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Abstract

This paper addresses the problem of rain streak removal

from a single image. Rain streaks impair visibility of an im-

age and introduce undesirable interference that can severe-

ly affect the performance of computer vision algorithms.

Rain streak removal can be formulated as a layer decompo-

sition problem, with a rain streak layer superimposed on a

background layer containing the true scene content. Exist-

ing decomposition methods that address this problem em-

ploy either dictionary learning methods or impose a low

rank structure on the appearance of the rain streaks. While

these methods can improve the overall visibility, they tend

to leave too many rain streaks in the background image

or over-smooth the background image. In this paper, we

propose an effective method that uses simple patch-based

priors for both the background and rain layers. These pri-

ors are based on Gaussian mixture models and can accom-

modate multiple orientations and scales of the rain streak-

s. This simple approach removes rain streaks better than

the existing methods qualitatively and quantitatively. We

overview our method and demonstrate its effectiveness over

prior work on a number of examples.

1. Introduction

Most computer vision algorithms assume that the input

image is of scene content that are clear and visible. Howev-

er, for outdoor images, undesirable interference from rainy

weather is often inevitable. Rain introduces several differ-

ent types of visibility degradation. Raindrops that fall and

flow on a camera lens or a windscreen can obstruct, deform

and/or blur the imagery of the background scenes. Distan-

t rain streaks accumulated throughout the scene reduce the

visibility in a manner similar to fog, namely by scattering

light out and into the line of sight, creating a veiling phe-

nomenon. Nearby rain streaks, where the individual rain

streaks are visible can also significantly degrade visibility

due to their specular highlights, scattering, and blurring ef-
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Figure 1: Upper Row: An example rain image and a

zoomed-in patch that mainly contains annoying effect of

rain streaks. Our method learns a rain streak layer prior

on this region and used it for layer separation. Lower Row:

The background and rain layers recovered by our proposed

method, respectively.

fect. Figure 1 shows an example of visibility degradation

due to rain streaks and our attempt to remove them.

Mathematically, the observed rain image O ∈ R
M×N

can be modeled as a linear superimposition [2, 11] of the

desired background layer B ∈ R
M×N and the rain streak

layer R ∈ R
M×N , expressed as O = B + R. The goal

of rain streak removal is to decompose the rain-free back-

ground B and the rain streak layer R from an input image

O, and hence enhance the visibility of the image. This layer

separation problem is an ill-posed one as the number of un-

knowns to be recovered is twice as many as that of the input.

One common strategy is to use multiple images, or a video

sequence, to mitigate the difficulty of the background scene

recovery given the rich temporal information. In this paper,
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however, we focus on the problem of rain streak removal

given a single image only.

Rain streak removal for single image input is important

for a couple of reasons. First, in some situations, we have

only single image of a rainy scene (e.g., archived images,

images available on the Internet, images taken by still cam-

eras, etc.). Second, for dynamic scenes such as when the

camera moves and/or part of the scene is dynamic, tempo-

ral information might not be reliable. As a result, being able

to remove rain streaks for each frame will benefit the overall

final result, since most video based methods assume a static

background.

To make the problem well-posed and tractable, we en-

force layer priors on both the background and rain com-

ponents. More specifically, the idea of using patch-based

priors is inspired by Zoran and Weiss [29] who used Gaus-

sian mixture models (GMMs) to model image patches. This

approach is simpler to compute than the existing prior mod-

els, such as FoE [19] or Weiss-Freeman’s priors [25]. Re-

cent works from Shih et al. [21] shows the superiority of

using GMMs as priors in solving the reflection removal

problems [14]. In our rain removal approach, to model the

background patch priors, we use a GMM trained on patches

from natural images. An additional gradient sparsity con-

straint is imposed to further regularize the background. As

for the rain layer, we do the same, namely by gathering

image patches of rain streaks that are located on texture-

less background. Unlike existing methods in single-image

rain streak removal ([2, 11]), our method is easy to imple-

ment and generates considerably better results qualitatively

and quantitatively. Moreover, our method is not limited by

the rain streak orientations and scales, thus making it more

practical. To our knowledge, this is the first method to use

GMM patch priors for the purpose of rain streak removal.

