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Dynamic Partial Recon�guration technology coupled with an Operating System for Recon�gurable Systems (OS4RS) allows for
implementation of a hardware task concept, that is, an active computing object which can contend for recon�gurable computing
resources and request OS services in a way soware task does in a conventional OS. In this work, we show a complete model
and implementation of a lightweight OS4RS supporting preemptable and clock-scalable hardware tasks. We also propose a novel,
lightweight scheduling mechanism allowing for timely and priority-based reservation of recon�gurable resources, which aims at
usage of preemption only at the time it brings bene�ts to the performance of a system. �e architecture of the scheduler and
the way it schedules allocations of the hardware tasks result in shorter latency of system calls, thereby reducing the overall OS
overhead. Finally, we present a novel model and implementation of a channel-based intertask communication and synchronization
suitable for soware-hardware multitasking with preemptable and clock-scalable hardware tasks. It allows for optimizations of
the communication on per task basis and utilizes point-to-point message passing rather than shared-memory communication,
whenever it is possible. Extensive overhead tests of the OS4RS services as well as application speedup tests show e�ciency of our
approach.

1. Introduction

�e research on Dynamically Partially Recon�gurable (DPR)
Field-Programmable Gate Arrays (FPGAs) is motivated
by their superior �exibility, when compared to traditional
FPGAs and Application-Speci�c Integrated Circuits (ASICs),
as well as their potential to increase overall system perfor-
mance and reduce dynamic power consumption by adapting
to varying processing requirements of a system.DPR technol-
ogy allows to partially change contents of the initial FPGA’s
con�guration at run-time, without disturbing operation of
the rest of the system [1]. It leads to a concept of virtualization
of hardware resources where a small, however, dynamically
recon�gurable array, multiplexing its hardware resources
in time, may give an illusion of hosting circuitry by far
exceeding its real capacity [2]. While the idea of virtual

hardware managed by an OS was �rst proposed by Brebner
in [3, 4], Wigley and Karney [5] de�ned a set of properties
an Operating System for Recon�gurable Systems (OS4RS)
should have. �ese properties have been re�ned later on as
the research in this �eld progressed [6].

�emain objective of the OS4RS is to provide an abstrac-
tion layer boosting development of applications composed
of both soware (SW) and hardware (HW) tasks. �e HW
task [7]/thread [8] can be thought of as a �ow of execution
running on an FPGA, sharing the recon�gurable resources
with otherHWtasks in a time-multiplexedmanner.However,
the concept of the HW task is di�erent than that of an
FPGA-based HW accelerator. �e HW tasks are dynamic
objects, just like the SW tasks in the traditional OSes
[9, 10]. �ey may compete for recon�gurable computing
resources with other HW tasks, request OS services such
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as communication, synchronization, or even activate other
HW tasks. To accomplish that, the OS4RS must provide the
HW tasks with an adequate interface to access those services.
�e OS4RS is responsible for control over all the aspects
related to execution of SW tasks, that is, state management,
dispatching, scheduling, and their intertask communication,
just like a conventional OS does. In addition to that, it
is responsible for all the aspects related to execution of
HW tasks [6], that is, their allocation and deallocation
on the FPGA, scheduling, state management, and intertask
communication within and across SW and HW domains.
While performing all these activities, the OS4RS must keep
in mind applications’ execution time, response times, and
utilization of the FPGA resources, meeting requirements
imposed on executed applications.

Apart of meeting the aforementioned basic requirements,
the OS4RS may additionally provide some of the following
more advanced functions, that is, HW task preemption by
allowing suspension and restoration of HW task’s execution,
Dynamic Frequency Scaling (DFS) of HW task’s clock (HW
task clock scaling),HW task migration by allowing relocation
of HW tasks on the FPGA, and SW-HW task morphing
by allowing the tasks to migrate between SW and HW
domains during their execution. All these functions aim at
improving performance and reducing power consumption of
an application running on top of the OS4RS.

Concept of the HW task and the SW-HW Multitasking
OS4RS recently gained wider popularity in the industrial
world and research community due to promising results of
High-Level Synthesis (HLS) technology [11].When combined
with it, the concepts of the HW task and OS4RS make it
easier for soware developers with weak or no background
in hardware design to take advantage of the computing
potential of recon�gurable hardware. SW-HW partitioned
applications can be entirely written in the same way, using
high-level description language like C and then mapped to
either Central Processing Unit (CPU) or FPGA depending
on the performance and power consumption requirements
imposed on the application. Yet, further optimizations on the
soware or hardware side could be allowed by supporting
assembly or Hardware Description Language (HDL) as a
language to describe SW and HW tasks, respectively.

�e contributions to the state-of-the-art OS4RS made by
this work can be grouped into three following research topics.

