower-
bound value in Table 2 are tiny.

We also tried to solve the robust model (3)–(9) by
relaxing the integrality requirement on the x� vari-
ables. This leads to the same solutions as with integral
x� variables, but it does not help to decrease the com-
putation times significantly.

To deal with a larger number of disruption sce-
narios, we applied the Benders heuristic described
in §2.3 by solving the MILP model (11)–(15) by
CPLEX and then computing the actual recovery costs
using (16)–(17). The computational results are given
in Table 4. Here the column (11)–(15) objective is the
objective value (11) of the model (11)–(15), subdivided
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Table 2 Comparison Between the Benders Decomposition Approach and Direct Solution of the LP-Relaxation
by CPLEX

Benders CPLEX

No. of Nominal Recovery Robust Number CPU Robust CPU
scenarios objective cost objective of cuts time objective time

0 7371198 0 7371198 — 12 7371198 12
1 7391611 0 7391611 22 124 7391611 40
2 7391611 0 7391611 22 411 7391611 108
3 7401032 0 7401032 88 11299 7401032 366
4 7401684 401000 7801684 177 21230 7801684 247
5 7401684 401000 7801684 186 21174 7801684 944
6 7401684 401000 7801684 233 31120 7801684 11266
7 7401684 401000 7801684 194 21403 7801684 11767
8 7401684 401000 7801684 233 21768 7801684 21090
9 7401684 401000 7801684 261 21633 7801684 21351
10 7401919 401000 7801919 373 41044 7801919 21497
11 7401919 401000 7801919 286 21897 7801919 31650
12 7411090 401000 7811090 363 41158 7811090 41358
13 7411090 401000 7811090 371 41023 7811090 41721
14 7411090 401000 7811090 396 31894 7811090 41918
15 7411090 401000 7811090 420 31447 7811090 41865
16 7411090 401000 7811090 412 41066 7811090 71458
17 7411090 401000 7811090 472 51453 7811090 71710
18 7411090 401000 7811090 463 51629 7811090 91928
19 7411090 401000 7811090 478 61811 7811090 91896
20 7411090 401000 7811090 511 61924 7811090 131100
21 7411090 401000 7811090 568 71237 7811090 171860
22 7411090 401000 7811090 515 71591 7811090 161469
23 7411090 401000 7811090 531 71248 7811090 171964
24 7411090 401000 7811090 553 81456 7811090 201339
25 7411090 401000 7811090 537 71618 7811090 241753
26 7411090 401000 7811090 551 81733 7811090 301350
27 7411090 401000 7811090 580 81664 7811090 331919
28 7411296 401000 7811296 642 121408 7811296 321659

Note. The recovery costs in the CPLEX computations are equal to those in the Benders decomposition approach.

into its two components, nominal objective cTx̄ and esti-
mated rec. cost �̄, where (x̄1 �̄5 is the optimal solu-
tion to (11)–(15). In addition, the column Actual rec.
cost shows the actual recovery costs �̂ as defined in
(16)–(17). The column B-Heur objective gives the sum
of the nominal objective value cTx̄ and the actual
recovery costs �̂. The column B-Heur CPU represents
the computing time for finding the solution to the

Table 3 Solving the Robust Optimization Problem (3)–(9) Directly as
an MILP by CPLEX

No. of CPU Nominal Recovery Robust LP
scenarios time objective cost objective gap %

1 9 7391611 0 7391611 0000
2 54 7391611 0 7391611 0000
3 11659 7401791 0 7401791 0010
4 11059 7401840 401000 7801840 0002
5 11216 7401840 401000 7801840 0002
6 11547 7401840 401000 7801840 0002
7 171116 7401840 401000 7801840 0002
8 21775 7401840 401000 7801840 0002
9 161863 7401840 401000 7801840 0002
10 651090 7421070 401000 7821070 0015

Benders heuristic once the Benders cuts have been
generated (i.e., the time to solve MILP (11)–(15) and
(16)–(17)). It turns out that the solution times for the
Benders heuristic are within two minutes for up to
28 disruption scenarios. Finally, the LP gap is given
in the column LP gap %. This column gives the rel-
ative difference between the objective function of the
Benders heuristic and the objective function of the LP-
relaxation of the robust model (3)–(9).