The remainder of this paper is organized as follows. Sec-

tion 2 discusses the related methods that deal with rain, in-

cluding video-based rain streak removal and single-image

based rain streak removal. Section 3 details our method, in-

cluding the problem formulation and optimization. Section

4 shows the results and analyzes them in comparison with

the results of other methods. Finally, the paper is concluded

in Section 5.

2. Related work

There are a number of methods proposed to improve the

visibility of images captured with rain streak interference.

These fall into two categories: multiple image/video-based

and single image methods.

Video Based Methods Early methods to remove rain

streaks include work by Garg and Nayar [4, 7], which in-

troduces a rain streak detection and removal method from a

video sequence. The detection is based on two constraints:

first, because rain streaks are dynamic, their changes in

intensity within a few frames are relatively high. Sec-

ond, since other objects are also possibly dynamic, rain

streaks can be differentiated from these objects by verifying

whether the intensity changes along the streak are photo-

metrically linearly related to the background intensity. This

second constraint will reduce the false alarms introduced

by the first constraint. Having detected the rain streaks,

the method removes the streaks by taking the average in-

tensity of the pixels taken from the previous and subsequent

frames.

Garg and Nayar [5] propose another method that exploits

the ability to control a video camera’s operational parame-

ters when capturing a rainy scene. To this end, they show

that rain visibility in images relies significantly on the expo-

sure time and depth of field of the camera. Thus adjusting

these parameters while taking the video will allow us to re-

duce the appearance of the rain streaks. Zhang et al. [27]

added an additional constraint called the chromaticity con-

straint. They found the intensity changes in the RGB color

channels are the same for pixels representing rain streaks.

More recently, Bossu et al. [1] proposed a rain detection al-

gorithm based on the histogram of streak orientations. The

main idea is to fit a Gaussian distribution on rain streak his-

tograms, such that they can be separated from noise gen-

erated by other dynamic objects. The method uses back-

ground subtraction to obtain the histograms. For a more

complete review on the existing video-based rain streak re-

moval, please refer to [23].

Single Image Methods For single image rain streak re-

moval, the work by Kang et al. [11] proposed a method that

decomposed an input image into its low frequency compo-

nent (the structure layer) and a high frequency componen-

t (the texture layer). The high frequency component con-

tains rain streaks and edges of background objects. This

method attempts to separate the rain streak frequencies from

the high frequency layer via sparse coding based dictio-

nary learning with HoG features. The output is obtained

by combining back the low frequency and processed high

frequency layers. While the decomposition idea is elegant,

the overall framework in [11] is complex and the results are

not optimal. Results produced by this method tend to blur

the background. These problems remain in the follow-up

work for this method e.g. [10, 22]. More recently, Chen and

Hsu [2] introduced a single objective function that could be

used to decompose the background and rain streak layers.

They formulated a cost function with three terms: a like-

lihood, a smoothed background layer, and a low rank rain

streak layer. Although the idea of posing the problem in-

to an objective function is attractive, the constraints are not

sufficiently strong. In our experiments, we still observe a

large amount of rain streaks remain in the output. Kim et al.
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[12] detect rain streaks by assuming the elliptical shape and

the vertical orientation of the rain, and remove the detected

streaks using nonlocal mean filtering. This idea works for

some cases of rain streaks, but unfortunately detecting in-

dividual streaks is challenging, because they could possibly

have different orientations, scales, and densities. The recent

work of [16] used discriminative sparse coding to remove

rain streaks in a single image, but its effectiveness is still

weak as one can see some residual thin structures at the rain

streak locations in the output background images.

