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Abstract. The phase of precipitation when it reaches the

ground is a first-order driver of hydrologic processes in a wa-

tershed. The presence of snow, rain, or mixed-phase precip-

itation affects the initial and boundary conditions that drive

hydrological models. Despite their foundational importance

to terrestrial hydrology, typical phase partitioning methods

(PPMs) specify the phase based on near-surface air tempera-

ture only. Our review conveys the diversity of tools available

for PPMs in hydrological modeling and the advancements

needed to improve predictions in complex terrain with large

spatiotemporal variations in precipitation phase. Initially, we

review the processes and physics that control precipitation

phase as relevant to hydrologists, focusing on the importance

of processes occurring aloft. There is a wide range of op-

tions for field observations of precipitation phase, but there

is a lack of a robust observation networks in complex ter-

rain. New remote sensing observations have the potential to

increase PPM fidelity, but generally require assumptions typ-

ical of other PPMs and field validation before they are oper-

ational. We review common PPMs and find that accuracy is

generally increased at finer measurement intervals and by in-

cluding humidity information. One important tool for PPM

development is atmospheric modeling, which includes mi-

crophysical schemes that have not been effectively linked

to hydrological models or validated against near-surface

precipitation-phase observations. The review concludes by

describing key research gaps and recommendations to im-

prove PPMs, including better incorporation of atmospheric

information, improved validation datasets, and regional-scale

gridded data products. Two key points emerge from this syn-

thesis for the hydrologic community: (1) current PPMs are

too simple to capture important processes and are not well

validated for most locations, (2) lack of sophisticated PPMs

increases the uncertainty in estimation of hydrological sen-

sitivity to changes in precipitation phase at local to regional

scales. The advancement of PPMs is a critical research fron-

tier in hydrology that requires scientific cooperation between

hydrological and atmospheric modelers and field scientists.

1 Introduction and motivation

As climate warms, a major hydrologic shift in precipitation

phase from snow to rain is expected to occur across tem-

perate regions that are reliant on mountain snowpacks for

water resource provisioning (Bales et al., 2006; Barnett et

al., 2005). Continued changes in precipitation phase are ex-

pected to alter snowpack dynamics and both streamflow tim-

ing and amounts (Cayan et al., 2001; Fritze et al., 2011; Luce

and Holden, 2009; Klos et al., 2014; Berghuijs et al., 2014;

Jepsen et al., 2016), increase rain-on-snow flooding (McCabe

et al., 2007), and challenge our ability to make accurate wa-

ter supply forecasts (Milly et al., 2008). Accurate estimations

of precipitation inputs are required for effective hydrological
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modeling in both applied and research settings. Snow stor-

age delays the transfer of precipitation to surface runoff, in-

filtration, and generation of streamflows (Fig. 1), affecting

the timing and magnitude of peak flows (Wang et al., 2016),

hydrograph recession (Yarnell et al., 2010), and the magni-

tude and duration of summer baseflow (Safeeq et al., 2014;

Godsey et al., 2014). Moreover, the altered timing and rate of

snow versus rain inputs can modify the partitioning of water

to evapotranspiration versus runoff (Wang et al., 2013). Mis-

representation of precipitation phase within hydrologic mod-

els thus propagates into spring snowmelt dynamics (Harder

and Pomeroy, 2013; Mizukami et al., 2013; White et al.,

2002; Wen et al., 2013) and streamflow estimates used in wa-

ter resource forecasting (Fig. 1). The persistence of stream-

flow error is particularly problematic for hydrological models

that are calibrated on observed streamflows because this error

can be compensated for by altering parameters that control

other states and fluxes in the model (Minder, 2010; Shamir

and Georgakakos, 2006; Kirchner, 2006). Expected changes

in precipitation phase from climate warming presents a new

set of challenges for effective hydrological modeling (Fig. 1).

A simple yet essential issue for nearly all runoff generation

questions is this: is precipitation falling as rain, snow, or a

mix of both phases?

Despite advances in terrestrial process representation

within hydrological models in the past several decades

(Fatichi et al., 2016), most state-of-the-art models rely on

simple empirical algorithms to predict precipitation phase.

For example, nearly all operational models used by the

National Weather Service River Forecast Centers in the

United States use some type of temperature-based precipita-

tion phase partitioning method (PPM) (Pagano et al., 2014).

These are often single or double temperature threshold mod-

els that do not consider other conditions important to the hy-

drometeor’s energy balance. Although forcing datasets for

hydrological models are rapidly being developed for a suite

of meteorological variables, to date no gridded precipitation-

phase product has been developed over regional to global

scales. Widespread advances in both simulation of terres-

trial hydrological processes and computational capabilities

may have limited improvements on water resources forecasts

without commensurate advances in PPMs.

Recent advances in PPMs incorporate effects of humid-

ity (Harder and Pomeroy, 2013; Marks et al., 2013), atmo-

spheric temperature profiles (Froidurot et al., 2014), and re-

mote sensing of phase in the atmosphere (Minder, 2010;

Lundquist et al., 2008). A challenge to improving and se-

lecting PPMs is the lack of validation data. In particular, reli-

able ground-based observations of phase are sparse, collected

at the point scale over limited areas, and are typically lim-

ited to research rather than operational applications (Marks

et al., 2013). The lack of observations is particularly prob-

lematic in mountain regions where snow–rain transitions are

widespread and critical for regional water resource evalua-

tions (Klos et al., 2014). For example, direct visual observa-

Figure 1. Precipitation phase has numerous implications for mod-

eling the magnitude, storage, partitioning, and timing of water in-

puts and outputs. Potentially affecting important ecohydrological

and streamflow quantities important for prediction.

tions have been widely used (Froidurot et al., 2014; Knowles

et al., 2006; US Army Corps of Engineers, 1956), but are

decreasing in number in favor of automated measurement

systems. Automated systems use indirect methods to accu-

rately estimate precipitation phase from hydrometeor char-

acteristics (i.e., disdrometers), as well as coupled measure-

ments that infer precipitation phase based on multiple lines

of evidence (e.g., co-located snow depth and precipitation).

Remote sensing is another indirect method that typically uses

radar returns from ground and spaceborne platforms to in-

fer hydrometeor temperature and phase. A comprehensive

description of the advantages and disadvantages of current

measurement strategies, as well as their correspondence with
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Figure 2. The phase of precipitation at the ground surface is strongly controlled by atmospheric profiles of temperature and humidity. While

conditions exist that are relatively easy to predict rain (a) and snow (b), many conditions lead to complex heat exchanges that are difficult to

predict with ground-based observations alone (c). The blue dotted line represents the mixing ratio. H , LE, f (sat), and r are abbreviations for

sensible heat, latent heat of evaporation, function of saturation, and mixing ratio, respectively. The arrows after H or LE indicate the energy

of the hydrometeor either increasing (up) or decreasing (down), which is controlled by other atmospheric conditions.

conventional PPMs, is needed to determine critical knowl-

edge gaps and research opportunities.

New efforts are needed to advance PPMs to better inform

hydrological models by integrating new observations, ex-

panding the current observation networks, and testing tech-

niques over regional variations in hydroclimatology. While

calls to integrate atmospheric information are an important

avenue for advancement (Feiccabrino et al., 2013), hydrolog-

ical models ultimately require accurate and validated phase

determination at the land surface. Moreover, any advance-

ment that relies on integrating new information or develop-

ing a new PPM technique will require validation and training

using ground-based observations. To make tangible hydro-

logical modeling advancements, new techniques and datasets

must be integrated with current modeling tools. The first

step towards improved hydrological modeling in areas with

mixed precipitation phase is educating the scientific commu-

nity about current techniques and limitations that convey the

areas where research is most needed.

Our review paper is motivated by a lack of a compre-

hensive description of the state-of-the-art PPMs and obser-

vation tools. Therefore, we describe the current state of the

science in a way that clarifies the correspondence between

techniques and observations, and highlights strengths and

weaknesses in the current scientific understanding. Specifi-

cally, subsequent sections will review (1) the processes and

physics that control precipitation phase as relevant to field

hydrologists, (2) current available options for observing pre-

cipitation phase and related measurements common in re-

mote field settings, (3) existing methods for predicting and

modeling precipitation phase, and (4) research gaps that ex-

ist regarding precipitation-phase estimation. The overall ob-

jective is to convey a clear understanding of the diversity of

tools available for PPMs in hydrological modeling and the

advancements needed to improve predictions in complex ter-

rain characterized by large spatiotemporal variations in pre-

cipitation phase.

2 Processes and physics controlling precipitation phase

Precipitation formed in the atmosphere is typically a solid

in the mid-latitudes and its phase at the land surface is de-

termined by whether it melts during falling (Stewart et al.,

2015). Most hydrologic models do not simulate atmospheric

processes and specify precipitation phase based on surface

conditions alone (see Sect. 4.1), ignoring phase transforma-

tions in the atmosphere.

