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ABSTRACT During the current decade, wireless data traffic has been increasing very rapidly, a trend

which is expected to accelerate over the next decade driven by the widespread use of video streaming and

the rise of the Internet-of-Things (IoT). In this framework, cellular technology is rapidly moving towards

its 5th generation (5G) that will employ millimeter wave (mmWave) frequencies in the attempt to exploit

more spectrum and offer multi-Gigabit-per-second (Gbps) data rates to mobile devices. Various propagation

phenomena affect adversely mmWave communications, rain fading being the most severe one. The existing

ITU-R prediction model for rain induced attenuation over terrestrial line-of-sight (LOS) links does not

perform accurately on a global level. This weakness constitutes the main motivation to formulate enhanced

models which, by employing appropriate attributes, apply more satisfactorily to specific locations or climatic

zones. ITU-R databank includes experimental data of real LOS links operating in various locations that can

be used to facilitate supervised machine learning (SML) to formulate methods towards accurate prediction

of rain attenuation. Based on a set of past examples or instances, SML aims at exploring/identifying

the relationship between a set of descriptive features (inputs) and a target feature (output). After been

appropriately trained with past data, SML can be used to make predictions about new instances. This

paper proposes a new prediction method which uncovers the latent dependence of rain attenuation on

predictors such as path length, operation frequency, wave polarization, rain rate distribution, etc. ensuring

high prediction accuracy without necessitating complex mathematical expressions.

INDEX TERMS Gaussian processes, machine learning, millimeter wave communications, rain fading,

regression, supervised learning, wireless networks.

I. INTRODUCTION

Learning means finding patterns from previous experience in

the attempt to deal with unknown situations. Learning comes

as the result of repeatedly observing meaningful indicators

that affect the problem each time in hand. When computers

(machines) are involved, the repeated observations come in

the form of data whereas the solution to a new problem

may be perceived/obtained as the output of an algorithm.

Machine learning (ML) aims at automating the process of

extracting knowledge from experience in order to make a

prediction concerning an unknown situation. ML emerged as

a sub-discipline of artificial intelligence and has been applied

in areas such as computer perception, communication and
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reasoning [1]. ML constitutes an alternative for data-driven

decision making or prediction and has become one of the

most powerful artificial intelligence tools [2].

ML is usually classified as supervised or unsupervised

machine learning [3]. In supervised machine learning (SML),

the goal is to learn (determine) how a set of inputs is related

to a set of outputs, given a labeled (known) set of input-output

pairs. In unsupervised learning, sometimes called knowledge

discovery, where only inputs exist, the goal is to extract

interesting patterns governing a set of input data. For two

reasons, problems addressed employing unsupervised learn-

ing are not well-defined. First, it is not a priori known what

kinds of patterns to search for. Second, unlike SML - where

the prediction of the output given the inputs can be compared

to observed values-, there is no error metric to use. Another

type of ML, known as reinforcement learning, is also in use,
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aiming at learning how to act or behave forced by appropriate

reward or punishment signals.

To address the increasing, at a rate of over 50% per

year per subscriber, demand in wireless data traffic, wire-

less networks are migrating to the 5th generation (5G)

standard which will use millimeter wave (mmWave) frequen-

cies ranging from 30GHz to 300GHz, as they offer channel

bandwidths more than ten times wider than the bandwidth

offered by 4G long-term evolution (LTE) networks [4]. Using

service-driven 5G networks, the operators aim at flexibly

and efficiently providing services such as enhanced mobile

broadband, ultra-reliable and low-latency communications

and massive machine type communications [5]. 5G networks

should also support backward compatibility with 4G-LTE

and Wi-Fi. Since, compared to the microwave frequencies

currently used by LTE, the wavelengths at mmWave fre-

quencies are shorter by an order of magnitude ranging from

1mm to 10mm, atmospheric phenomena such as precipita-

tion and diffraction cause stronger attenuation/fading. Hence,

the impact of atmospheric phenomena in the design of new

mmWave communication systems becomes critical, necessi-

tating accurate prediction. Over the past years, measurements

and prediction models concerning a plethora of propaga-

tion scenarios regarding terrestrial line-of-sight (LOS) and

satellite links have been proposed by many companies and

research groups [6]–[8]. The propagation problems related

to mmWave communications, most importantly attenuation

due to rain, affect the physical layer and, subsequently,

the medium access control layer and higher layers; hence,

their expected severe impact on 5G wireless networks neces-

sitates proper handling.

Due to its stochastic behavior with regard to duration, loca-

tion and occurrence frequency, rainfall is a complex meteo-

rological phenomenon. Since, for any location on Earth, the

statistical distribution of rain attenuation is obtained from

local data concerning the rain rate distribution, the accuracy

of rain rate measurements drastically affects the estimation

accuracy of rain induced attenuation. The existing ITU-R

prediction model for rain induced attenuation over LOS links

does not perform accurately on a global level. This constitutes

the main motivation to formulate alternative models which,

by employing appropriate attributes, apply better to specific

locations or climatic zones. In any case, it is not an easy task

to employ a complex prediction model for rain attenuation

that applies to any location and climatic region. However, the

availability of a plethora of statistically stable measurements

concerning rain rate and rain induced attenuation over real

microwave links operating in various locations encourages

the application of SML based regression methods expect-

ing to achieve more accurate predictions. By appropriately

training the relevant algorithms, a prediction method may be

formulated which:

i. uncovers the latent dependence of rain attenuation on

factors such as path length, operation frequency, wave

polarization, rain rate distribution, etc., without having

to employ complex mathematical expressions

ii. ensures high prediction accuracy

Concluding, SML can enhance the procedure of uncover-

ing the latent relationship between rain rate and rain attenu-

ation which cannot be captured by classic statistical/analytic

methods [5]. By improving the estimation of the spatiotem-

poral behavior of rain attenuation, SML gives rise to a novel

procedure towards calculating the rain fade margins neces-

sary for optimizing the deployment and operation of wireless

networks operating above 5GHz, especially above 10GHz.