Aside from dealing with rain streaks, several methods

have been proposed to address artifacts that arise when rain-

drops adhere to the camera lens or a windscreen in front of

the camera (e.g. [3, 13, 18, 26]). The problems specific

to adherent raindrops, however, are notably different from

the interference caused by rain streaks. In particular, stat-

ic adherent raindrops, which is the problem most existing

methods target, are generally less dense than rain streaks.

In addition, their size in an image is generally much larger

than rain streaks, and tends to completely occlude parts of

the background scene.

3. Our Method

3.1. Problem Formulation

The observed rain image O ∈ R
M×N can be modeled

as a linear superimposition of the desired background layer

B ∈ R
M×N and the rain streak layer R ∈ R

M×N , such

that:

O = B+R. (1)

The goal of rain streak removal is to decompose the rain-

free background B and the rain streak layer R from a

given input image O. As previously stated, this problem

is ill-posed. To resolve it, we propose to maximize the

joint probability of the background layer and the rain lay-

er using the MAP (maximum a posteriori): i.e. maximize

p(B,R|O) ∝ p(O|B,R) · p(B) · p(R) with the assump-

tion that the two layers B and R are independent. Equiv-

alently, with slight algebraic manipulation on the negative

log function, we obtain the following energy minimization

problem:

min
B,R

‖O−B−R‖2F +Φ(B) + Ψ(R)

s. t. ∀i 0 ≤ Bi,Ri ≤ Oi,
(2)

where ‖ · ‖F represents the Frobenius norm and i is the pix-

el index. The first term ‖O − B − R‖2F helps maintain

the fidelity between the observed and the recovered signals,

while Φ(B) and Ψ(R) designate the priors that will be re-

spectively imposed on B and R to regularize the inference.

The inequality constraint ensures that the desired B and R

are positive images. More importantly, this inequality con-

straint plays a critical role in estimating reliable solutions as

it regularizes the DC component of the recovered layers as

verified in recent works by [15, 21].

Focusing our discussion on the priors, we first define the

priors of the background layer as:

Φ(B) := −γ
∑

i

log GB(P(Bi)) + α‖∇B‖1, (3)

where γ(= 0.01) and α(= 0.05) are two non-negative co-

efficients balancing the corresponding terms. The function

P(Bi) is to extract the n×n (pre-defined size) patch around

pixel Bi and reshape it into a vector of length n2 with the

DC component removed. The term G(x) stands for the G-

MM of x, i.e. G(x) :=
∑K

k=1 πkN (x|µk,Σk), where K

is the total number of Gaussian components, πk is the com-

ponent weight such that
∑K

k=1 πk = 1, while µk and Σk

are the mean and covariance corresponding to the kth com-

ponent, respectively. As the function P(·) has removed the

mean of every patch, µk = 0 for all k. The benefit of this

patch regularizer based on GMM has been demonstrated in

[29]. In addition, it has been widely recognized that natu-

ral images are largely piecewise smooth and their gradient

fields are typically sparse. Therefore we employ ‖∇B‖1
to achieve such a functional, where ∇ denotes the gradient

operator and ‖ · ‖1 is the ℓ1 norm.

As for the priors of the rain layer, we write it in the fol-

lowing form:

Ψ(R) := −γ
∑

i

log GR(P(Ri)) + β‖R‖2F , (4)

where GR(P(Ri)) is similar with GB(P(Bi)). Note that

we use two different GMMs for the background and rain

layers, termed GB and GR, respectively (we discuss further

this GMM modeling in Sec. 3.3). Since the rain compo-

nent tends to make up a small fraction of the observation,

we impose ‖R‖2F to penalize it, the importance of which is

controlled by the parameter β(= 0.01).
Putting all terms together leads to the complete formula-

tion of the energy function:

min
B,R

‖O−B−R‖2F + α‖∇B‖1 + β‖R‖2F−

γ
∑

i

log
(

GB(P(Bi)) + log GR(P(Ri))
)

s. t. ∀i 0 ≤ Bi,Ri ≤ Oi.