Several important properties that influence phase changes

in the atmosphere are not included in hydrological models

(Feiccabrino et al., 2012), such as temperature and precipita-

tion characteristics (Theriault and Stewart, 2010), stability of

the atmosphere (Theriault and Stewart, 2007), position of the

0 ◦C isotherm (Minder, 2010; Theriault and Stewart, 2010),

interaction between hydrometeors (Stewart, 1992), and the
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atmospheric humidity profile (Harder and Pomeroy, 2013).

The vertical temperature and humidity (represented by the

mixing ratio) profile through which the hydrometeor falls

typically consists of three layers, a top layer that is frozen

(T <0 ◦C) in winter in temperate areas (Stewart, 1992), a

mixed layer where T can exceed 0 ◦C, and a surface layer

that can be above or below 0 ◦C (Fig. 2). The phase of pre-

cipitation at the surface partly depends on the phase reaching

the top of the surface layer, which is defined as the critical

height. The temperature profile and depth of the surface layer

control the precipitation phase reaching the ground surface.

For example, in Fig. 2a, if rain reaches the critical height,

it may reach the surface as rain or ice pellets depending on

small differences in temperature in the surface layer (Theri-

ault and Stewart, 2010). Similarly, in Fig. 2b, if snow reaches

the critical height, it may reach the surface as snow if the

temperature in the surface layer is below freezing. However,

in Fig. 2c, when the surface layer temperatures are close to

freezing and the mixing ratios are neither close to saturation

nor very dry, the phase at the surface is not easily determined

by the surface conditions alone.

In addition to strong dependence on the vertical tempera-

ture and humidity profiles, precipitation phase is also a func-

tion of fall rate and hydrometeor size because they affect en-

ergy exchange with the atmosphere (Theriault et al., 2010).

Precipitation rate influences the precipitation phase; for ex-

ample, a precipitation rate of 10 mm h−1 reduces the amount

of freezing rain by a factor of 3 over a precipitation rate of

1 mm h−1 (Theriault and Stewart, 2010) because there is less

time for turbulent heat exchange with the hydrometeor. A

solid hydrometeor that originates in the top layer and falls

through the mixed layer can reach the surface layer as wet

snow, sleet, or rain. This phase transition in the mixed layer

is primarily a function of latent heat exchange driven by va-

por pressure gradients and sensible heat exchange driven by

temperature gradients. Temperature generally increases from

the mixed layer to the surface layer causing sensible heat in-

puts to the hydrometeor. If these gains in sensible heat are

combined with minimal latent heat losses resulting from low

vapor pressure deficits, it is likely that the hydrometeor will

reach the surface layer as rain (Fig. 2). However, vapor pres-

sure in the mixed layer is often below saturation leading to

latent energy losses and cooling of the hydrometeor coupled

with diabatic cooling of the local atmosphere, which can pro-

duce snow or other forms of frozen precipitation at the sur-

face even when temperatures are above 0 ◦C. Likewise, sur-

face energetics affect local atmospheric conditions and dy-

namics, especially in complex terrain. For example, melting

of the snowpack can cause diabatic cooling of the local at-

mosphere and affect the phase of precipitation, especially

when air temperatures are very close to 0 ◦C (Theriault et al.,

2012). Many conditions lead to a combination of latent heat

losses and sensible heat gains by hydrometeors (Fig. 2). Un-

der these conditions it can be difficult to predict the phase of

precipitation without sufficient information about humidity

and temperature profiles, turbulence, hydrometeor size, and

precipitation intensity.

Stability of the atmosphere can also influence precipita-

tion phase. Stability is a function of the vertical temperature

structure, which can be altered by vertical air movement and

hence influence precipitation phase (Theriault and Stewart,

2007). Vertical air velocity changes the temperature struc-

ture by adiabatic warming or cooling due to pressure changes

of descending and ascending air parcels, respectively. These

changes in temperature can generate undersaturated or su-

persaturated conditions in the atmosphere that can also alter

the precipitation phase. Even a very weak vertical air ve-

locity (< 10 cm s−1) significantly influences the phase and

amount of precipitation formed in the atmosphere (Theri-

ault and Stewart, 2007). The rain–snow line predicted by

atmospheric models is very sensitive to these microphysics

(Minder, 2010) and validating the microphysics across lo-

cations with complex physiography is challenging. Incorpo-

ration and validation of atmospheric microphysics is rarely

achieved in hydrological applications (Feiccabrino et al.,

2015).

3 Current tools for observing precipitation phase

3.1 In situ observations

In situ observations refer to methods wherein a person or

instrument on-site records precipitation phase. We identify

three classes of approaches that are used to observe precip-

itation phase including (1) direct observations, (2) coupled

observations, and (3) proxy observations.

Direct observations simply involve a person on-site not-

ing the phase of falling precipitation. Such data form the ba-

sis of many of the predictive methods that are widely used

(Dai, 2008; Ding et al., 2014; US Army Corps of Engi-

neers, 1956). Direct observations are useful for “manned”

stations such as those operated by the US National Weather

Service. Few research stations, however, have this benefit,

particularly in many remote regions and in complex ter-

rain. Direct observations are also limited in their tempo-

ral resolution and are typically reported only once per day,

with some exceptions (Froidurot et al., 2014). Citizen sci-

entist networks have historically provided valuable data to

supplement primary instrumented observation networks. The

National Weather Service Cooperative Observer Program

(http://www.nws.noaa.gov/om/coop/what-is-coop.html; last

access: 10 December 2016) is comprised of a network of

volunteers recording daily observations of temperature and

precipitation, including phase. The NOAA National Severe

Storms Laboratory used citizen scientist observations of rain

and snow occurrence to evaluate the performance of the

Multi-Radar Multi-Sensor (MRMS) system in the meteo-

rological Phenomena Identification Near the Ground (mP-

ING) project (Chen et al., 2015). The mPING project has
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recently been expanded to allow citizen scientists worldwide

to easily report precipitation phase and characteristics us-

ing GPS-enabled smartphone applications (http://mping.nssl.

noaa.gov; last access: 12 April 2016). The Colorado Climate

Center initiated the Community Collaborative Rain, Hail and

Snow Network (CoCoRaHS), which supplies volunteers with

low-cost instrumentation to observe precipitation character-

istics, including phase, and enables observations to be re-

ported on the project website (http://www.cocorahs.org/; last

access: 10 December 2016). Although highly valuable, some

limitations of this system include the imperfect ability of ob-

servers to identify mixed-phase events and the temporal ex-

tent of storms, as well as the lack of observations in both

remote areas and during low-light conditions.

Coupled observations link synchronous measurements of

precipitation with secondary observations to indicate phase.

Secondary observations can include photographs of sur-

rounding terrain, snow depth measurements, and/or measure-

ments of ancillary meteorological variables. Photographs of

vertical scales emplaced in the snow have been used to es-

timate snow accumulation depth, which can then be cou-

pled with precipitation mass to determine density and phase

(Berris and Harr, 1987; Floyd and Weiler, 2008; Garvel-

mann et al., 2013; Hedrick and Marshall, 2014; Parajka

et al., 2012). Mixed-phase events, however, are difficult to

quantify using coupled depth- and photographic-based tech-

niques (Floyd and Weiler, 2008). Acoustic distance sensors,

which are now commonly used to monitor the accumula-

tion of snow (e.g., Boe, 2013), have similar drawbacks in

mixed-phase events, but have been effectively applied to dis-

criminate between snow and rain (Rajagopal and Harpold,

2016). Meteorological information such as temperature and

relative humidity can be used to compute the phase of pre-

cipitation measured by bucket-type gauges. Unfortunately,

this approach generally requires incorporating assumptions

about the meteorological conditions that determine phase

(see Sect. 4.1). Harder and Pomeroy (2013) used a compre-

hensive approach to determine the phase of precipitation. Ev-

ery 15 min during their study period phase was determined

by evaluating weighing bucket mass, tipping bucket depth,

albedo, snow depth, and air temperature. Similarly, Marks

et al. (2013) used a scheme based on co-located precipita-

tion and snow depth to discriminate phase. A more involved

expert decision-making approach by L’hôte et al. (2005)

was based on six recorded meteorological parameters: pre-

cipitation intensity, albedo of the ground, air temperature,

ground surface temperature, reflected long-wave radiation,

and soil heat flux. The intent of most of these coupled ob-

servations was to develop datasets to evaluate PPMs. How-

ever, if observation systems such as these were sufficiently

simple, they could have the potential to be applied oper-

ationally across larger meteorological monitoring networks

encompassing complex terrain where snow comprises a large

component of annual precipitation (Rajagopal and Harpold,

2016).