As one might expect, the MILP (11)–(15) underes-
timated the actual recovery costs; the difference is
rather large in some cases. In most cases, however, the
robust solutions are of very good quality, as can be
verified by comparing the objective values in Tables 3
and 4. The robust solutions are in fact optimal in the
case of 114151617, and 8 disruption scenarios, and
very close to optimal in the case of 219, and 10 disrup-
tion scenarios. For more than 10 disruption scenarios,
we cannot compare with the optimal solution value,
but only with the lower bound value in Table 2.

Note that there are two cases, namely, for 18 and
21 scenarios, in which the recovery cost is fairly bad,
due to the approximation in representing these costs
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Table 4 Solutions Obtained by the Benders Heuristic

No. of (11)–(15) Nominal Estimated Actual B-Heur B-Heur LP
scenarios objective objective rec. cost rec. cost objective CPU gap %

0 7371490 7371490 0 0 7371490 1050 0004
1 7391611 7391611 0 0 7391611 1013 0000
2 7401385 7401385 0 0 7401385 7073 0010
3 7801840 7401840 401000 401000 7801840 5088 5023
4 7801840 7401840 401000 401000 7801840 4083 0002
5 7801840 7401840 401000 401000 7801840 6014 0002
6 7801840 7401840 401000 401000 7801840 5068 0002
7 7801840 7401840 401000 401000 7801840 6053 0002
8 7801840 7401840 401000 401000 7801840 7000 0002
9 7821042 7421042 401000 501000 7921042 38008 1043
10 7821042 7421042 401000 501000 7921042 72065 1040
11 7821042 7421042 401000 601000 8021042 42063 2063
12 7811614 7411614 401000 501000 7911614 12079 1033
13 7821224 7421224 401000 701000 8121224 34026 3083
14 7821224 7421224 401000 701000 8121224 29055 3083
15 7811614 7411614 401000 501000 7911614 19045 1033
16 7811614 7411614 401000 501000 7911614 25075 1033
17 7821224 7421224 401000 501000 7921224 43078 1041
18 7821224 7421224 401000 210501000 217921224 63029 72003
19 7821252 7421252 401000 701000 8121252 108039 3084
20 7821224 7421224 401000 701000 8121224 69001 3083
21 7821252 7421252 401000 110101000 117521252 63062 55042
22 7821224 7421224 401000 701000 8121224 67041 3083
23 7821224 7421224 401000 701000 8121224 80094 3083
24 7821224 7421224 401000 501000 7921224 79060 1041
25 7821252 7421252 401000 701000 8121252 64087 3084
26 7811614 7411614 401000 501000 7911614 35051 1033
27 7821252 7421252 401000 701000 8121252 92090 3084
28 7821414 7421414 401000 701000 8121414 65031 3083

by the Benders constraints. These two solutions are
clearly dominated, e.g., by the solution for 26 sce-
narios. This also shows that solutions with the same
nominal objective value are not the same, otherwise,
e.g., the recovery cost for 20 scenarios would be at
least as large as the one for 18 scenarios. Not counting
the two “unlucky” instances, for 10 or more disrup-
tion scenarios the gap between the robust objective
value of the heuristic MILP solution in Table 4 and
the LP solution value in Table 2 is 2.7% on average,
and 5.2% at most for the case with 28 scenarios.

Let us now consider the heuristic integer solution
for 28 disruption scenarios; in what follows, it is
referred to as the robust solution. Then, the increase in
the nominal objective value in going from 0 to 28 dis-
ruption scenarios is only 0.7%, namely, from 7371490
to 7421414.