(i) OS4RS Architecture. It proposes a complete and novel
model and implementation of the OS4RS architec-
ture supporting preemptable and clock-scalable HW
tasks. �e proposed OS4RS is composed of a con-
ventional o�-the-shelf Real-Time Operating System
(RTOS) kernel which provides the SW multitasking
functionality and created reusable extension, called
Rainbow, which adds theHWmultitasking capability.

(ii) Scheduling Mechanism. It proposes a novel,
lightweight soware-based scheduling mechanism
allowing for timely and priority-based reservation of
recon�gurable resources, which aims at use of HW
task preemption only at the time it brings bene�ts to
the total performance of a system. �e architecture

of the scheduler and the way it schedules allocations
and deallocations of the HW tasks on the FPGA
result in shorter latency of Application Programming
Interface (API) calls, thereby reducing the overall OS
overhead.

(iii) Intertask Communication. It shows a novel model
and implementation of an easily scalable channel-
based inter-task communication and synchronization
suitable for SW-HW multitasking with preemptable
and clock-scalable HW tasks. �e model allows for
optimizations of the communication on per task
basis and takes advantage of more e�cient point-to-
point message passing rather than shared-memory
communication, whenever it is possible.

�e remaining contents of this paper are organized as
follows. In Section 2, related research works are described,
and work presented in this paper is compared with them.
Section 3 gives a general overview of the developed OS4RS
and its architecture. Section 4 introduces the base OS kernel
used in our implementation of the OS4RS, whereas Sec-
tions 5, 6, 7, and 8 show implementation details of HW
tasks’ recon�guration, scheduling, management and inter-
task communication services provided by the developed
extension. Section 9 presents results of extensive evaluation
of the OS4RS’s services and application speed-up tests.
Finally, Section 10 concludes the work and reveals area of
prospective research.

2. Related Research

Several previous research works were devoted to design of
the OS4RS or its certain services. While some of the works
provide only a means of run-time management of HW
accelerators [12–17], the others provide a proper support for
HW tasks [18–21]. �is is accomplished by supplying the
HW tasks with a dedicated OS interface. BORPH [18] is a
Linux extension which targets multi-FPGA platforms where
each HW task is implemented on a separate FPGA. �e HW
tasks are modeled with a Simulink [22] and provided with
an equivalent API to the one that SW tasks have. ReconOS
[19, 20] targets DPR FPGAs where HW tasks are imple-
mented as recon�gurable modules on a common FPGA. It
is implemented as an extension for Linux and eCos [10] and
utilizes a uni�ed POSIX-compliant API for SW and HW
tasks. H�reads [21] presents another OS which is a Linux
extension; thus it is also based on a POSIX-compliant API.
An interesting aspect of that work is architecture of the OS
interface forHW tasks which gives them support for dynamic
memory allocation and recursive execution of functions.�at
work, however, lacks the support for DPR. An interesting
work is shown in [23] where tasks can migrate between
soware and hardware domains during their execution, that
is, the work supports soware-hardware morphing.

In this paper, we present a model of a portable and
lightweightOS4RS built as an extension to existingOS kernel.
�e presented OS4RS treats HW tasks as active computing
objects. Moreover, we show a complete implementation of
this model which fully utilizes DPR. �e implementation is
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based on Toyohashi OPen Platform for Embedded Real-time
Systems (TOPPERS) [24] Advanced System Pro�le (ASP)
RTOS kernel compliant with an uItron [9] API speci�cation.
�e uItron speci�cation is widely used in the Japanese indus-
try, research communities, and the European automotive
industry.

Several works were devoted to scheduling and placement
of HW tasks (or recon�gurable hardware accelerators) on the
FPGA [25–31]. In [25], an online scheduling and placement
algorithm targeting 1D and 2D model of recon�gurable area
is presented. �e work considers nonpreemptable HW tasks
which execute independently of each other. On the contrary,
works in [26–30, 32] present scheduling strategies for recon-
�gurable area divided into �xed slots. As modern FPGA
architectures are becoming increasingly heterogeneous in
terms of their resources, this model of a recon�gurable
area seems to be more applicable. [26] presents a mixed
o�ine/online scheduling strategy, where the Control Data
FlowGraphs (CDFGs) representing applications are analyzed
o�ine by means of customized list scheduling techniques,
and then extracted parameters are used to optimize the
scheduling result at run-time. �e online scheduling step is
implemented in hardware as dedicated logic. [27] presents
another hardware implementation of a run-time scheduler
utilizing information extracted from the CDFGs. Similarly to
work presented in [26]. Con�guration Access Port OS (CAP-
OS) [31] shows a mixed o�ine/online scheduling strategy
utilizing information extracted from theCDFGs and is imple-
mented onXilkernel OS [33] running on amicroprocessor. In
the approaches presented in [26, 27, 31],HWtasks comprising
the CDFGs execute in a nonpreemptive manner till their
completion.Work in [32] presents a non-preemptive schedul-
ing strategy where HW tasks may voluntarily relinquish
the allocated resources at certain points of their execution.
Works in [28, 29] present a Deadline-Monotonic- (DM-)
based scheduling approach for real-time systems, where HW
tasks’ recon�gurations rather than executions are scheduled.
�e work does not consider data dependencies between
HW tasks. �e works in [28, 29] and CAP-OS [31] do not
support preemption of the HW tasks’ execution but allow for
termination of their recon�gurations.