Proxy observations measure geophysical properties of pre-

cipitation to infer phase. The hot plate precipitation gauge

introduced by Rasmussen et al. (2012), for example, uses a

thin heated disk to accumulate precipitation and then mea-

sures the amount of energy required to melt snow or evap-

orate liquid water. This technique, however, requires a sec-

ondary measurement of air temperature to determine if the

energy is used to melt snow or only evaporate rain. Dis-

drometers measure the size and velocity of hydrometeors.

Although the most common application of disdrometer data

is to determine the drop size distribution and other proper-

ties of rain, the phase of hydrometeors can be inferred by

relating velocity and size to density. Some disdrometer tech-

nologies, which can be grouped into impact, imaging, and

scattering approaches (Loffler-Mang et al., 1999), are bet-

ter suited for describing snow than others. Impact disdrom-

eters, first introduced by Joss and Waldvogel (1967), use an

electromechanical sensor to convert the momentum of a hy-

drometeor into an electric pulse. The amplitude of the pulse

is a function of drop diameter. Impact disdrometers have not

been commonly used to measure solid precipitation due to

the different functional relationships between drop size and

momentum for solid and liquid precipitation. Imaging dis-

drometers use basic photographic principles to acquire im-

ages of the distribution of particles (Borrmann and Jaenicke,

1993; Knollenberg, 1970). The two-dimensional video dis-

drometer (2DVD) described by Kruger and Krajewski (2002)

records the shadows cast by hydrometeors onto photodetec-

tors as they pass through two sheets of light. The shape of

the shadows enables computation of particle size, and shad-

ows are tracked through both light sheets to determine ve-

locity. Although initially designed to describe liquid precip-

itation, recent work has shown that the 2DVD can be used

to classify snowfall according to microphysical properties

of single hydrometeors (Bernauer et al., 2016). The 2DVD

has been used to classify known rain and snow events, but

little work has been performed to distinguish between liq-

uid and solid precipitation. Scattering or optical disdrome-

ters, measure the extinction of light passing between a source

and a sensor (Hauser et al., 1984; Loffler-Mang et al., 1999).

Like the other types, optical disdrometers were originally de-

signed for rain, but have been periodically applied to snow

(Battaglia et al., 2010; Lempio et al., 2007). In a comparison

study by Caracciolo et al. (2006), the PARSIVEL optical dis-

drometer, originally described by Loffler-Mang et al. (1999),

did not perform well against a 2DVD because of problems

related to the detection of slow fall velocities for snow. It

may be possible to use optical disdrometers to distinguish

between rain, sleet, and snow based on the existence of dis-

tinct shapes of the size spectra for each precipitation type.

More research on the relationship between air temperature

and the size spectra produced by the optical disdrometer is

needed (Lempio et al., 2007). In summary, disdrometers of

various types are valuable tools for describing the properties

of rain and snow, but require further testing and development
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to distinguish between rain and snow, as well as mixed-phase

events.

3.2 Ground-based remote sensing observations

Ground-based remote sensing observations have been avail-

able for several decades to detect precipitation phase using

radar. Until recently, most ground-based radar stations were

operated as conventional Doppler systems that transmit and

receive radio waves with single horizontal polarization. De-

velopments in dual polarization ground radar, such as those

that function as part of the US National Weather Service

NEXRAD network (NOAA, 2016), have resulted in systems

that transmit radio signals with both horizontal and vertical

polarizations. In general, ground-based remote sensing ob-

servations, either single or dual polarization, remain under-

utilized for detecting precipitation phase and are challenging

to apply in complex terrain (Table 3).

Ground-based remote sensing of precipitation phase us-

ing single-polarized radar systems depends on detecting the

radar bright band. Radio waves transmitted by the radar sys-

tem, are scattered by hydrometeors in the atmosphere, with a

certain proportion reflected back towards the radar antenna.

The magnitude of the measured reflectivity (Z) is related

to the size and the dielectric constant of falling hydrome-

teors (White et al., 2002). Ice particles aggregate as they de-

scend through the atmosphere and their dielectric constant in-

creases, in turn increasing Z measured by the radar, creating

the bright band, a layer of enhanced reflectivity just below the

elevation of the melting level (Lundquist et al., 2008). There-

fore, bright-band elevation can be used as a proxy for the

“snow level”, the bottom of the melting layer where falling

snow transforms to rain (White et al., 2002, 2010).

Doppler vertical velocity (DVV) is another variable that

can be estimated from single-polarized vertically profiling

radar. DVV gives an estimate of the velocity of falling par-

ticles; as snowflakes melt and become liquid raindrops, the

fall velocity of the hydrometeors increases. When combined

with reflectivity profiles, DVV helps reduce false positive

detection of the bright band, which may be caused by phe-

nomena other than snow melting to rain (White et al., 2002).

First, DVV and Z are combined to detect the elevation of

the bottom of the bright band. The algorithm then searches

for maximum Z above the bottom of the bright band and

determines that to be the bright-band elevation (White et al.,

2002). However, a test of this algorithm on data from a winter

storm over the Sierra Nevada found root mean square errors

of 326 to 457 m compared to ground observations when the

bright-band elevation was assumed to represent the surface

transition from snow to rain (Lundquist et al., 2008). Snow

levels in mountainous areas, however, may also be overesti-

mated by radar profiler estimates if they are unable to resolve

spatial variations close to mountain fronts, since snow lev-

els have been noted to persistently drop on windward slopes

(Minder and Kingsmill, 2013). Despite the potential errors,

the elevation of maximum Z may be a useful proxy for snow

levels in hydrometeorological applications in mountainous

watersheds because maximum Z will always occur below the

freezing level (Lundquist et al., 2008; White et al., 2010)

Few published studies have explored the value of bright-

band-derived phase data for hydrologic modeling. Maurer

and Mass (2006) compared the melting level from vertically

pointing radar reflectivity against temperature-based meth-

ods to assess whether the radar approach could improve de-

termination of precipitation phase at the ground level. In that

study, the altitude of the top of the bright band was detected

and applied across the study basin. Frozen precipitation was

assumed to be falling in model pixels above the altitude of

the melting level and liquid precipitation was assumed to

be falling in pixels below the altitude of the melting layer

(Maurer and Mass, 2006). Maurer and Mass (2006) found

that incorporating radar-detected melting layer altitude im-

proved streamflow simulation results. A similar study that

used bright-band altitude to classify pixels according to sur-

face precipitation type was not as conclusive; bright-band al-

titude data did not improve hydrologic model simulation re-

sults over those based on a temperature threshold (Mizukami

et al., 2013). Also, the potential of the method is limited

to the availability of vertically pointing radar; in complex,

mountainous terrain the ability to estimate melting level be-

comes increasingly challenging with distance from the radar.

Dual-polarized radar systems generate more variables than

traditional single-polarized systems. These polarimetric vari-

ables include differential reflectivity, reflectivity difference,

the correlation coefficient, and specific differential phase. Po-

larimetric variables respond to hydrometeor properties such

as shape, size, orientation, phase state, and fall behavior and

can be used to assign hydrometeors to specific categories

(Chandrasekar et al., 2013; Grazioli et al., 2015), or to im-

prove bright-band detection (Giangrande et al., 2008).

Various hydrometeor classification algorithms have been

applied to X, C, and S band wavelengths. Improvements in

these algorithms over recent years have seen hydrometeor

classification become an operational meteorological product

(see Grazioli et al., 2015 for an overview). For example, the

US National Severe Storms Laboratory developed a fuzzy-

logic hydrometeor classification algorithm for warm-season

convective weather (Park et al., 2009) and this algorithm

has also been tested for cold-season events (Elmore, 2011).

Its skill was tested against surface observations of precipita-

tion type but the algorithm did not perform well in classify-

ing winter precipitation because it could not account for re-

freezing of hydrometeors below the melting level (Fig. 2, El-

more, 2011). Unlike warm-season convective precipitation,

the freezing level during a cold-season precipitation event

can vary spatially. This phenomenon has prompted the use

of polarimetric variables to first detect the melting layer, and

then classify hydrometeors (Boodoo et al., 2010; Thomp-

son et al., 2014). Although there has been some success in

developing two-stage cold-season hydrometeor classification
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algorithms, there is little in the published literature that ex-

plores the potential contributions of these algorithms for par-

titioning snow and rain for hydrological modeling.

3.3 Space-based remote sensing observations

Spaceborne remote sensing observations typically use pas-

sive or active microwave sensors to determine precipitation

phase (Table 3). Many of the previous passive microwave

systems were challenged by coarse resolutions and difficul-

ties retrieving snowfall over snow-covered areas. More re-

cent active microwave systems are advantageous for detect-

ing phase in terms of accuracy and spatial resolution, but re-

main largely unverified. Table 3 provides and overview of

these space-based remote sensing technologies that are de-

scribed in more detail below.