(5)

The optimization approach to minimize this energy func-

tion is discussed in the next section.

3.2. Optimization

As noticed in Eq. (5), the cost function is non-convex

due to the patch GMM priors. A commonly used scheme

to solve this kind of problem is the half-quadratic splitting

technique [8]. To cast our problem into the half-quadratic
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Input/Ground truth w/o GMM w/ GMM (iter = 5) w/ GMM (iter = 20)

0.7777 0.9243 0.9290

0.7116 0.8309 0.8791

Figure 2: Illustration of the effect of the GMM. Our objective without the GMM components (second column) cannot

distinguish the rain streaks and the image detains like the one with GMM (left two columns). The Structure Similarity Index

(SSIM) for each result is shown below the image. Please refer to Sec. 4.1 for more analysis.

splitting framework, we need to make the objective function

separable. Hence, auxiliary variables gBi
, gRi

and H are

introduced to replace P(Bi), P(Ri) and∇B, respectively.

By doing so, the optimization problem turns out to be in the

following form:

min ‖O−B−R‖2F + α‖H‖1 + β‖R‖2F−

γ
∑

i

(

log GB(gBi
) + log GR(gRi

)
)

+ ω‖∇B−H‖2F

+ ω
∑

i

(

‖P(Bi)− gBi
‖22 + ‖P(Ri)− gRi

‖22
)

s. t. ∀i 0 ≤ Bi,Ri ≤ Oi,
(6)

where ‖ · ‖2 represents the ℓ2 norm. Notice that ω is a posi-

tive parameter that monotonically increases after each itera-

tion. As ω grows, the solutions to Eq. (6) infinitely approach

those to Eq. (5). The proposed algorithm iteratively updates

the variables as described in the following.

Solving H Discarding the variables unrelated to H yields:

H(t+1) = argmin
H

α‖H‖1 + ω‖∇B(t) −H‖2F . (7)

This is a classic LASSO problem. Its closed-form so-

lution can be efficiently obtained by the shrinkage op-

erator, the definition of which on scalars is Sǫ>0[x] :=
sgn(x)max(|x| − ǫ, 0). The extension of the shrinkage op-

erator to vectors and matrices is simply applied element-

wise. As a result, we have:

H(t+1) = Sα/2ω[∇B
(t)]. (8)

Solving {B, R} By fixing H, gBi
and gRi

, the optimiza-

tion problem corresponding to {B, R} becomes:

{B(t+1),R(t+1)} = argmin
B,R

‖O−B−R‖2F + β‖R‖2F+

ω
∑

i

(

‖P(Bi)− g
(t)
Bi
‖22 + ‖P(Ri)− g

(t)
Ri
‖22
)

s. t. ∀i 0 ≤ Bi,Ri ≤ Oi.
(9)

Following [21], we use L-BFGS [28] to minimize this con-

straint L2 problem.

Solving gBi
(gRi

) Since the gBi
and gRi

sub-problems

share the same formulation with the other variables given,

we only detail the solver of gBi
here, while gRi

can be

updated analogously. The optimization problem associated

with each g
B

(t+1)
i

is expressed as:

g
(t+1)
Bi

= argmin
gBi

ω‖P(B
(t+1)
i )− gBi

‖22 − γ log GB(gBi
).

(10)

It is worth mentioning that thanks to the independence of

patches, the patches can be processed in parallel. The ap-

proximate optimization suggested by [29] is used. This ap-

proach applies Wiener filtering only using the component

with the largest likelihood in the GMM. The whole process

is summarized in Algorithm 1. Note that we first convert

the RGB input image to the YUV space and remove rain

streaks only on the luminance (Y) channel.
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Algorithm 1 Rain Streak Removal Using Layer Priors

Input: input image O; GMMs for two layers: GB and GR;

Initialization: B← O; R← 0; ω ← ω◦;

repeat

update H using Eq. 8;

solve {B, R} by Eq. 9;

solve {gBi
,gRi
} by Eq. 10;

ω = 2 ∗ ω;

until convergence or maximum iteration number;

Output: The estimation of two layers B and R;

3.3. Gaussian Mixture Model Learning

In this section, we describe how to obtain the two GMMs

for the background and rain layers, namely GB and GR. To

obtain GB, we utilize a pre-trained GMM model provided

by [29] with 200 mixture components and patch size 8× 8.