The rest of the paper is organized as follows. Section II

presents the rain attenuation prediction models currently

in use. Section III presents the basic mathematical back-

ground referring to (i) SML, (ii) Gaussian processes (GPs)

and (iii) regression techniques that constitute the necessary

steps towards developing the proposed prediction method. In

Section IV, the proposed method is analyzed. Also, its predic-

tion accuracy is validated by performing performance com-

parison with relevant prediction models, taking into account

real data for rain rate and rain attenuation extracted from

the experimental databank of ITU-R. Finally, Section V con-

cludes the paper and presents fields for further study and

application of the proposed method.

II. EXISTING PREDICTION MODELS FOR

RAIN ATTENUATION

In LOS terrestrial links or earth-space links operating above

5GHz, especially above 10GHz, the occurrence of rain along

the transmission path constitutes the most important factor

degrading system performance. The rain attenuation along

a terrestrial path is determined by multiplying the specific

attenuation γR (dB/km) with the effective propagation path

length deff (km). γR, which is the main parameter charac-

terizing rain attenuation on a local basis, depends on the

operation frequency, the wave polarization, and the geo-

graphical coordinates [9], [10]. The ITU-R Recommendation

P.838–3 [11] establishes the procedure relating γR to the

local rain intensity, particularly to the parameter Rpexc (mm/h),

which is determined as the rain rate level exceeded for pexc
time percentage, that is

pexc = Prob
(

Rain Rate > Rpexc
)

(1)

normalized on a per year basis. Based on Rpexc , γR is deter-

mined using the power law relationship

γR = k(Rpexc )
α (2)

where k and a depend on the frequency and polarization of

the electromagnetic wave and on the link elevation angle.

Tables tabulating (k, a) pairs for many locations on Earth are

provided in [11]. Moreover, actual values of k and a can be

obtained via interpolation using a logarithmic scale for k and

a linear scale for a. Then, the rain attenuation A(dB) which

is exceeded for pexc time percentage on a per year basis is

calculated from

A = γRdeff = γRLr (3)
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where deff is determined by multiplying the actual radio link

length L (km) with the path reduction factor r evaluated for

a pexc time percentage. The purpose of introducing the path

reduction factor is to replace the actual path length with a

hypothetical length equivalently affected by uniform point

rainfall. r is addressed by the various existing rain models

for rain attenuation prediction as a parameter intended to

render the prediction of rain attenuation more accurate, if it

is properly determined.

Various prediction models for rain attenuation are

employed in the design of terrestrial or satellite links based

either on cumbersome statistical regression - in case sufficient

local experimental data is available- or on analytical models-

in case only local rain rate measurements are available.

However, it is neither straightforward nor sometimes feasi-

ble to apply a unique prediction model for rain attenuation

employing a complex algebraic statistical expression that fits

to any location or climatic region. Four of the most frequently

employed rain attenuation models are following.

A. ITU-R P. 530-16 MODEL

Based on the previous approach for the calculation of the spe-

cific attenuation, the ITU-R Recommendation P.530-16 [12]

determines the path attenuation exceeded for 0.01% of the

time. R0.01, which is the rain rate exceeded for 0.01% of the

time in a year, is employed in the numerical calculations.

If this information is not locally available, an estimate can

be obtained using the information given in ITU-R Recom-

mendation P.837-7 [13]. Employing an empirical formula,

the results obtained are scaled to percentages of time that

range from 1% to 0.001%. This method is proposed for loca-

tions over the world where the respective national authority

for telecommunications recommends rain attenuation be con-

sidered for any operating frequency from 5GHz to 100GHz

with path lengths up to 60 km. The relevant calculations can

be found in the Appendix.

B. SILVA-MELO MODEL

This model uses the numerical coefficients that are derived

for effective rain rate and equivalent rain cell diameter that

were obtained by multiple non-linear regressions, using the

measured data available in the ITU-R databank. Details of

the model are fully reported in [14] whereas the relevant

calculations can be found in the Appendix.

C. MOUPFOUMA MODEL

Thismodel uses only the parameterR0.01(mm/h)which, in the

area of interest, represents the rain rate value exceeded for

0.01% per year. This model does not need rain rate numerical

values for all time percentages. The detailed approach can be

found in [15] and the relevant calculations can be found in the

Appendix.

D. LIN MODEL

The methodology proposed by Lin in [16] employs the path

reduction factor to estimate rain attenuation statistics on

terrestrial links. The method accounts for partially correlated

rain rate variations along the propagation path length. The

relevant calculations can be found in the Appendix.

III. SUPERVISED MACHINE LEARNING / REGRESSION

AIDED BY GAUSSIAN PROCESSES

SML can be employed in solving either regression prob-

lems or classification problems. In contrast to classifica-

tion problems where discrete classes of outputs are sought,

regression problems deal with the prediction of continuous

quantities. A training set includes the inputs x in1 , x in2 , . . . , x ind
and the output y incorporating n observations. The inputs

and outputs are alternatively called predictors/features and

targets, respectively. An n × d matrix X =
[

xin1 x
in
2 . . . xind

]

,

where xin1 , xin2 , . . . , xind are n×1 column vectors, is introduced

to denote the n observations of the inputs and an n×1 column

vector y is used to denote the n observations of the output.