Passive microwave radiometers detect microwave radia-

tion emitted by the Earth’s surface or atmosphere. Passive

microwave remote sensing has the potential for discriminat-

ing between rainfall and snowfall because microwave radi-

ation emitted by the Earth’s surface propagates through all

but the densest precipitating clouds, meaning that radiation

at microwave wavelengths directly interacts with hydrom-

eteors within clouds (Olson et al., 1996; Ardanuy, 1989).

However, the remote sensing of precipitation in microwave

wavelengths and the development of operational algorithms

is dominated by research focused on rainfall (Arkin and Ar-

danuy, 1989); by comparison, snowfall detection and obser-

vation has received less attention (Noh et al., 2009; Kim et

al., 2008). This is partly explained by examining the physical

processes within clouds that attenuate the microwave signal.

Raindrops emit low levels of microwave radiation increas-

ing the level of radiance measured by the sensor; in contrast,

ice hydrometeors scatter microwave radiation, decreasing the

radiance measured by a sensor (Kidd and Huffman, 2011).

Land surfaces have a much higher emissivity than water sur-

faces, meaning that emission-based detection of precipitation

is challenging over land because the high microwave emis-

sions mask the emission signal from raindrops (Kidd, 1998;

Kidd and Huffman, 2011). Thus, scattering-based techniques

using medium to high frequencies are used to detect precipi-

tation over land. Moreover, microwave observations at higher

frequencies (> 89 GHz) have been shown to discriminate be-

tween liquid and frozen hydrometeors (Wilheit et al., 1982).

Retrieving snowfall over land areas from spaceborne mi-

crowave sensors can be even more challenging than for

liquid precipitation because existing snow cover increases

microwave emission. Depression of the microwave signal

caused by scattering from airborne ice particles may be

obscured by increased emission of microwave radiation

from the snow-covered land surface. Kongoli et al. (2003)

demonstrated an operational snowfall detection algorithm

that accounts for the problem of existing snow cover. This

group used data from the Advanced Microwave Sounding

Unit-A (AMSU-A), a 15-channel atmospheric temperature

sounder with a single high-frequency channel at 89 GHz),

and AMSU-B, a 5-channel high-frequency microwave hu-

midity sounder. Both sensors were mounted on the NOAA-

16 and 17 polar-orbiting satellites. While the algorithm

worked well for warmer, opaque atmospheres, it was found

to be too noisy for colder, clear atmospheres. Additionally,

some snowfall events occur under warmer conditions than

those that were the focus of the study (Kongoli et al., 2003).

Kongoli et al. (2015) further adapted their methodology for

the Advanced Technology Microwave Sounder (ATMS – on-

board the polar-orbiting Suomi National Polar-orbiting Part-

nership satellite), a descendant of the AMSU sounders. The

latest algorithm assesses the probability of snowfall using

the logistic regression and the principal components of seven

high-frequency bands at 89 GHz and above. In testing, the

Kongoli algorithm (Kongoli et al., 2015) has shown skill in

detecting snowfall both at variable rates and when snowfall

is lighter and occurs in colder conditions. An alternative al-

gorithm by Noh et al. (2009) used physically based, radia-

tive transfer modeling in an attempt to improve snowfall re-

trieval over land. In this case, radiative transfer modeling was

used to construct an a priori database of observed snowfall

profiles and corresponding brightness temperatures. The ra-

diative transfer procedure yields likely brightness tempera-

tures from modeling how ice particles scatter microwave ra-

diation at different wavelengths. A Bayesian retrieval algo-

rithm is then used to estimate snowfall over land by compar-

ing measured and modeled brightness temperatures (Noh et

al., 2009). The algorithm was tested during the early and late

winter for large snowfall events (e.g., 60 cm depth in 12 h).

Late winter retrievals indicated that the algorithm overesti-

mated snowfall over surfaces with significant snow accumu-

lation.

While results have been promising, the spatial resolution

at which ATMS and other passive microwave data are ac-

quired is very coarse (15.8 to 74.8 km at nadir), making pas-

sive microwave approaches more applicable for regional to

continental scales. Temporal resolution of the data acquisi-

tion is another challenge. AMSU instruments are mounted

on eight satellites; the related ATMS is mounted on a sin-

gle satellite and planned for two additional satellites. How-

ever, the satellites are polar orbiting, not geostationary, so it

is probable that a precipitation event could occur outside the

field of view of one of the instruments.

Spaceborne active microwave or radar sensors measure the

backscattered signal from pulses of microwave energy emit-

ted by the sensor itself. Much like the ground-based radar

systems, the propagated microwave signal interacts with liq-

uid and solid particles in the atmosphere and the degree to

which the measured return signal is attenuated provides in-

formation on the atmospheric constituents. The advantage of-

fered by spaceborne radar sensors over passive microwave is

the capability to acquire more detailed sampling of the ver-

tical profile of the atmosphere (Kulie and Bennartz, 2009).

The first spaceborne radar capable of observing snowfall is
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Figure 3. The optimized critical maximum daily temperature threshold that produced the lowest root mean square error (RMSE) in the

prediction of snowfall at Snow Telemetry (SNOTEL) stations across the western USA (adapted from Rajagopal and Harpold, 2016).

(b) Precipitation-day relative humidity averaged over 1981–2015 based on the Gridmet dataset (Abatzoglou, 2013).

the Cloud Profiling Radar (CPR) onboard CloudSat (2006

to present). The CPR operates at 94 GHz with an along-

track (or vertical) resolution of ∼ 1.5 km. Retrieval of dry

snowfall rate from CPR measurements of reflectivity have

been shown to correspond with estimates of snowfall from

ground-based radars at elevations of 2.6 and 3.6 km above

mean sea level (Matrosov et al., 2008). Estimates at lower

elevations, especially those in the lowest 1 km, are contam-

inated by ground clutter. Alternative approaches, combin-

ing CPR data with ancillary data have been formulated to

account for this challenge (Kulie and Bennartz, 2009; Liu,

2008). Known relationships between CPR reflectivity data

and the scattering properties of non-spherical ice crystals are

used to derive snowfall at a given elevation above mean sea

level; below this elevation a temperature threshold derived

from surface data is used to discriminate between rain and

snow events. Liu (2008) used 2 ◦C as the snow–rain thresh-

old, whereas Kulie and Bennartz (2009) used 0 ◦C as the

snow–rain threshold. Temperature thresholds have been the

subject of much research and debate for discriminating pre-

cipitation phase, as is further discussed in Sect. 4.1.

CloudSat is part of the A-train or afternoon constella-

tion of satellites, which includes Aqua, with the Moderate

Resolution Imaging Spectrometer (MODIS) and the Cloud–

Aerosol Lidar and Infrared Pathfinder Satellite Observations

(CALIPSO) spacecraft with cloud-profiling lidar. The sen-

sors onboard A-train satellites provided the unique combi-

nation of data to create an operational snow retrieval prod-

uct. The CPR level 2 snow profile product (2C-SNOW-

PROFILE) uses vertical profile data from the CPR, input

from MODIS and the CPR, as well as weather forecast data

to estimate near-surface snowfall (Kulie et al., 2016; Wood

et al., 2013). The performance of 2C-SNOW-PROFILE was

tested by Cao et al. (2014). This group found the product

worked well in detecting light snow but performed less sat-

isfactorily under conditions of moderate to heavy snow be-

cause of the non-stationary effects of attenuation on the re-

turned radar signal.

The launch of the Global Precipitation Measurement

(GPM) core observatory in February 2014 holds promise for

the future deployment of operational snow detection prod-

ucts. Building on the success of the Tropical Rainfall Moni-

toring Mission (TRMM), the GPM core observatory sensors

include the Dual-frequency Precipitation Radar (DPR) and

GPM Microwave Imager (GMI). The GMI has 2 mm wave

channels (166 and 183 GHz) that are specifically designed to

detect and retrieve light rain and snow precipitation. These

are more advanced than the sensors onboard the TRMM

spacecraft and permit better quantification of the physical

properties of precipitating particles, particularly over land at

middle to high latitudes (Hou et al., 2014). Algorithms for

the GPM mission are still under development, and are partly

being driven by data collected during the GPM Cold-season

Experiment (GCPEx) (Skofronick-Jackson et al., 2015). Us-

ing airborne sensors to simulate GPM and DPR measure-

ments, one of the questions that the GCPEx hoped to ad-

dress concerned the potential capability of data from the DPR

and GMI to discriminate falling snow from rain or clear air

(Skofronick-Jackson et al., 2015). The initial results reported

by the GCPEx study echo some of the challenges recognized

for ground-based single-polarized radar detection of snow-

fall. The relationship between radar reflectivity and snow-
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fall is not unique. For the GPM mission, it will be neces-

sary to include more variables from dual-frequency radar

measurements, multiple-frequency passive microwave mea-

surements, or a combination of radar and passive microwave

measurement (Skofronick-Jackson et al., 2015).