5. Evaluation of the Solution
The results of the heuristic two-stage optimization
algorithm reported in §4 are based on 28 disruption
scenarios. It is thus a natural question whether the
robust solution (i.e., the solution when heuristically
optimizing over 28 disruption scenarios) admits sig-
nificantly lower recovery costs than the optimal nom-
inal solution (i.e., the optimal solution to the nominal

problem) also on much larger sets of disruption sce-
narios. Clearly, it depends on how representative the
28 disruption scenarios are for the larger sets of dis-
ruption scenarios.

To answer this question, we implemented a frame-
work for evaluating the robustness of an arbitrary
rolling stock circulation: we randomly generated 3,500
disruption scenarios, and we analyzed how well the
involved rolling stock circulation could handle these.
The location of the disruption is uniformly distributed
along the 3,000 line; the start time of the disruption is
uniformly distributed on the time interval from 8:00
to 20:00; finally, the duration of the disruption is uni-
formly distributed between one hour and four hours.
Each disruption scenario leads to a modified timetable
as described in §4 and as shown in Figure 1. Then
the robustness of the rolling stock circulation is eval-
uated by computing the recovery costs of each of the
3,500 disruption scenarios. Note that this does not
pose any computational difficulty; the recovery costs
of each disruption scenario can be determined within
2–3 seconds because now the disruption scenarios are
independent of each other.

We applied the evaluation sketched above for the
optimal nominal solution as well as for the robust
solution that was determined in §4.2. In what follows,
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Figure 3 Distribution of the Number of Additionally Canceled Trips When Evaluating the Optimal Nominal Solution (Black Columns) and the Robust
Solution (Gray Columns) on 3,500 Disruption Scenarios

we split the recovery costs into two terms: (i) the trip
cancelation costs for additionally canceled trips due to
lack of rolling stock, and (ii) the costs for new shunt-
ing operations and for end-of-day off-balances of the
rolling stock inventories at the stations. Recall that
the first term is a sum of penalties of 1,000,000 each,
whereas the second term is a sum of values 10,000
and 20,000.

5.1. Additionally Canceled Trips
First, we consider the number of additionally
canceled trips due to lack of rolling stock. The eval-
uation revealed that the recovery requires an aver-
age of about 1.5 additionally canceled trips (ranging
from 0 to 13) for the optimal nominal solution, and an
average of 0.039 additionally canceled trips (ranging
from 0 to 1) for the robust solution. The distribution
of the number of canceled trips is shown in Figure 3.
The details of the results are given in Table A.1 in the
appendix of this paper. In fact, for the robust solution,

0 200,000 400,000 600,000
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Recovery cost

Figure 4 Recovery Cost of New Shunting Operations and of End-of-Day Off-Balances When Evaluating the Optimal Nominal Solution
(Black Columns) and the Robust Solution (Gray Columns) on 3,500 Disruption Scenarios

Note. Each column represents a value range of 20,000.

96% of the disruption scenarios can be solved without
any additionally canceled trip.

5.2. New Shunting Operations and Off-Balances
Second, we consider the recovery costs for new shunt-
ing operations and for end-of-day off-balances of the
rolling stock inventories at the stations. The average
contribution of these terms is about 269,000 (ranging
from 0 to 670,000) for the optimal nominal solution,
and about 29,000 (ranging from 0 to 180,000) for the
robust solution. The distribution of these values is
shown in Figure 4. The details of the results are shown
in Table A.2 in the appendix.

We can conclude that the robust solution allows
much lower recovery costs also in the case of a much
larger number of disruption scenarios than the 28 dis-
ruption scenarios that were used for its generation.
This also gives empirical evidence that the initially
selected 28 disruption scenarios are indeed represen-
tative of the vast majority of the potential disruption
scenarios.
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5.3. Structure of the Robust Solution
It is interesting to compare the structures of the robust
and of the optimal nominal solutions. First, the robust
solution tries to balance the rolling stock between the
stations. This is particularly true for the reserve units:
the units whose daily duty does not contain any trip.
The optimal nominal solution happens to assign all
these reserve units at the Southern end of the 3,000
line. The worst-case recovery costs become particu-
larly high: the disruption cuts the 3,000 line into two
parts in such a way that the Northern part gets an
insufficient number of units, which may lead to the
inevitable cancellation of up to 13 trips. The robust
solution avoids this trap by keeping reserve units at
several locations along the line.