The known inputs and outputs that constitute the training

dataset are organized as a single n × (d + 1) matrix D =
[X y] [17]. In addition to the training set, a test set exists

which is the dataset including the test observations known

for certain pairs of inputs and outputs. The test set will be

used to check the accuracy of the prediction method after

the application of the SML prediction algorithm. By properly

processing the training data, the main objective of SML is to

make inference about the relationship between the inputs and

the output, i.e. about the conditional probability distribution

of the output given the inputs. To replicate/predict the output

observations ywithout knowing the exact multivariable func-

tion y = f (X), the optimal approach is to infer a conditional

probability distribution, p (f |X, y), over possible regression

functions f given the training data X (inputs) and y (output).

Next, p (f |X, y) will be used to determine the estimated out-

put following the Bayesian prediction property for the test

data [18]

p
(

y
∗
|X∗,X, y

)

=
∫

p
(

y
∗
|f ,X∗

)

p (f |X, y) df (4)

where X∗ is the test input matrix and y
∗
is the test output

vector. The values of the test output will be compared with

the predicted ones, denoted as f
∗
, which will be defined later

in the paper. f
∗
will be calculated taking as input arguments

the test inputsX∗. There is no need to determine the statistical

distribution of the inputs. Moreover, the prediction method

will be built based on the training dataset D. Applying the

proposed prediction method, the latent relationship between

the training inputsX and the training outputywill be captured.

Under the assumption that the n output observations are

normally distributed, the proposed SML based prediction

methodwill be built employing GPs. As GP regression (GPR)

models are non-parametric kernel-based probabilistic mod-

els, the proposed method constitutes a GPR approach, pro-

vided that the covariance between any pair of the previous

output observations is calculated from the kernel function

adopted. A GP defines a prior distribution over possible

regression functions which can be converted into a posterior
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distribution over possible regression functions if sufficient

experimental data is available [18]. A new output can be

predicted from any new set of inputs by combining the GP

prior distribution with a Gaussian likelihood function for each

of the observations. The posterior distribution that comes

up is also Gaussian with mean and covariance that can be

easily computed by properly processing the observation data.

Although it seems difficult to represent a distribution over a

function, it turns out that it suffices to define a distribution

over a finite set of observations of the function at the points,

say x1, x2, . . . , xn, where xi is a 1×d row vector representing

the inputs of the ith observation or equivalently the ith row

of X matrix. A GP assumes that the probability distribution

p (f (x1) , . . . , f (xn)) is jointly Gaussian, with mean value

m (xi) = E [f (xi)] (5)

and covariance given by

Kij = cov
(

f (xi) , f
(

xj
))

= k
(

xi, xj
)

= E
[

(f (xi) − m (xi))
(

f
(

xj
)

− m
(

xj
))]

(6)

where k(., .) is a positive definite kernel function. The key

idea of a kernel function is that if the inputs xi and xj are

almost the same, the respective outputs will also be almost the

same. Let the prior distribution over possible regression func-

tions f be a GP with parameters expressed in (5) and (6) [18].

For any finite set of inputs, the conditional distribution over

the regression function f is a joint Gaussian distribution

p (f |X) = N (f|µ,K) (7)

where

N (f |µ,K) ,
1

2πn/2|K|1/2
e−

1
2 (x−µ)TK−1(x−µ) (8)

µ = (m (x1) , . . . ,m (xn)) (9)

and the elements of K are given from (6).

In general, when dealing with realistic situations

y = f (x) + ε (10)

as there are a lot of external random factors that may affect

the observations by adding noise ε. Assuming additive inde-

pendent identically distributed Gaussian noise ε with vari-

ance σ 2
n , the covariance of the noisy observations is given

from [19]

cov
(

yp, yq
)

= k
(

xp, xq
)

+ σ 2
n δpq or

cov (y) = K (X,X) + σ 2
n I = Ky (11)

where δpq is the Kronecker delta, which is one, if p = q, and

zero, otherwise. The joint distribution of the observed values

y of the output and the predicted (function) values f
∗
at the

test points under the prior distribution is
[

y

f
∗

]

∼ N

(

0,

[

K (X,X) + σ 2
n I K (X∗,X)

K (X,X∗) K (X∗,X∗)

])

(12)

If there are n training observations and n∗ test observations,
then K (X,X∗) is the n × n∗ matrix of the covariances eval-

uated at all pairs of training and test observations. Similarly,

K (X,X) is the n×nmatrix of the covariances evaluated at all

pairs of training observations,K (X∗,X∗) is the n∗×n∗ matrix

of the covariances evaluated at all pairs of test observations

andK (X∗,X) is the n∗×nmatrix of the covariances evaluated

at all pairs of test and training observations. The conditional

posterior distribution required for the predictions is given

from

p(f
∗
|X, y,X∗) ∼ N

(

f∗,cov
(

f
∗

))

(13)

where

f∗ , E
[

f
∗
|X, y,X∗

]

= K (X∗,X) [K (X,X) + σ 2
n I]

−1y = K (X∗,X)K−1
y y

(14)

and

cov
(

f
∗

)