4 Current tools for predicting precipitation phase

4.1 Prediction techniques from ground-based

observations

Discriminating between solid and liquid precipitation is of-

ten based on a near-surface air temperature threshold (Mar-

tinec and Rango, 1986; US Army Corps of Engineers, 1956;

L’hôte et al., 2005). Four prediction methods have been de-

veloped that use near-surface air temperature for discriminat-

ing precipitation phase: (1) static threshold, (2) linear transi-

tion, (3) minimum and maximum temperature, and (4) sig-

moidal curve (Table 1). A static temperature threshold ap-

plies a single temperature value, such as mean daily tempera-

ture, where all of the precipitation above the threshold is rain,

and all below the threshold is snow. Typically this threshold

temperature is near 0 ◦C (Lynch-Stieglitz, 1994; Motoyama,

1990), but was shown to be highly variable across both space

and time (Kienzle, 2008; Motoyama, 1990; Braun, 1984; Ye

et al., 2013). For example, Rajagopal and Harpold (2016) op-

timized a single temperature threshold at Snow Telemetry

(SNOTEL) sites across the western USA to show regional

variability from −4 to 3 ◦C (Fig. 3). A second discrimina-

tion technique is to linearly scale the proportion of snow and

rain between a temperature for all rain (Train) and a temper-

ature for all snow (Tsnow) (Pipes and Quick, 1977; McCabe

and Wolock, 2010; Tarboton et al., 1995). Linear threshold

models have been parameterized slightly differently across

studies, e.g., Tsnow = −1.0 and Train = 3.0 ◦C (McCabe and

Wolock, 2010), Tsnow = −1.1 and Train = 3.3 ◦C (Tarboton

et al., 1995), and Tsnow = 0 and Train = 5 ◦C (McCabe and

Wolock, 1999b). A third technique specifies a threshold tem-

perature based on daily minimum and maximum tempera-

tures to classify rain and snow, respectively, with a threshold

temperature between the daily minimum and maximum pro-

ducing a proportion of rain and snow (Leavesley et al., 1996).

This technique can have a time-varying temperature thresh-

old or include a Train that is independent of daily maximum

temperature. A fourth technique applies a sigmoidal relation-

ship between mean daily (or sub-daily) temperature and the

proportion or probability of snow versus rain. For example,

one method derived for southern Alberta, Canada, employs

a curvilinear relationship defined by two variables, a mean

daily temperature threshold where 50 % of precipitation is

snow, and a temperature range where mixed-phase precipi-

tation can occur (Kienzle, 2008). Another sigmoidal-based

empirical model identified a hyperbolic tangent function de-

fined by four parameters to estimate the conditional snow (or

rain) frequency based on a global analysis of precipitation-

phase observations from over 15 000 land-based stations

(Dai, 2008). Selection of temperature-based techniques is

typically based on available data, with a limited number of

studies quantifying their relative accuracy for hydrological

applications (Harder and Pomeroy, 2014).

Several studies have compared the accuracy of

temperature-based PPM to one another and/or against an

independent validation of precipitation phase. Sevruk (1984)

found that only about 68 % of the variability in monthly

observed snow proportion in Switzerland could be explained

by threshold temperature-based methods near 0 ◦C. An

analysis of data from 15 stations in southern Alberta,

Canada, with an average of > 30 years of direct observations

noted overestimations in the mean annual snowfall for static

threshold (8.1 %), linear transition (8.2 %), minimum and

maximum (9.6 %), and sigmoidal transition-based (7.1 %)

methods (Kienzle, 2008). An evaluation of PPM at three sites

in the Canadian Rockies by Harder and Pomeroy (2013)

found the largest percent error to occur using a static

threshold (11 to 18 %), followed by linear relationships

(−8 to 11 %), followed by sigmoidal relationships (−3 to

11 %). Another study using 824 stations in China with > 30

years of direct observations found accuracies of 51.4 %

using a static 2.2 ◦C threshold and 35.7 to 47.4 % using

linear temperature-based thresholds (Ding et al., 2014).

Lastly, for multiple sites across the rain–snow transition in

southwestern Idaho, static temperature thresholds produced

the lowest proportion (68 %) of snow, whereas a linear-based

model produced the highest proportion (75 %) of snow

(Marks et al., 2013). These accuracy assessments generally

demonstrated that static threshold methods produced the

greatest errors, whereas sigmoidal relationships produced

the smallest errors, although variations to this general rule

existed across sites. Near-surface humidity also influences

precipitation phase (see Sect. 2). Three humidity-dependent

precipitation-phase identification methods are found in the

literature: (1) dew point temperature (Td), (2) wet bulb

temperature (Tw), and (3) psychometric energy balance. The

dew point temperature is the temperature at which an air

parcel with a fixed pressure and moisture content would be

saturated. In one approach to account for measurement and

instrument calibration uncertainties of ±0.25 ◦C, both Td

and Tw below −0.5 ◦C were assumed to be all snow and

above +0.5 ◦C all rain, with a linear relationship between

the two being a proportional mix of snow and rain (Marks

et al., 2013). Td of 0.0 ◦C performed consistently better

than Ta in one study by Marks et al. (2001) while a Td of

0.1 ◦C for multiple stations in Sweden was less accurate

than a Ta of 1.0 ◦C (Feiccabrino et al., 2013). The wet or

ice bulb temperature (Tw) is the temperature at which an air

parcel would become saturated by evaporative cooling in the

absence of other sources of sensible heat, and is the lowest

temperature that falling precipitation can reach. Few studies

have investigated the feasibility of Tw for precipitation-phase
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prediction (Olsen, 2003; Ding et al., 2014; Marks et al.,

2013). Tw significantly improved prediction of precipitation

phase over Ta at 15 min time steps, but only marginally

improved predictions at daily time steps (Marks et al., 2013).

Ding et al. (2014) developed a sigmoidal-phase probability

curve based on Tw and an elevation that outperformed Ta

threshold-based methods across a network of sites in China.

Conceptually, the hydrometeor temperature (Ti) is similar

to Tw but is calculated using the latent heat and vapor

density gradient. Use of computed Ti values significantly

improved precipitation-phase estimates over Ta, particularly

as timescales approached 1 day (Harder and Pomeroy, 2013).

There has been limited validation of humidity-based

precipitation-phase prediction techniques against ground-

truth observations. Ding et al. (2014) showed that a method

based on Tw and elevation increased accuracy by 4.8–8.9 %

over several temperature-based methods. Their method was

more accurate than the simpler Tw-based method by Ya-

mazaki (2001). Feiccabrino et al. (2013) showed that Td mis-

classified 3.0 % of snow and rain (excluding mixed-phase

precipitation), whereas Ta only misclassified 2.4 %. Ye et

al. (2013) found Td less sensitive to phase discrimination un-

der diverse environmental conditions and seasons than Ta.

Froidurot et al. (2014) evaluated several techniques with

a critical success index (CSI) at sites across Switzerland

to show the highest CSI values were associated with vari-

ables that included Tw or relative humidity (CSI = 84–85 %)

compared to Ta (CSI = 78 %). Marks et al. (2013) evalu-

ated the time at which precipitation transitioned from snow

to rain against field observations across a range of eleva-

tions and found that Td most closely predicted the timing

of phase change, whereas both Ta and Tw estimated earlier

phase changes than observed. Harder and Pomeroy (2013)

compared Ti with field observations and found that error

was < 10 % when Ti was allowed to vary with each daily

time step and > 10 % when Ti was fixed at 0 ◦C. The Ti

accuracy increased appreciably (i.e., 5–10 % improvement)

when the temporal resolution was decreased from daily to

hourly or 15 min time steps. The validation studies consis-

tently showed improvements in accuracy by including hu-

midity over PPMs based only on temperature.

Hydrological models employ a variety of techniques

for phase prediction using ground-based observations (Ta-

ble 2). All discrete hydrological models (i.e., not coupled

to an atmospheric model) investigated used temperature-

based thresholds that did not consider the near-surface hu-

midity. Moreover, most models use a single static temper-

ature threshold that typically produces lower accuracy than

multiple temperature methods. It should be noted that many

of these hydrological models lump by elevation zone, which

improves estimates of the snow to rain transition elevation

and phase prediction accuracy in complex terrain compared

to models without elevation zones. Hydrological models that

are coupled to atmospheric models were more able to con-

sider important controls on precipitation phase, such as hu-

midity and atmospheric profiles. This compendium of model

PPMs highlights the current shortcomings in phase predic-

tion in conventional discrete hydrological models.

