Rain Fade Compensation Alternatives for Ka Band Communication Satellites

Roberto J. Acosta, Ph.D.

NASA Lewis Research Center

Cleveland, Ohio

3rd Ka Band Utilization Conference

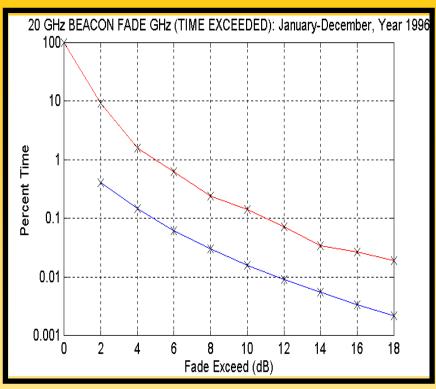
Sorrento, Italy
September 15-18, 1997

MOTIVATION OF WORK

- Evaluate system and rain fade characteristics and their impact on future system design of Ka-band communication satellite systems.
- Evaluate alternative rain fade measurement and compensation techniques
- Design and develop technology verification experiments for validating techniques and approaches.

FADE CHARACTERISTICS

Rain Induced (random)

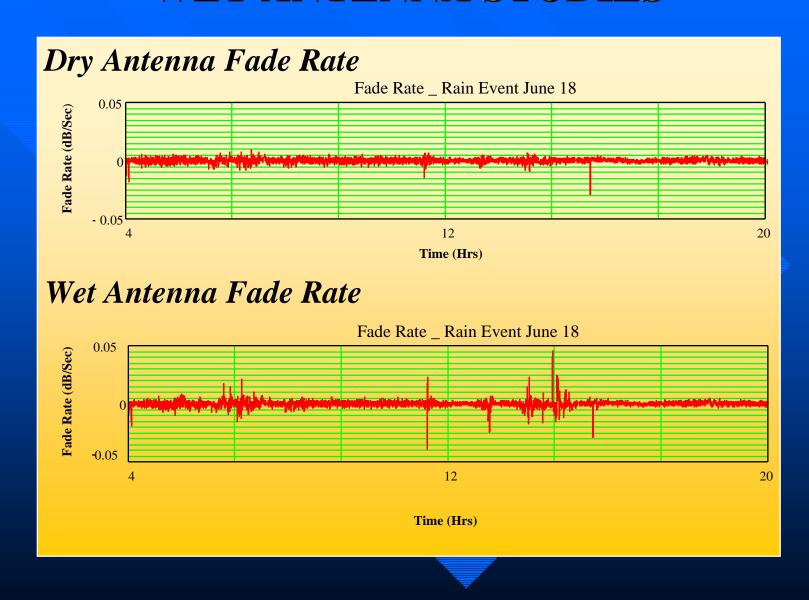

- Rain fade depth
 - Fade rate
 - Fade duration
 - Inter-fade interval
 - Frequency scaling
 - Correlation of fade within1 GHz band
 - -Correlation of rain
 events over extended areas
- Antenna wetting
- Depolarization
 - Rain
 - Ice

System Induced

- Ground Station
 - Pointing error in rain
 - Snow accumulation
 - LNA stability
 - De-Icers
- Spacecraft
 - Antenna Pointing Thermal
 - **Attitude Control**

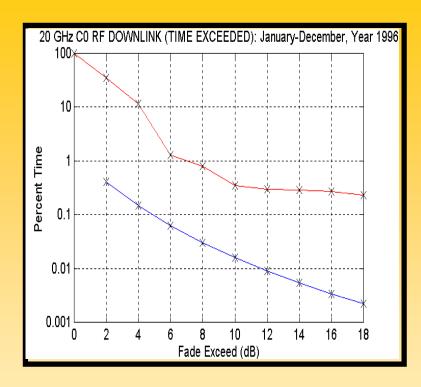
THEORY VS. EXPERIMENT

FADE AVAILABILITY FOR CLEVELAND - 1996


Ground Station System Degradation Effects

- Antenna wetting
- Snow accumulation
- Antenna pointing errors during rain
- De-Icers thermal effect
- Ground station thermal stability LNA,LO, etc.
- Measurement error