= K (X∗,X∗) − K (X∗,X) [K (X,X) + σ 2
n I]

−1

K (X,X∗) = K (X∗,X∗) − K (X∗,X)K−1
y K (X,X∗) (15)

To simplify the notation, the compact notations K =
K (X,X) and K∗ = K (X,X∗) are introduced. In case there

is only one test observation x∗, k(x∗)= k∗ is set to denote

the vector of covariances between the test observation and the

n training observations. Using the above compact notations,

(14) and (15) reduce to

f∗ = kT
∗
(K+ σ 2

n I)
−1y = kT

∗
K−1
y y (16)

var
(

f∗
)

= k (x∗, x∗) − kT
∗
(K+ σ 2

n I)
−1k∗

= k (x∗, x∗) − kT
∗
K−1
y k∗ (17)

The function values f∗-corresponding to test inputs X∗-

can be properly sampled from the joint posterior distribution

given from (13), by evaluating the mean and covariance

matrix using (16) and (17). The predictive performance of

GPs depends on the suitability of the type of kernel selected to

represent the covariance function. A stationary kernel k(x, x′)
is a function of the difference x − x′, where x and x′ are
1 × d vector input observations. Moreover, if the kernel is

a function of |x − x′| is called isotropic. Indicative isotropic

kernels combined with GPs are the following:

Squared exponential (SE) class

k
(

x, x′) = exp

(

−
|x− x′|2

2l2

)

(18)

Exponential (EXP) class

k
(

x, x′) = exp

(

−
|x− x′|

l

)

(19)

Rational Quadratic (RQ) class

k
(

x, x′) = exp

(

−α ln

(

1 +
|x− x′|2

2αl2

))

(20)

Matern class

k
(

x, x′) =
1

2v−1Ŵ (v)
(

√
2v

l

∣

∣x− x′∣
∣)vKv

(√
2v

l

∣

∣x− x′∣
∣

)

(21)
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The parameter l defines the characteristic length-scale.

For the Matern class in particular, the parameters v andl are

positive, whereas Kv is the modified Bessel function [20].

The Matern kernel function becomes simple when v is half-

integer, that is v = z+ 1
/

2, where z is a non-negative integer.

The exponential class comes as a special case of the Matern

class by setting v = 1
/

2. The rational quadratic class with

α > 0 and l > 0 can be seen as a scale mixture (an infinite

sum) of squared exponential kernel functions with different

characteristic length-scales.

To estimate the parameters of the selected kernel func-

tion, an empirical Bayes approach is employed which will

allow to use much faster continuous optimization methods.

In particular, the marginal likelihood as expressed in (4) will

be maximized. The relevant mathematical analysis, which is

quite cumbersome, can be found in [18]. The quantity to be

maximized is

logp (y|X, ϑ)=−
1

2
yTK−1

y y−
1

2
log

∣

∣Ky
∣

∣−
n

2
log(2π ) (22)

where ϑ represents the vector of kernel parameters, which

are denoted as l , α and v in the previously mentioned

kernel classes. The kernel parameters are also called hyper-

parameters where Ky has been defined in (11). To obtain the

hyper-parameters as a result of maximization of the marginal

likelihood, the partial derivatives of the marginal likelihood

with respect to the hyper-parameters are taken

∂

∂ϑ j
logp (y|X, ϑ) =

1

2
yTK−1

y

∂Ky

∂ϑ j
K−1
y y−

1

2
tr

(

K−1
y

∂Ky

∂ϑ j

)

=
1

2
tr

(

(

ααT − K−1
y

) ∂Ky

∂ϑ j

)

(23)

where

α = K−1y (24)

and the trace function of a n×n square matrix M is defined as

tr (M) =
∑n

i=1
Mii (25)

The form of
∂Ky
∂ϑ j

depends on the kernel class. It is also

mathematically related to the parameter with respect to which

the partial derivative is taken.

Finally, to avoid overfitting, i.e. avoid the danger to fit

exactly the training data and fail to reliably predict future

observations, cross-validation is employed. The k-fold cross-

validation splits the data into k disjoint, equally sized subsets.

Validation is done on a single subset, which has the role of the

so called test set and training is done using the union of the

remaining k − 1 subsets. The former has the role of the so

called training set. The entire procedure is repeated k times,

each time with a different subset for validation/testing. Thus,

a large proportion of the data can be used for training whereas

all cases appear as validation cases. Typical values for k are

in the range 3 to 10. In this work, k = 5.

Following the procedure mentioned above, the numer-

ical implementation of GPRs is shown in the Algo-

rithm below [19]:

1. inputs: X (predictors), y (target), k (covariance func-

tion), σ 2
n (noise level), x∗ (test input), y

∗
(test output)

2. L = Cholesky(Ky) : decomposition of Ky following the

Cholesky method where Ky = LLT

3. α = LT (L\y) : this calculation is α = K−1
y y =

L−TL−1y

4. f∗ = kT
∗
a : calculation of the predictive mean, as in (16)

5. V = Lk∗ = L−1k∗ : calculation of the predictive

variance, as in (17)

6. var
(

f
∗

)

= k (x∗, x∗) − VTV : calculation of the

predictive variance, as in (17)

7. logp (y|X) = − 1
2
yTa −

∑

i logLii −
n
2
log(2π ) : calcu-

lation of the log marginal likelihoo

8. return: f̄∗(mean), var
(

f
∗

)

(variance), logp (y|X) (log

marginal likelihood);