This is learned from a set of 2× 106 patches sampled from

natural images, and thus can directly serve our purpose of

modeling the background layer.

To obtain GR, existing methods attempt to extract the in-

ternal properties of rain streaks within the input image itself,

like [2, 11]. Similarly, we also learn the priors directly from

the input image. Doing this guarantees the correctness of

the rain streak appearance, which otherwise can be consid-

erably different from one image to another image. Unlike

[2, 11] that work on the entire image, we found that GR on-

ly requires small regions (e.g. a region with size 100× 100
contains about 10K 8×8 patches inside), since rain streaks

mostly form repetitive patterns. We observe that most nat-

ural images contain regions that are relatively flat, for in-

stance, sky, building walls etc. The image patches within

these regions can be approximated as pure rain streaks, and

used to train GR. This strategy of using local patches for

global image restoration shares the similar spirit in [9].

To select such regions, we calculate the variance with-

in each region in a sliding window fashion and pick the

one with the least variance. Then, an EM algorithm is per-

formed on the 8 × 8 patches sampled from the selected re-

gion to learn the parameters of GR. We set the cluster num-

ber for GR to a small one, i.e. 20, compared with 200 for

GB, as the rain streak appearance of one single image has

less variance than the background layer. Fig. 3 shows the

eigenvectors of the three randomly selected mixture compo-

nents from the learned GR. Note that they have rain streak

structures which contribute much to the expressive power

of the model for the rain streak layer.

4. Experimental Results

We evaluate our method using both synthetic and real

images, and compare our results with the state-of-the-art

methods, including the sparse representation based dictio-

Input image and selected rain region 

GMM Visualization 

Figure 3: (up) The input image and the selected region used

to learn the rain streak GMM. (bottom) Visualization of the

eigenvectors of covariance of three randomly picked GMM

components, sorted by their eigenvalues in descending or-

der. This visualization helps to reveal that the GMM can

capture the rain orientation and structure information.

nary learning method [11] (denoted as SR) and the low-

rank appearance method [2] (denoted as LRA). For the

experiments on synthetic data, the ground truth images are

available, and we can evaluate and compare the results us-

ing the Structure Similarity Index (SSIM) [24] on the lu-

minance channel, which indicates the closeness of the re-

covered background to the ground truth. Our Matlab imple-

mentation takes 93s (5 iterations) / 370s (20 iterations) to

process one 480× 640 color image.

4.1. Synthetic Data

Connection with the TV Model From the objective func-

tion in Eq. (5), one can notice that by simply disabling the

terms related to gBi
and gRi

, our model degenerates to the

Total Variation (TV) model [20]. To reveal the benefit of the

GMM priors, a comparison between our model (denoted as

w/ GMM) and TV model (w/o GMM) is conducted. The

effect is shown in Fig. 2, from which, we can see that TV

is able to filter out the rain streaks but also falsely removes

many details that belong to the background. Our method,

on the other hand, is more effective at better recovering

both the background and rain layers with only 5 iterations.

In addition, the recovery quality can be continuously im-

proved as the number of iterations increases. Quantitative-

ly, our model achieves SSIM results (background: 0.9243,

rain: 0.8309) with 5 iterations and reaches (0.9290, 0.8791)

with 20 iterations, which are much better than those of TV

(0.7777, 0.7116). In spite of the inferiority of TV model, its

rough separation can be used as our starting point.
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Ground truth Input SR [11] LRA [2] Ours

0.5605 0.6655 0.7009 0.7638

0.5886 0.7647 0.7812 0.8138

Figure 4: Rain streak removal results for the two datasets in [11]. Ours shows better background recovery both quantitatively

and qualitatively.