4.2 Prediction techniques incorporating atmospheric

information

While many hydrologic models have their own formulations

for determining precipitation phase at the ground, it is also

possible to initialize hydrologic models with precipitation-

phase fraction, intensity, and volume from numerical weather

simulation model output. Here we discuss the limitations of

precipitation-phase simulation inherent to the Weather Re-

search and Forecasting (WRF) model (Kaplan et al., 2012;

Skamarock et al., 2008) and other atmospheric simulation

models. The finest scale spatial resolution employed in atmo-

spheric simulation models is ∼ 1 km and these models gen-

erate data at hourly or finer temporal resolutions. Regional

climate models (RCMs) and global climate models (GCMs)

are typically coarser than local mesoscale models. The phys-

ical processes driving both the removal of moisture from the

air and the precipitation phase (Sect. 2) occur at much finer

spatial and temporal resolutions in the real atmosphere than

models typically resolve, i.e., < 1 km. As with all numeri-

cal models, the representation of sub-grid-scale processes re-

quires parameterization. At typical scales considered, char-

acterization of mixed-phase processes within a condensing

cloud depends on both cloud microphysics and kinematics

of the surrounding atmosphere. Replicating cloud physics

at the multi-kilometer scale requires empiricism. The 30+

cloud microphysics parameterization options in the research

version of WRF (Skamarock et al., 2008) vary in the num-

ber of classes described (cloud ice, cloud liquid, snow, rain,

graupel, hail, etc.), and may or may not accurately resolve

changes in hydrometeor phase and horizontal spatial loca-

tion (due to wind) during precipitation. All microphysical

schemes predict cloud water and cloud ice based on inter-

nal cloud processes that include a variety of empirical for-

mulations or even simple lookup tables. These schemes vary

greatly in their accuracy with “mixed-phase” schemes gen-

erally producing the most accurate simulations of precipita-

tion phase in complex terrain, where much of the water is

supercooled (Lin, 2007; Reisner et al., 1998; Thompson et

al., 2004, 2008; Morrison et al., 2005; Zängl, 2007; Kaplan

et al., 2012). Comprehensive validation of the microphysical

schemes over different land surface types (warm maritime,

flat prairie, etc.) with a focus on different snowfall patterns is

lacking. In particular, in transition zones between mountains

and plains or along coastlines, the complexity of the micro-

physics becomes even more extreme due the dynamics and

interactions of differing air masses with distinct characteris-

tics. The autoconversion and growth processes from cloud

water or ice to hydrometeors contain a strong component

of empiricism and, in particular, the nucleation media and

their chemical composition. Different microphysical param-
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Figure 4. Conceptual representation of the research gaps and workflows needed to advance PPM and improve hydrological modeling.

eterizations lead to different spatial distributions of precipita-

tion and produce varying vertical distributions of hydromete-

ors (Gilmore et al., 2004). Regardless, precipitation rates for

each grid cell are averages requiring hydrological modelers

to consider the effects of elevation, aspect, etc., in resolving

precipitation-phase fractions for finer-scale models.

Numerical models that contain sophisticated cloud micro-

physics schemes allow for assimilation of additional remote

sensing data beyond conventional synoptic/large-scale obser-

vations (balloon data). This is because the coarse spatial and

temporal nature of radiosonde data results in the atmosphere

being sensed imperfectly/incompletely compared with the

scale of motion that weather simulation models can numer-

ically resolve. These observational inadequacies are exacer-

bated in complex terrain, where precipitation-phase fraction

can vary on small scales and radar can be blocked by to-

pography and therefore rendered useless in the model initial-

ization. Accurate generation of liquid and frozen precipita-

tion from vapor requires accurate depiction of initial atmo-

spheric moisture conditions (Kalnay and Cai, 2003; Lewis

et al., 2006). In acknowledgement of the difficulty and un-

certainty of initializing numerical simulation models, atmo-

spheric modelers use the term “bogusing” to describe incor-

poration of individual observations at a point location into

large-scale initial conditions in an effort to enhance the ac-

curacy of the simulation (Eddington, 1989). They also em-

ploy complex assimilation methodologies to force the early

period of the model solutions during the time integration to-

wards fine-scale observations (Kalnay and Cai, 2003; Lewis

et al., 2006). These asynoptic or fine-scale data sources often

substantially improve the accuracy of the simulations as time

progresses.

Hydrologists are increasingly using output from atmo-

spheric models to drive hydrologic models from daily to cli-

matic or multi-decadal timescales (Tung and Haith, 1995;

Pachauri, 2002; Wood et al., 2004; Rojas et al., 2011; Yu-

cel et al., 2015). These atmospheric models suffer from the

same data paucity and scale issues that likewise challenge the

implementation and validation of hydrologic models. Uncer-

tainties in their output, including precipitation volume and

phase, begins with the initialization of the atmospheric model

from measurements, increases with model choice and mi-

crophysics as well as turbulence parameterizations, and is a

strong function of the scale of the model. The significance

of these uncertainties varies by application, but should be

acknowledged. Furthermore, these uncertainties are highly

variable in character and magnitude from day to day and lo-

cation to location. Thus, there has been very little published

concerning how well atmospheric models predict precipita-

tion phase. Finally, lack of ground measurements leaves hy-

drologists with no means to assess and validate atmospheric

model predictions.
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Table 1. Mathematical expression for the four common temperature-based PPM to estimate snow fraction (S) or snow frequency (F ) using

the mean air temperature (Ta), maximum daily air temperature (Ta-max), and/or minimum daily air temperature (Ta-min). The variable Tsnow

is air temperature when all precipitation (P ) is snow and Train is the air temperature when all air precipitation is rain.

Type Mathematical expression for snow fraction (S) Reference(s)

or snow frequency (F )

Static threshold S =

{

P for Ta ≤ Tsnow

0 for Ta ≥ Tsnow
Motoyama (1990)

Linear transition S =











P for Ta ≤ Tsnow

P
(

Train−Ta
Train−Tsnow

)

for Tsnow <

0 for Ta ≥ Tsnow

Ta < Train McCabe and Wolock (1998b)

Minimum and maximum temperature S =











P for Ta-max ≤ Tsnow

1 − P
[

(Ta-max−Tsnow)
(Ta-max−Ta-min)

]

for Tsnow < Ta-max < Train

0 for Ta-max ≥ Train

Leavesley (1996)

Sigmoidal curve S = P × a [tanh(b (Ta − c)) − d] F = a [tanh(b (Ta − c)) − d] Dai (2008)

5 Research gaps

The incorrect prediction of precipitation phase leads to cas-

cading effects on hydrological simulations (Fig. 1). Meeting

the challenge of accurately predicting precipitation phase re-

quires the closing of several critical research gaps (Fig. 4).

Perhaps the most pressing challenge for improving PPMs

is developing and employing new and improved sources of

data. However, new data sources will not yield much ben-

efit without effective incorporation into predictive models

(Fig. 4). Additionally, both the scientific and management

communities lack data products that can be readily under-

stood and broadly used. Addressing these research gaps re-

quires simultaneous engagement both within and between

the hydrology and atmospheric observation and modeling

communities. Changes to atmospheric temperature and hu-

midity profiles from regional climate change will likely chal-

lenge conventional precipitation-phase prediction in ways

that demand additional observations and improved forecasts.

We also highlight research gaps to improve relatively sim-

ple hydrological models without adding unnecessary com-

plexity associated with sophisticated PPM approaches. For

example, more efforts to verify the existing PPMs in different

climatic environments and during specific hydrometeorolog-

ical events could help determine various temperature thresh-

olds (Table 1) to apply in of the existing models (Sect. 5.3).

In addition, developing gridded precipitation-phase products

may eliminate the need to make existing models more com-

plex by applying more complex PPMs outside of those mod-

els, e.g., similar to precipitation distribution in existing grid-

ded products used by many hydrological models. Ultimately,

recognizing the sensitivity of hydrological model outcomes

to PPMs and identifying which climates and applications re-

quire higher-phase prediction accuracy are crucial steps to

determining the complexity of PPMs required for specific ap-

plications.

5.1 Conduct focused field campaigns

Intensive field campaigns are extremely effective approaches

to address fundamental research gaps focused on the dis-

crimination between rain, snow, and mixed-phase precipita-

tion at the ground by providing opportunities to test novel

sensors, collect detailed datasets to develop remote sensing

retrieval algorithms, and improve PPM estimation methods.