If there are more than one set of inputs for which the output

must be calculated, steps 4-6 should be repeated. To assess the

deviation between the actual output value y∗ and the predicted
output value ypredict prediction, a loss function, denoted as

Loss(.), should be employed. To evaluate the accuracy of such

a prediction, the expected loss

E
[

Loss
(

y
∗
ypredict

)

|x∗
]

=
∫

Loss
(

y
∗
, ypredict

)

p
(

y
∗
|x∗,D

)

dy∗ (26)

should be minimized [19]. Hence, the optimal prediction is

yoptimal|x∗ = argminypredict
E
[

Loss
(

y
∗
, ypredict

)

|x∗
]

(27)

In general, the value of yoptimal that minimizes the expected

loss function |ypredict − y
∗
| is the median of p

(

y
∗
|x∗,D

)

,

whereas for the squared loss function (ypredict − y
∗
)2 it is the

mean of the distribution. When the predictive distribution is

Gaussian, the mean and median values coincide.

As a general remark, it should be noted that failing to

build an analytical prediction method due to the high number

of predictors and to their complex relation with the output,

which is rain induced attenuation in the present work, an SML

based regression method is employed. The prediction algo-

rithm is built taking into account the training dataset and

is tested with the test dataset. If the prediction accuracy is

satisfactory the proposed method can be used for predicting

the attenuation due to rain over working links or links to be

deployed.

IV. THE PROPOSED PREDICTION METHOD. NUMERICAL

RESULTS AND VERIFICATION

ITU-R has proposed a model for the prediction of rain atten-

uation on terrestrial radio links. However, the ITU-R model

does not perform satisfactorily in all climatic zones [21].

In general, it is not possible to apply a prediction model

to any location or any climatic region. As mentioned in

Section I, this weakness constitutes the main motivation to

formulate an alternative prediction method employing SML

based regression techniques which, by adopting appropriate

attributes, apply better to specific locations or climatic zones.
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In general, the inputs required by most prediction models

for rain attenuation over terrestrial links are the rainfall rate

exceeded for a specific time percentage, the propagation

path length, the operation frequency, and the wave polariza-

tion. This paper proposes a new method for the prediction

of rain attenuation over terrestrial microwave links. It is

an SML based regression algorithm employing specific GP

compatible kernel functions. The available training dataset is

extracted from the ITU-R databank and contains 89 experi-

mental links located in the following, alphabetically ordered,

countries: Brazil (14 links), China (2 links), Congo (1 link),

Czech (5 links), Germany (4 links), France (6 links), Italy

(6 links), Japan (15 links), Malaysia (1 link), Netherlands

(1 link), Norway (1 link), Poland (2 links), Sweden (3 links),

Russia (3 links), the United Kingdom (22 links), the United

States of America (3 links). Apparently, the employed geo-

graphical footprint is not limited to specific regions. It spans

over various rain climatic zones, namely C, E, F, G, H, K,

L, N, M and P, and tends to have a global character. From

this perspective the generalization of the proposed method

has been addressed and facilitated. However, the dataset

employed may become more general and possibly more

accurate as long as more locations are included spanning

various climatic zones and the operational characteristics of

the adopted links take a wider range of values. Additional

information is provided within the experimental data con-

cerning the specific relation between specific factors, such

as local rain rate, path length, operation frequency and wave

polarization, with the rain attenuation for specific exceedance

probability levels, namely 0.001%, 0.002%, 0.003%, 0.006%,

0.01%, 0.02%, 0.03%, 0.06% and 0.1%. Hereafter, these

levels will be called reference exceedance probability levels

(REPLs). Moreover, it has to be underlined that 28 experi-

mental links of the employed databank, located in Germany,

Japan, Malaysia, Netherlands, Sweden and the United King-

dom, operate at a frequency higher than 30GHz and below

300GHz, a zone which is considered to be the pure mmWave

frequency band.

The preliminary version of the proposed predictionmethod

comes from formulating an SML regression algorithm for

each one rain attenuation REPL. The 12 inputs (predictors)

of this preliminary version are the path length (PL), the oper-

ation frequency (FREQ), the wave polarization (POL) as well

as the 9 rain rate levels that correspond to the 9 REPLs

just mentioned. These 9 rain rate levels are denoted by the

vector RRexc (all p% levels). To train the algorithm of the

preliminary version of the proposed method, the output (tar-

get feature) is the rain attenuation level exceeded for the

corresponding REPL. This real rain attenuation REPL is

known as part of the experimental data. Symbolically, the

mathematical formulation of the regression function is given

from

RAexc (p%) = fGPR(PL,FREQ,POL,RRexc (allp%levels))

(28)

FIGURE 1. Distribution of path lengths.

FIGURE 2. Distribution of operating frequencies.

where the output (target feature)RAexc (p%) is the rain attenu-

ation in dB exceeded for p%on a per year basis and the inputs

(predictors) are:

PL: path length that ranges from 0.5km to

58km. A histogram of its occurrence

density is given in Fig. 1

FREQ: operating frequency that ranges from

7GHz to 137GHz. A histogram of its

occurrence density is given in Fig. 2

POL: electromagnetic wave polarization that

ranges from 0 degrees to 90 degrees. A

histogram of its occurrence density is

given in Fig. 3

RRexc rain rate in mm/h for the 9 available

(all p% levels ): REPLs which jointly represent the

corresponding local rain rate

distribution. The ranges of the rain

rates corresponding to the 9 REPLs

are given in Table I. As the

dataset employed covers a wide range

of locations, path lengths, operation

frequencies, wave polarization angles,

and rain rates, the proposed method

is expected to have a general

applicability.