Table 1: Quantitative comparison of rain streak removal results on our synthetic datasets (12 images) using SSIM.

SR[11] 0.73 0.79 0.83 0.76 0.62 0.73 0.82 0.77 0.73 0.74 0.63 0.76

LRA[2] 0.83 0.87 0.79 0.85 0.88 0.90 0.92 0.82 0.87 0.83 0.85 0.81

Ours 0.88 0.93 0.93 0.93 0.90 0.95 0.96 0.90 0.91 0.90 0.86 0.92

Comparisons Here we compare our method with L-

RA [2] and SR [11] methods. Figure 4 shows the results.

As observed, our method considerably outperforms the oth-

er two methods in terms of both visual quality and SSIM.

Compared with SR [11] that tends to over-smooth the image

content and LRA [2] that sometimes fails to capture the rain

streak layer, the proposed method removes the rain streaks

while keeping more image details in the background layer.

In addition, we synthesize a new dataset with more im-

ages (12) using the photorealistic rendering techniques pro-

posed by Grag and Shree [6]. Table 1 lists the performance

of the three methods, the number in which confirm the no-

ticeable advance of our methods. Figure 5 shows the visual

results of two examples. Once again, the proposed method

shows the best rain streak removal performance. Similar

with the previous experiment, the defects of LRA and SR

still exist. In other words, SR [11] again over-smooths the

image content and cannot capture the rain streak in high-

ly textured regions, while LRA [2] fails to remove the rain

streaks in these two examples. The second example reveal-

s another limitation using the low rank to model the rain

streak layer likely because it may treat other repetitive pat-

terns in the image as rain streaks e.g. the building windows.

4.2. Results on Real Images

Fig. 7 shows the results and comparisons using real im-

ages. Qualitatively, our method provides better results by

retaining image details; while in these three cases, the other

two methods tend to over-smooth the background.

When the rain is heavy, the density of rain streaks is so

high that individual streaks cannot be observed anymore.

For this case, we found that applying a dehazing method

e.g. [17] as preprocessing is useful. Two examples are

shown in Fig. 6, where combining the dehazing method and

our rain streak removal can produce compelling results.

5. Conclusion

We have introduced a different approach to solve the

decomposition problem of a background scene and rain

streaks using a single image. Unlike existing methods, we

impose constraints on both the background and rain layers.

These constraints are simple patches learned using Gaus-

sian mixture models (GMMs). Based on our experiments,

we showed that these two constraints prove to be more ef-

fective than methods based on dictionary learning and low

rank constraints.
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Input + Ground truth SR [11] LRA [2] Ours

Figure 5: Visual comparison of different rain streak removal methods on a synthetic dataset.

Input Direct rain removal Dehazed output Final result

Figure 6: Rain streak removal example for heavy rain. We found that first applying a dehazing method (3rd column), followed

by the rain streak removal, helps improve results.
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Figure 7: Visual comparison of different rain streak removal methods on real example images.

Our constraint on the rain layer is particularly interesting

as rain streaks have special appearances and structures. G-

MM can effectively capture a considerably narrower distri-

bution to describe rain streaks and distinguish them from the

wider range of textures for the background layer. We have

verified that this GMM prior for rain streaks is a critical part

of the decomposition. Without the GMM priors, the esti-

mated background is much more blurred, and the rain layer

contains too much high-frequency texture from the back-

ground layer. In addition, the proposed method is not only

simple and effective, but does not assume the rain streak

orientations, sizes or scales. Thus, we consider demonstrat-

ing the usefulness of the GMM priors to the decomposition

framework a step forward in addressing rain streak interfer-

ence removal. Our method is not without limitations. Is-

sues such as the optimal size and location of patches to es-

timate the GMMs, how to handle saturated rain pixels, and

remaining rain artifacts in the output, are still open prob-

lems, which are targeted for future work.
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