The recent GPM mission Cold-season Precipitation Exper-

iment (GCPEx) is an example of such a campaign in non-

complex terrain, where simultaneous observations using ar-

rays of both airborne and ground-based sensors were used to

measure and characterize both solid and liquid precipitation

(e.g., Skofronick-Jackson et al., 2015). Similar intensive field

campaigns are needed in complex terrain that is frequently

characterized by highly dynamic and spatially variable hy-

drometeorological conditions. Such campaigns are expensive

to conduct, but can be implemented as part of operational

nowcasting to develop rich data resources to advance scien-

tific understanding as was very effectively done during the

Vancouver Olympic Games in 2010 (Isaac et al., 2014; Joe

et al., 2014). The research community should utilize exist-

ing datasets and capitalize on similar opportunities and ex-

pand environmental monitoring networks to simultaneously

advance both atmospheric and hydrological understanding,

especially in complex terrain spanning the rain–snow transi-

tion zone.
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Table 2. Common hydrological models and the phase partitioning method (PPM) technique employed. The citation referring to the original

publication of the model is given.

Model PPM technique Citations

Discrete Models (not coupled)

HBV Static threshold Bergström (1995)

Snowmelt Runoff Model Static threshold Martinec et al. (2008)

SLURP Static threshold Kite (1995)

UBC Watershed Model Linear transition Pipes and Quick (1977)

PRMS model Minimum and maximum temperature Leavesley et al. (1996)

USGS water budget Linear transition between two mean temperatures McCabe and Wolock (1999a)

SAC-SMA (SNOW-17) Static threshold Anderson (2006)

DHSVM Linear transition (double check) Wigmosta et al. (1994)

SWAT Threshold model Arnold et al. (2012)

RHESSys Linear transition or input phase Tague and Band (2004)

HSPF Air and dew point temperature thresholds Bicknell et al. (1997)

THE ARNO MODEL Static threshold Todini (1996)

HEC-1 Static threshold HEC-1 (1998)

MIKE SHE Static threshold MIKE-SHE user manual

SWAP Static threshold Gusev and Nasonova (1998)

BATS Static threshold Yang et al. (1997)

Utah Energy Balance Linear transition Tarboton and Luce (1996)

SNOBAL/ISNOBAL Linear transitiona Marks et al. (2013)

CRHM Static threshold Fang et al. (2013)

GEOTOP Linear transition Zanotti et al. (2004)

SNTHERM Linear Transition SNTHERM online documentation

Offline LS models

Noah Static threshold Mitchell et al. (2005)

VIC Static threshold VIC documentation

CLASS Multiple methodsb Verseghy (2009)

a By default. Temperature-phase–density relationship explicitly specified by user. b A flag is specified, which switches between static threshold and linear

transition.

5.2 Incorporate humidity information

Atmospheric humidity affects the energy budget of falling

hydrometeors (Sect. 4.1), but is rarely considered in

precipitation-phase prediction. The difficulty in incorporat-

ing humidity mainly arises from a lack of observations, both

as point measurements and distributed gridded products. For

example, while some reanalysis products have humidity in-

formation (i.e., National Centers for Environmental Predic-

tion, NCEP reanalysis) they are at spatial scales (i.e., > 1◦)

that are too coarse for resolving precipitation phase in com-

plex topography. Addition of high-quality aspirated humidity

sensors at snow-monitoring stations, such as the SNOTEL

network, would advance our understanding of humidity and

its effects on precipitation phase in the mountains. Because

dry air masses have regional variations controlled by storm

tracks and proximity to water bodies, sensitivity of precipita-

tion phase to humidity variations driven by regional warming

remains relatively unexplored.

Although humidity datasets are relatively rare in mountain

environments, some gridded data products exist that can be

used to investigate the importance of humidity information.

Most interpolated gridded data products either do not include

any measure of humidity (e.g., Daymet or WorldClim) or use

daily temperature measurements to infer humidity conditions

(e.g., PRISM). In complex terrain, air temperature can also

vary dramatically at relatively small scales from ridge tops

to valley bottoms due to cold air drainage (Whiteman et al.,

1999) and hence can introduce errors into inferential tech-

niques such as these. Potentially more useful are data assim-

ilation products, such as NLDAS-2, that provide humidity

and temperature values at 1/8th of a degree scale over the

continental USA. In addition, several data reanalysis prod-

ucts are often available at 1–3-year lags from present, in-

cluding NCEP/NCAR, NARR, and the 20th century reanaly-

sis. Given the relatively sparse observations of humidity in

mountain environments, the accuracy of gridded humidity

products is rarely rigorously evaluated (Abatzoglou, 2013).

More work is needed to understand the added skill provided

by humidity datasets for predicting precipitation phase and

its distribution over time and space.

We echo the call of Feiccabrino et al. (2015) for greater

incorporation of atmospheric information into phase predic-
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tion and additional verification of the skill in phase prediction

provided by atmospheric information.

Several avenues exist to better incorporate atmospheric in-

formation into precipitation-phase prediction, including di-

rect observations, remote sensing observations, and synthetic

products. Radiosonde measurements made daily at many

airports and weather forecasting centers have shown some

promise for supplying atmospheric profiles of temperature

and humidity (Froidurot et al., 2014). However, these data

are only useful to initialize the larger-scale structure of tem-

perature and water vapor, and may not capture local-scale

variations in complex terrain. It is also their lack of tem-

poral and spatial frequency that prevents their use in ac-

curate precipitation-phase prediction, which is inherently a

mesoscale problem, i.e., scales of motion < 100 km. Atmo-

spheric information on the bright-band height from Doppler

radar has been utilized for predicting the altitude of the

rain–snow transition (Lundquist et al., 2008; Minder, 2010),

but has rarely been incorporated into hydrological model-

ing applications (Maurer and Mass, 2006; Mizukami et al.,

2013). In addition to atmospheric observations, modeling

products that assimilate observations or are fully physically

based may provide additional information for precipitation-

phase prediction. Numerous reanalysis products (described

in Sect. 2.2) provide temperature and humidity at different

pressure levels within the atmosphere. To our knowledge, in-

formation from reanalysis products has yet to be incorpo-

rated into precipitation-phase prediction for hydrological ap-

plications. Bulk microphysical schemes used by meteorolog-

ical models (e.g., WRF) provide physically based estimates

of precipitation phase. These schemes capture a wide vari-

ety of processes, including evaporation, sublimation, con-

densation, and aggradation, and output between two and

ten precipitation types. Historically, meteorological models

have not been run at spatial scales capable of resolving con-

vective dynamics (e.g., < 2 km), which can exacerbate er-

ror in precipitation-phase prediction in complex terrain with

a moist neutral atmosphere. Coarse meteorological models

also struggle to produce pockets of frozen precipitation from

advection of moisture plumes between mountain ranges and

cold air wedged between topographic barriers. However, re-

duced computational restrictions on running these models at

finer spatial scales and over large geographic extents (Ras-

mussen et al., 2012) are enabling further investigations into

precipitation-phase change under historical and future cli-

mate scenarios. This suggests that finer dynamical downscal-

ing is necessary to resolve precipitation phase, which is con-

sistent with similar work attempting to resolve winter precip-

itation amounts in complex terrain (Gutmann et al., 2012).

A potentially impactful area of research is to integrate this

information into novel approaches to improve precipitation-

phase prediction skill.

5.3 Disdrometer networks operating at high temporal

resolutions

An increase in the types and reliability of disdrometers over

the last decade has provided a new suite of tools to more di-

rectly measure precipitation phase. Despite this new poten-

tial resource for distinguishing snow and rain, very limited

deployments of disdrometers have occurred at the scale nec-

essary to improve hydrologic modeling and rain–snow ele-

vation estimates. The lack of disdrometer deployment likely

arises from a number of potential limitations: (1) known is-

sues with accuracy, (2) cost of these systems, and (3) power

requirements needed for heating elements. These limitations

are clearly a factor in procuring large networks and deploy-

ing disdrometers in complex terrain that is remote and fre-

quently difficult to access. However, we advise that disdrom-

eters offer numerous benefits that cannot be substituted with

other measurements: (1) they operate at fine temporal scales,

(2) they operate in low-light conditions that limit other direct

observations, and (3) they provide land surface observations

rather than precipitation phase in the atmosphere (as com-

pared to more remote methods). Moreover, improvements

in disdrometer and power supply technologies that address

these limitations would remove restrictions on increased dis-

drometer deployment.

Transects of disdrometers spanning the rain–snow eleva-

tions of key mountain areas could add substantially to both

prediction of precipitation phase for modeling purposes, as

well as validating typical predictive models. We advocate for

transects over key mountain passes where power is gener-

ally available and weather forecasts for travel are particu-

larly important. In addition, co-locating disdrometers at long-

term research stations, where precipitation-phase observa-

tions could be tied to micro-meteorological and hydrological

observations, has distinct advantages. These areas often have

power supplies and instrumentation expertise to operate and

maintain disdrometer networks.