To investigate which kernel function performs better,

the training of the algorithm is performed employing the

four kernel functions given by (18) - (21) under a 5-fold

cross-validation scheme. At this point, a brief discussion on

cross-validation should be done. Cross-validation estimates

the performance of an algorithm when employing a new
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FIGURE 3. Distribution of polarization angles.

dataset compared to the training dataset. It is used to select

themodel whichminimizes the prediction error. Furthermore,

cross-validation protects against overfitting. First, a number

of folds is assumed to partition the dataset. This partitioning

is made in a stratified way, that is, both the training and the

test datasets have roughly the same class proportions as in the

entire dataset and are formed as representative as possible.

If a 5-fold cross-validation is selected, as it is done in this

work, then (i) the entire dataset is partitioned into 5 disjoint

sets or folds, (ii) for each fold a model is trained using

the out-of-fold observations and its performance is assessed

using in-fold data and (iii) the average test error over all

folds is calculated. This method gives a good estimate of the

predictive accuracy of the final algorithm trained employing

the entire dataset. Although it requires multiple fits, it makes

efficient use of the entire dataset.

After the algorithm training, the rain attenuation level is

predicted applying (28). As expected, there is a difference

between the predicted and the actual values of the outputs,

which is known as the residual (error) of the prediction.

The effectiveness of the regression is expressed employing

the R2 metric that ranges from 0 to 1. R2 is a statistical

measure called coefficient of determination and provides a

measure of how well the observed outputs are replicated by

the algorithm. R2 essentially expresses the proportion of the

variance in the dependent response that is predictable from

the independent predictors. Indicatively, the interpretation

of R2 = 0.85 is that 85% of the variance in the response

can be attributed to the predictors employed whereas the

remaining 15% can be attributed to unknown, lurking pre-

dictors or inherent variability. In Fig. 4, R2 is plotted for the

set of REPLs given in Table I. The horizontal axis represents

the levels of rain attenuation exceeded for the time percent-

ages correspondingly dictated by the 9 REPLs. As readily

observed from Fig. 4, the regression effectiveness decreases

as the exceedance time level of the rain attenuation decreases.

Such a low prediction accuracy does not allow to use the

preliminary version by itself without enhancement.

Next, the training process of the proposed SML regression

algorithm is enhanced by introducing as an additional pre-

dictor the rain attenuation estimateRA_Est ITUexc (p%) as calcu-

lated from the ITU-Rmodel [12]. Hereafter, this estimate will

be called ITU-R estimate. The kernel functions employed and

the cross-validation scheme are kept the same. Hence, in the

FIGURE 4. Regression effectiveness expressed in the form of R2

employing the four GPs referred to in Sec.III, and taking into account
12 predictors, namely the path length, operation frequency, wave
polarization, and the 9 REPLs of rain rate.

TABLE 1. Range of rain rate for the 9 available REPLs.

enhanced version of the proposed method, 12 + 1 predictors

are involved in the regression function, which is symbolically

written as

RAexc (p%) = fGPR(PL,FREQ,POL,RRexc (all p% levels ),

RA_Est ITUexc (p%)) (29)

The R2 results of the enhanced SML based prediction method

are plotted in Fig. 5.

Two important conclusions can be deduced from Fig. 5.

First, the incorporation of the ITU-R estimate as an additional

input (predictor) has enhanced the training process leading

to a significant improvement in the regression accuracy. This

improvement is verified by the significantly higher R2 values

observed in Fig. 5 compared to the respective ones observed

in Fig. 4. Second, the Rational Quadratic GPR performs better

than the other GPRs for all the REPLs considered.

It is important to examine how the enhanced version of the

proposed method performs in comparison to the established

prediction models for rain attenuation presented in Section II.

In this framework, numerical calculations were performed

using rain rate data extracted from the same ITU-R data-

bank. To become comparable, the respective results have been

normalized adopting the test variable ρV proposed by ITU-R

in Recommendation P.311-13 [22]. According to P.311-13,

for each time percentage examined and each radio link of

the ITU-R databank considered, say the ithlink, the ratio of

VOLUME 7, 2019 138751



S. N. Livieratos, P. G. Cottis: Rain Attenuation Along Terrestrial Millimeter Wave Links: New Prediction Method Based on SML

FIGURE 5. Same as in Fig. 4, but employing the ITU-R estimate as an
additional predictor.

FIGURE 6. Regression effectiveness expressed in the form of the test
variable ρV employing various rain attenuation prediction models and the
enhanced version of the proposed SML prediction method. For this
comparison, the Rational Quadratic kernel function is employed.

the predicted rain attenuation, Ap(dB), to the measured rain

attenuation, Am(dB), is calculated from

Si =
Ap,i

Am,i
(30)

Next, the variable Vi is calculated from

Vi =







(
Am,i

10
)0.2lnSi, for Am,i < 10dB

lnSi, for Am,i ≥ 10dB
(31)

Then, the mean µV and the standard deviation σV of the

Vi values for each time percentage are calculated. Finally,

the test variable is determined as the rms (root mean square)

value

ρV =
√

µ2
V + σ 2

V (32)

In comparing the various prediction methods, it should be

noted that the lower the test variable is the better the pre-

diction method. The numerical results obtained following the

above comparison procedure are depicted in Fig. 6.