WET ANTENNA STUDIES

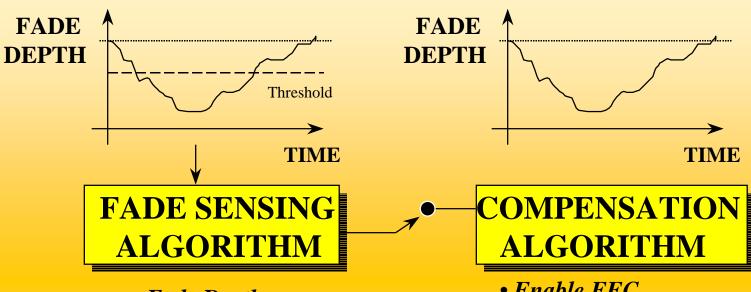


WET ANTENNA STUDIES

THEORY VS. EXPERIMENT

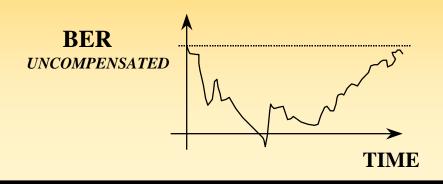
FADE AVAILABILITY FOR CLEVEAND - 1996

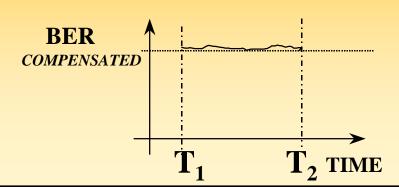
GROUND STATION AND SPACECRAFT DEGRADATION EFFECTS


- Multibeam antenna pointing errors
- Attitude control errors
- Measurement errors

KEY SYSTEM MARGIN CONSIDERATIONS

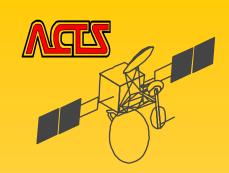
- <u> Clear Sky margin</u> (fixed)
 - Clear sky attenuation (gaseous absorption) < 1 dB
 - Measurement errors < 1 dB
 - Frequency scaling error < 1 dB
 - Time delay in applying compensation < 1 dB


 ~ Clear Sky Margin = 4 dB
- -Margin available through dynamic fade compensation
 - Avoid enabling compensation too frequently by applying wait time
 - Dynamically allocate margin on the basis of rain and other propagation impairments


RAIN FADE COMPENSATION ALGORITHM

- Fade Depth
- Fade Rate
- Threshold Values
- Descision

- Enable FEC
- Enable Burst Reduction
- Increase RF Power
- Enable Diversity Station



Rain Fade Sensing Techniques

- Satellite beacon
 - in-band or out-band
- Channel BER monitoring by a known data pattern
 - e.g., framing bits, unique words, etc.
- BER monitoring for channel coded data
 - comparing re-encoded bits
- Pseudo BER
 - count number of symbols within an interval
- Measuring signal-to-noise
 - estimation from mean and variance
- Fade estimate from receive AGC level

Rain Fade Compensation Techniques

- Increase power
 - Uplink power in dynamically adjusted
 - Open-loop, closed-loop and feedback-loop
- Information rate and FEC code rate changes
 - FDMA,CDMA and TDMA
- Combination of above
- **Diversity stations**

ACTS Rain Fade Compensation

UNCODED SIGNALS

FORWARD ERROR CORRECTION (FEC) CODING & BURST RATE REDUCTION

> **IMPACT ON SYSTEM Adds 10 dB of Fade Margin**

Station #2

MESSAGE IS RECOVERED

SUMMARY

- ACTS has successfully demonstrated at least two different rain fade compensation techniques.
 - VSAT dynamic rain fade compensation
 - Uplink power control
- ACTS has successfully modeled rain fade characteristics.
 - Dr. Manning's model seems to underestimate fade availability
- ACTS has experimentally characterized system and propagation effects affecting fade availability.
 - Antenna wetting
 - Narrow beam technology
 - Attitude and ground station effects