5.4 Compare different indirect-phase measurement

methods

There is an important need to evaluate the accuracy of differ-

ent PPMs to assess tradeoffs between model complexity and

skill (Fig. 4). Given the potential for several types of obser-

vations to improve precipitation-phase prediction (Sect. 5.1–

5.3), quantifying the relative skill provided by these different

lines of evidence is a critical research gap. Although assess-

ing relative differences between methods is potentially infor-

mative, comparison to ground-truth measurements is critical

for assessing accuracy. Disdrometer measurements and video

imaging (Newman et al., 2009) are ideal ground-truthing

methods that can be employed at fine time steps and un-

der a variety of conditions (Sect. 5.3). Less ideal for accu-

racy assessment studies are direct visual observations that

are harder to collect at fine time steps and in low-light condi-
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tions. Similarly, employing coupled observations of precip-

itation and snow depth has been used to assess accuracy of

different precipitation phase prediction methods (Marks et

al., 2013; Harder and Pomeroy, 2013), but accuracy assess-

ment of these techniques themselves are lacking under a wide

range of contrasting hydrometeorological conditions.

A variety of accuracy assessments are needed that will

require co-located distributed measurements. One critical

accuracy assessment involves the consistency of different

precipitation-phase prediction methods under different cli-

mate and atmospheric conditions. Assessing the effects of

climate and atmospheric conditions requires measurements

from a variety of sites covering a range of hydroclimatic con-

ditions and record lengths that span the conceivable range

of atmospheric conditions at a given site. Another impor-

tant evaluation metric is the performance over different time

steps. Harder and Pomeroy (2013) showed that hydrometeor

and temperature-based prediction methods had errors that

substantially decreased across shorter time steps. Identify-

ing the effects of time step length on the accuracy of differ-

ent prediction methods has been relatively unexplored, but

is critical to select the most appropriate method for specific

hydrological applications. Finally, the performance metrics

used to assess accuracy should be carefully considered. The

applications of precipitation phase prediction methods are di-

verse, necessitating a wide variety of performance metrics,

including the probability of snow versus rain (Dai, 2008), the

error in annual or total snow/rain accumulation (Rajagopal

and Harpold, 2016), performance under extreme conditions

of precipitation amount and intensity, determination of the

snow–rain elevation (Marks et al., 2013), and uncertainty

arising from measurement error and accuracy. Comparison

of different metrics across a wide variety of sites and condi-

tions is lacking but is greatly needed to advance hydrologic

science in cold regions.

5.5 Develop spatially resolved products

Many hydrological applications will benefit from gridded

data products that are easily integrated into standard hydro-

logical models. Currently, very few options exist for gridded

data precipitation-phase products. Instead, most hydrological

models have some type of submodel or simple scheme that

specifies precipitation phase as rain, snow, or mixed-phase

precipitation (see Sect. 4). While testing PPMs with ground-

based observations could lead to improved submodels, we

believe development of gridded forcing data may be an easier

and more effective solution for many hydrological modeling

applications.

Gridded data products could be derived from a combina-

tion of remote sensing and existing synthetic products, but

would need to be extensively evaluated. The NASA GPM

mission is beginning to produce gridded precipitation-phase

products at 3 h and 0.1◦ resolution. However, GPM phase is

measured at the top of the atmosphere, typically relies on

simple temperature thresholds, and has yet to be validated

with ground-based observations. Another existing product is

the Snow Data Assimilation System (SNODAS) that esti-

mates liquid and solid precipitation at the 1 km scale. How-

ever, the developers of SNODAS caution that it is not suit-

able for estimating storm totals or regional differences. Fur-

thermore, to our knowledge the precipitation-phase product

from SNODAS has not been validated with ground observa-

tions. We suggest the development of new gridded data prod-

ucts that utilize new PPMs (i.e., Harder and Pomeroy, 2013)

and new and expanded observational datasets, such as atmo-

spheric information and radar estimates. We advocate for the

development of multiple gridded products that can be evalu-

ated with surface observations to compare and contrast their

strengths. Accurate gridded-phase products rely on the abil-

ity to represent the physics of water vapor and energy flows

in complex terrain (e.g., Holden et al., 2010), where statisti-

cal downscaling methods are typically insufficient (Gutmann

et al., 2012). This would also allow for ensembles of phase

estimates to be used in hydrological models, similar to what

is currently being done with gridded precipitation estimates.

5.6 Characterization of regional variability and

response to climate change

The inclusion of new datasets, better validation of PPMs,

and development of gridded data products will poise the hy-

drologic community to improve hydrological predictions and

better quantify regional sensitivity of phase change to climate

changes. Because broad-scale techniques applied to assess

changes in precipitation phase and snowfall have relied on

temperature, both regionally (Klos et al., 2014; Pierce and

Cayan, 2013; Knowles et al., 2006) and globally (Kapnick

and Delworth, 2013; O’Gorman, 2014), they have not fully

considered the potential nonlinearities created by the absence

of wet bulb depressions and humidity in assessment of sen-

sitivity to changes in phase. Consequently, the effects of

changes from snow to rain from warming and corresponding

changes in humidity will be difficult to predict with current

PPMs. Recent efforts by Rajagopal and Harpold (2016) have

demonstrated that simple temperature thresholds are insuf-

ficient to characterize snow–rain transition across the west-

ern USA (Fig. 3), perhaps because of differences in humid-

ity. An increased focus on future humidity trends, patterns,

GCM simulation errors (Pierce et al., 2013), and availability

of downscaled humidity products at increasingly finer scales

(e.g., Abatzoglou, 2013; Pierce and Cayan, 2016) will en-

able detailed assessments of the relative role of temperature

and humidity in future precipitation-phase changes. Recent

remote sensing platforms, such as the GPM, may offer an ad-

ditional tool to assess regional variability; however, the cur-

rent GPM precipitation-phase product relies on wet bulb tem-

peratures based on model output and not microwave-based

observations (Huffman et al., 2015). In addition to issues

with either spatial or temporal resolution or coverage, one
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of the main challenges in using remotely sensed data for dis-

tinguishing between frozen and liquid hydrometeors is the

lack of validation. Where products have been validated, the

results are usually only relevant for the locale of the study

area. Spaceborne radar combined with ground-based radar

offers perhaps the most promising solution, but given the

non-unique relationship between radar reflectivity and snow-

fall, further testing is necessary in order to develop reliable

algorithms.

Future work is needed to improve projections of changes

in snowpack and water availability from regional to global

scales. This local to sub-regional characterization is needed

for water resource prediction and to better inform decision

and policy makers. In particular, the ability to predict the

transitional rain–snow elevations and its uncertainty is crit-

ical for a variety of end users, including state and municipal

water agencies, flood forecasters, agricultural water boards,

transportation agencies, and wildlife, forest, and land man-

agers. Fundamental advancements in characterizing regional

variability are possible by addressing the research challenges

detailed in Sect. 5.1–5.5.

6 Conclusions

This review paper is a step towards communicating the po-

tential bottlenecks in hydrological modeling caused by poor

representation of precipitation phase (Fig. 1). Our goals are

to demonstrate that major research gaps in our ability to de-

velop PPMs are contributing to errors and reducing the pre-

dictive skill of hydrological models. By highlighting the re-

search gaps that could advance the science of PPMs, we pro-

vide a road map for future advances (Fig. 4). While many

of the research gaps are recognized by the community and

are being pursued, including incorporating atmospheric and

humidity information, others remain essentially unexplored

(e.g., production of gridded data, widespread ground valida-

tion, and remote sensing validation).

The key points that must be communicated to the hy-

drologic community and its funding agencies can be dis-

tilled into the following two statements: (1) current PPMs

are too simple to capture important processes and are not

well validated for most locations, (2) the lack of sophisti-

cated PPMs increases the uncertainty in estimation of hy-

drological sensitivity to changes in precipitation phase at lo-

cal to regional scales. We advocate for better incorporation

of new information (Sect. 5.1–5.2) and improved validation

methods (Sect. 5.3–5.4) to advance our current PPMs and

observations. These improved PPMs and remote sensing ob-

servations will be capable of developing gridded datasets

(Sect. 5.5) and providing new insight that reduces the un-

certainty of predicting regional changes from snow to rain

(Sect. 5.6). Improved PPMs and existing phase products will

also facilitate improvement of simpler hydrological models

for which more complex PPMs are not justified. A concerted

effort by the hydrological and atmospheric science commu-

nities to address the PPM challenge will remedy current lim-

itations in hydrological modeling of precipitation phase, ad-

vance the understanding of cold regions hydrology, and pro-

vide better information to decision makers.

7 Data availability

Datasets used to create Fig. 3 are available for the SNO-

TEL site at the following link: https://wcc.sc.egov.usda.gov/

reportGenerator/ (last access: 19 December 2016) and for the

University of Idaho Gridded Surface Meteorological Data

at the following link: https://www.northwestknowledge.net/

metdata/data/ (last access: 19 December 2016).
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