The better allocation of the reserve units does not
explain the improvement in new shunting operations
and in inventory deviations. In fact, we evaluated
another rolling stock circulation, called the half-robust
solution, which is obtained from the optimal nomi-
nal solution by reallocating the reserve units in the
same way as in the robust solution. The evaluation
reveals that the half-robust solution almost perfectly
coincides with the gray columns (i.e., with the robust
solution) in Figure 3, and with the black columns
(i.e., with the optimal nominal solution) in Figure 4.
This indicates that the improvement that is clearly
visible in Figure 4 arises from a better composition
assignment and from a better shunting pattern.

When performing recovery for any feasible solu-
tion, the recovery costs include penalties for intro-
ducing new shunting operations, but no penalties for
canceling a planned shunting operation. Therefore,
one could expect that the robust solution has many
more shunting operations than the optimal nomi-
nal solution: more planned shunting operations give
more flexibility in the recovery. Somewhat surpris-
ingly, the robust solution has only two more shunting
operations than the optimal nominal solution. Thus,
the spatial and temporal distribution of the shunt-
ing operations is what helps, not their sheer number.
In fact, the robust solution tends to place the shunting
operations later in the day, which is certainly help-
ful to fix the end-of-day balances after a disruption.
Nevertheless, it is far from straightforward—even for
expert practitioners—to judge how easy or difficult
the recovery for a given schedule is.

One may wonder how good or bad the recovery
costs for the robust solution would be in practice.
Experts of NS have the opinion that these recovery
costs would be an excellent achievement in real-life
railway disruption management. One should keep in
mind, however, that our model does not take each
aspect of the railway process into account. Even more
importantly, this paper has the strong assumption that
the duration of the disruption is a priori known; that

is, we do not deal with the uncertainty of future
events. This may be difficult to handle in the robust
optimization model. However, it will be possible to
handle this in the evaluation model. This is a subject
for further research.

6. Conclusions
In this paper we presented a two-stage optimization
model to improve the recoverability of the rolling
stock circulations of Netherlands Railways, the main
operator of passenger trains in the Netherlands. This
model is used to design a rolling stock circulation
that can be recovered more easily than the nominal
solution in case of a disruption. The model that we
describe gives a practical implementation of the con-
cept of recoverable robustness, as defined by Liebchen
et al. (2009).

To generate a robust solution to the LP-relaxation
of the large involved MILP model, we used a Ben-
ders decomposition approach. The latter turns out to
be an effective approach to handle this type of large
models. Based on the obtained Benders cuts, we also
heuristically generated a robust rolling stock circula-
tion for our case study. This approach is called the
Benders heuristic.

The computational results indicate that, for the con-
sidered case study, the problem is tractable with up to
28 disruption scenarios in the two-stage optimization
model. An evaluation based on 3,500 randomly gen-
erated disruptions shows that for the robust rolling
stock circulation fewer trains have to be canceled than
for the optimal nominal solution, and also that the
other recovery costs are significantly lower. More-
over, the nominal costs of the robust solution are
only slightly higher than those of the optimal nominal
solution.
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Appendix

Complete Model for the Two-Stage Optimization
Problem
In the following, we give the complete model for the two-
stage optimization problem model (3)–(9) for the specific
case of the rolling stock (re-)scheduling problem. We use
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the notation of §3. The index � ∈ è∪ 8nom9 is the scenario
index, where � = nom is the nominal case.