As readily observed from Fig. 6, the proposed SML

based prediction method performs significantly better than

the four prediction models under comparison. The proposed

method is much more accurate than those of ITU-R [12]

and Silva-Melo [14], which are considered to perform more

effectively than the others.

At this point, it is worthwhile to investigate the individual

significance of the 13 predictors employed in the proposed

method, expecting that the importance of the ITU-R estimate

will be proven high, since it is determined independently of

FIGURE 7. ICE plots of the predicted A0.01 with respect to the path length
as a predictor.

FIGURE 8. ICE plots of the predicted A0.01 with respect to the wave
polarization as a predictor.

the method under consideration. In this course, the relation-

ship between a predictor and the predicted responses is visu-

alized. Typically, this visualization process has to be repeated

for all the (12+ 1) predictors employed. The visualization is

based on the notion of the individual conditional expectation

(ICE) plot [23]. In the ICE plots there are:

• Black circles that represent the predicted responses for

the predictor each time considered, which for the prob-

lem in hand might be the path length, the wave polariza-

tion, the operation frequency, any of the 9 REPLs, or the

ITU-R estimate.

• Gray lines that visualize the response of the algorithm

for each experiment allowing the predictor examined,

e.g. the path length, to take values over its entire range.

• A red line, called partial dependence plot (PDP), which

visualizes the average relationship between the selected

predictor and predicted responses. In other words, PDP

is the average of the gray lines.

The ICE plots highlight the variation in the fitted values

over the range of the predictor examined each time. As a

criterion, a high variance of the gray lines or alternatively

slow variations of the PDP indicate a low dependence of

the predicted responses on the predictor examined. For the

proposed sensitivity assessment, the ICE plot regarding the

prediction of A0.01 is indicatively considered. A0.01 refers to

0.01% exceeded time percentage for rain attenuation (in dB)

which is the most frequently encountered REPL in rain atten-

uation prediction models.

Next, ICE plots are used to examine the relationship

between the predicted response A0.01, which has been indica-

tively chosen for the sensitivity assessment, with the various
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FIGURE 9. ICE plots of the predicted A0.01 with respect to the operation
frequency as a predictor.

FIGURE 10. ICE plots of the predicted A0.01 with respect to the R0.01 level
as a predictor.

predictors examined. Specifically, in Figs. 7 to 10, ICE plots

are presented concerning, respectively, the predictors (i) path

length, (ii) wave polarization, (iii) operation frequency and

(iv) REPL R0.01, which was indicatively chosen to represent

the set of the 9 REPLs considered. From these plots, it is

readily observed that the variance of the gray lines is high

and the PDP lines look almost straight. Hence, the ICE plots

indicate that the above four predictors do not affect signifi-

cantly the predicted response A0.01. On the other hand, from

Fig. 11 presenting the ICE plot concerning the relationship

between the same indicative predicted response A0.01 with

the ITU-R estimate which was employed as an additional

predictor, it is readily observed that the variance of the gray

lines is much smaller than their variance observed in Figs.

7 to 10 whereas, at the same time, the PDP slope exhibits

drastic fluctuations extending to the entire range of A0.01
values taken into account. Hence, it is verified that the ITU-R

estimate -which is used as an additional predictor in addition

to the 12 predictors used by the preliminary version of the

proposed method- constitutes the predictor that dramatically

improved the prediction accuracy of the proposed SML based

method. It should also be noted that the ITU-R estimate,

which is used as an additional predictor, is not drawn directly

from the experimental data, but it is a macroscopic estimate

obtained employing another prediction model, namely the

ITU-Rmodel [12], which employed the path length, the wave

polarization, the operation frequency and the rain rate RR0.01.

The prediction of rain attenuation for REPLs other than

0.01% is based on scaling methods described in [12].

From the engineering point of view, it is of high importance

to investigate the exceedance probability of rain attenuation,

FIGURE 11. ICE plots of the predicted A0.01 with respect to the ITU-R
estimate as a predictor.

FIGURE 12. Exceedance probability of rain attenuation in Yotsua, Japan.

FIGURE 13. Exceedance probability of rain attenuation in Paranapiacaba,
Brazil.

FIGURE 14. Exceedance probability of rain attenuation in Novara, Italy.

i.e.Prob(Rain attenuation > level), or, equivalently, the com-

plementary cumulative distribution function (ccdf) of rain

attenuation for various links covering various locations, path

lengths, operation frequencies and rain conditions. Particu-

larly, Figs. 12-18 depict the exceedance probability along

experimental links located in Yotsua (Japan), Paranapiacaba

(Brazil), Novara (Italy), Stockholm (Sweden), Chibolton

(UK) and Tokyo (Japan), the operation characteristics of

which are provided in Table II. In all these Figs, the ccdf

obtained employing the proposed SML based method fits

better to the actual measurements than the ccdf obtained
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FIGURE 15. Exceedance probability of rain attenuation in Stockholm,
Sweden.

FIGURE 16. Exceedance probability of rain attenuation in Chibolton, UK
(57GHz).

FIGURE 17. Exceedance probability of rain attenuation in Tokyo, Japan.

FIGURE 18. Exceedance probability of rain attenuation in Chibolton, UK
(137GHz).

employing the ITU-R model. This happens for a wide variety

of locations and a wide range of path length and operation

frequency values, including the mmWave band as well.