min
∑

t∈T

∑

p∈P

cct1 p ·unom
t1 p +

∑

t∈T

∑

4p→p′5∈P s

cst1 p1 p′ · vnom
t1 p1 p′ +�

∑

p∈P

u�
t1p = 1 ∀ t ∈ T 1 � ∈è∪ 8nom91

u�
t1p = unom

t1 p ∀ t ∈ T̄ �1 p ∈ P1 � ∈è1

u�
t1p =

∑

p′∈P

v�
t1p1p′ ∀ t ∈ T 1 p ∈ P1 � ∈è∪ 8nom91

u�
�4t51 p′ =

∑

p∈P

v�
t1p1p′ ∀ t ∈ T 1 p′

∈ P1 � ∈è∪ 8nom91

y�1�
s1m = y0

s1m +
∑

t′∈T

∑

4p→p′5∈P s

�t′1 p1p′1 s1m · v�
t′1 p1p′

∀ s ∈ S1 m ∈M1 � ∈è∪ 8nom91

y0
d4t51m +

∑

t′∈T

∑

4p→p′5∈P s

�t1 t′1 p1p′1m · v�
t′1 p1p′ ≥ 0

∀ t ∈ T 1 m ∈M1 � ∈è∪ 8nom91
∑

s∈S

y0
s1m = nm ∀m ∈M1

�≥ c1

∑

t∈T

u�
t1� + c2

∑

t∈T

r�t + c3

∑

s∈S

∑

m∈M

q�s1m ∀� ∈è

q�s1m ≥ y�1nom
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s1m ∀ s ∈ S1m ∈M1 � ∈è1
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s1m ∀ s ∈ S1m ∈M1 � ∈è1

w�
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∑

4p→p′5∈P s

v�
t1p1p′ ∀ t ∈ T 1 � ∈è∪ 8nom91

r�t ≥w�
t −wnom

t ∀ t ∈ T 1 � ∈è1

u�
t1p1v

�
t1p1p′ binary ∀ t ∈ T 1 p1p′

∈ P1 � ∈è∪ 8nom91

y�1�
s1m 1 q�s1m integer ≥ 0 ∀ s ∈ S1 m ∈M1 � ∈è1

r�t 1w
�
t binary ∀ t ∈ T 1 � ∈è∪ 8nom91

y0
s1m integer ≥ 0 ∀ s ∈ S1 m ∈M0

Table A.1 Distribution of the Number of Additionally Canceled Trips
When Evaluating the Optimal Nominal Solution and the
Robust Solution on 3,500 Disruption Scenarios

Number of Nominal Robust
cancelations (%) (%)

0 50072 96010
1 17015 3090
2 17089 —
3 3090 —
4 3035 —
5 3007 —
6 1060 —
7 0028 —
8 0037 —
9 0092 —
10 0012 —
11 — —
12 — —
13 0061 —

Table A.2 Distribution of the Recovery Cost of New Shunting
Operations and of End-of-Day Off-Balances When
Evaluating the Optimal Nominal Solution and the
Robust Solution on 3,500 Disruption Scenarios

Recovery Nominal Robust Recovery Nominal Robust
cost value (%) (%) cost value (%) (%)

0 0000 26034 3601000 3081 —
201000 0006 25033 3801000 4058 —
401000 2092 22032 4001000 4061 —
601000 3069 16035 4201000 4015 —
801000 6006 5093 4401000 3014 —
1001000 4015 2031 4601000 2083 —
1201000 3087 0058 4801000 2058 —
1401000 4018 0049 5001000 2046 —
1601000 4049 0022 5201000 1091 —
1801000 4027 0012 5401000 1038 —
2001000 4067 — 5601000 0080 —
2201000 3093 — 5801000 0074 —
2401000 4012 — 6001000 0015 —
2601000 4052 — 6201000 0015 —
2801000 3017 — 6401000 0025 —
3001000 4052 — 6601000 0003 —
3201000 3054 — 6801000 0003 —
3401000 4024 — 7001000 — —

In Table A.1 we show the distribution of the number
of canceled trips. Table A.2 shows the distribution of the
recovery cost of new shunting operations and of end-of-day
off-balances when evaluating the optimal nominal solution
and the robust solution on 3,500 disruption scenarios.
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