The proposedmethod is founded on concrete mathematical

models of stochastic processes. On the one hand, it offers

the advantage of avoiding complex mathematical expres-

sions. On the other hand, it possesses an empirical profile

as it is tuned by regressing data available from the ITU-R

TABLE 2. Operating characteristics of experimental links for figs 12-18.

databank. The reliability of the available data affects the

accuracy of the proposed method. Inefficient experimen-

tal procedures, incorrectly tuned instruments, geographical

limitations and, in general, not properly performed experi-

ments affect adversely the accuracy of the proposed SML

method. As deduced from the comparison with other predic-

tion methods currently in use, it is confirmed that, if suffi-

cient and reliable data is available, the proposed SML based

prediction method can effectively capture the propagation

impairment related to rain attenuation employing rain rate

measurements. Compared to analytic models, SML based

approaches can take into account more predictors, thus being

capable of achieving significantly higher accuracy.Moreover,

to enhance the efficiency of SML based prediction methods,

it is of high importance to look for and employ additional

predictors, not necessarily coming directly from the measure-

ment field but calculated employing other prediction models.

The insertion of such additional predictors to the training

process can lead to a meta-training process in the sense that a

more accurate prediction method is expected to be deployed.

Accurate SML based prediction methods could also be for-

mulated to represent the local rain fading mechanism con-

cerning locations for which sufficient local data is available.

The incorporation of new experimental data can improve the

training of the algorithmwhich, subsequently, may result into

a more accurate prediction.

V. CONCLUSION

In this paper, the concept of SML is combined with GPs

for regression to formulate a new prediction method for rain

attenuation. The proposed method has been validated taking

into account experimental data from the ITU-R databank

concerning LOS terrestrial links. The experimental data used

for the training of the preliminary SML algorithm included

12 predictors which were the path length, the operation fre-

quency, the wave polarization and 9 rain rate levels (REPLs).

The prediction results obtained applying the preliminary ver-

sion were not found more accurate than the corresponding

ones obtained applying the well-established ITU-R model.

The dataset used to develop the SML algorithm has a wide

range of values for all the predictors and does not show

geographical limitations, To enhance the prediction accuracy,
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the rain attenuation estimate obtained applying the existing

ITU-R model for each REPL was considered as an addi-

tional predictor along with the existing 12 predictors coming

from the available experimental data. The numerical results

obtained applying the enhanced version showed a significant

prediction accuracy improvement over the prediction accu-

racy offered by the preliminary version. The performance

comparison conducted to validate the enhanced version of

the proposed SML based prediction method showed a sig-

nificant superiority over other prediction models currently

in use, reaching very high accuracy levels. The applicability

of the proposed method is practically global. However, its

adaptation to specific locations, climatic regions or frequency

zones can be facilitated employing the proper training dataset

that can convey the experimental information related to the

specific problem each time in hand. New experiments can

be properly planned so that additional propagation data can

be collected and processed following the proposed method-

ology towards building prediction tools dealing with vari-

ous propagation phenomena. Finally, if sufficient and both

quantitatively and qualitatively homogeneous actual data can

be included in the dataset for training and testing the ML

algorithm, the proposed SML based prediction method can

get a geographically and climatologically wider scope.

APPENDIX

A. ITU-R P. 530-16 MODEL

Determine the effective path length of the link, deff , by mul-

tiplying the actual path length L (km) by the path reduction

factor r , which can be expressed as:

r=
1

0.477L0.633R0.073a0.01 f 0.123−10.579 (1−exp (−0.024L))

(A.1)

where f (GHz) is the frequency and a is the exponent of the

specific attenuation model. Maximum recommended r is 2.5,

so if the denominator of (A.1) is less than 0.4 use r = 2.5.

R0.01 is the rain rate exceeded for 0.01% of the time in a year.

If this information is not locally available, an estimate can

be obtained from the information given in Recommendation

ITU-R P.837 [17].

The path attenuation exceeded for 0.01% of the yearly time

is calculated as

A0.01 = γRdeff = γRLr (A.2)

The prediction of the full P(A), for 0.001% ≤ P ≤ 1%,

is given by

A (P) = A0.01C1P
−(C2+C3log10P) (A.3)

with C1, C2, and C3 being empirical coefficients depending

on frequency f [16].

B. SILVA-MELO MODEL

In the model proposed by Silva-Mello et al. in [18], the

effective path length deff is calculated as:

deff =
1

1 + L
d0

L (A.4)

where

d0 = 119R(P)−0.244 (A.5)

The prediction of the rain attenuation exceeded for P percent

of the time is achieved as:

A (P) = kRaeff deff (A.6)

where Reff , i.e., the effective rain rate, is:

Reff = 1.763R(P)0.753+0.197/L (A.7)

C. MOUPFOUMA MODEL

Similarly to the ITU-R model, the prediction method pro-

posed by Moupfouma in [19] receives R0.01 as the input to

predict A as:

A (P) = kRa0.01Leq(P,L) (A.8)

Leq in (A.8) is the equivalent path length calculated as:

Leq (P,L) = Lexp

(

−
R(P)

1 + ζ (L)R(P)

)

(A.9)

where

ζ (L) =







−100, L ≤ 7(km)

[
44.2

L
]0.78, L > 7(km)

(A.10)

D. LIN MODEL

According to this model, the rainfall attenuation exceeded for

a percentage P of the yearly time can be calculated as:

A (P) = kR(P)aLr (A.11)

R(P) is the rain rate exceeded for the same percentage P of

the time. The factor r takes the followingsimple expression:

r =
1

1 + L
L(R)

(A.12)

where

L (R) =
2623

R (P) − 6.2
(A.13)
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