�is paper presents a simple preemptive priority-based
scheduling mechanism with certain customizations allowing
for HW task prefetching and timely reservation of recon�g-
urable resources. Similarly to works presented in [26–30, 32],
it targets systems where the recon�gurable area is divided
into �xed regions. Unlike the works in [28, 29, 31], this work
allows for true preemption of the HW task’s execution phase.
�e concept of reservation of recon�gurable resources has
been already introduced in [29, 30]. In [29], one ormore slots
are reserved at the design time, exclusively for a given set of
high-priority tasks, and then used by these tasks only. In [30],
recon�gurable slots, called tiles, are reserved (locked) by the
most frequently executed HW tasks. Unlike those works, the
work presented in this paper allows for timely reservation of
the resources, based on blocking time of HW tasks, which
can be adapted to match the latency characteristics of a given
system. �e timely reservation of the resources will allow
for preemption of the HW task only aer a speci�ed time

from the point the HW task blocks. While the presented
scheduling mechanism is implemented mostly in soware,
it allows for overlapped execution of the scheduler and HW
tasks’ recon�gurations. �e presented work is suitable for
both, set of independent HW tasks as well as set of HW tasks
with data dependencies described, for example, in form of
CDFGs.

In the �rst case, the overall ability of preemption may be
used to prevent HW tasks from starving for recon�gurable
resources in case another task has been executing for a
very long time. Ability of preemption aer a speci�ed time
may be used to allow execution of another HW task, while
the currently running task blocked, waiting for data for a
speci�ed time. Yet, at other times, the preemption and related
recon�guration overhead can be avoided. It can be bene�cial
especially in systemswithmemory virtualization and systems
with networking where data delivery latencies may be vari-
able and higher than recon�guration times present in today’s
DPR FPGAs. Furthermore, it may be also used as a deadlock
recovery measure.

In the second case, where there are data dependencies
between some HW tasks, the set of tasks could be analyzed
o�ine and divided into set of independent CDFGs. �ese
could be further analyzed and appropriate setting of HW
tasks priorities and sequence of their activations generated in
form of API calls.

�is part is assumed to be done by an o�ine tool and is
considered orthogonal to the work presented in this paper.
While the prefetching capability presented in this work may
allow for e�cient execution of such CDFGs, the timely
reservation of recon�gurable resources may be used to allow
execution of another CDFG, while the currently executing
one is waiting for data.

Several works presented inter-task communication
mechanisms targeting SW-HW multitasking. Works in
[8, 34] utilize POSIX-like communication and synchroniza-
tion mechanisms known from traditional SW multitasking
OSes, such as message queues, semaphores, and apply them
to the SW-HW multitasking domain. In both works, HW
tasks request the communication and synchronization
services via a dedicated OS interface module. In [34], the
inter-task synchronization objects are located in soware
and are accessed by delegate SW tasks executed on behalf
of the HW tasks. In [8], the corresponding objects are
implemented in hardware. ReconOS [34] additionally
implements HW-HW message passing communication
with FIFO bu�ers which are directly connected to the OS
interface for HW tasks. While the additional �xed FIFO
bu�ers avoid soware processing overhead, the approach
lacks scalability. Although the hardware implementation
given in [8] signi�cantly reduces the processing overhead,
it only allows for shared memory communication which
does not seem to be suitable for all HW-HW inter-task
communication.

�e work in [35] shows an inter-task communication
mechanism for SW and HW tasks based on additional
soware-hardware codesigned virtualization extension for
Linux. �e extension uses the concept of memory paging.
�e hardware side of the extension consists of specialized
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modules interfaced by the HW tasks. �e modules contain
a local storage for pages and perform address translation for
the HW task’s memory accesses. �e soware side of the
extension handles copying of pages during misses as well as
their speculative prefetching to the local memory. �anks to
the created extension, SW and HW tasks may communicate
with each other transparently, without knowingwhether their
communication partner is located in hardware or soware.
�is results in easier programming and better application’s
portability. While it is an interesting approach, it only sup-
ports shared memory communication and does not consider
run-time recon�guration of HW tasks.

An interesting work is shown in [36] where FPGA’s
Con�guration Memory (CM) is used for communication
between HW tasks. �e data to be transferred is read from
a sending HW task’s bu�er through the con�guration port
of the FPGA and stored in some di�erent location in the
CM which corresponds to a bu�er of the receiving HW task.
While this approach avoids signal routing issues related to
HW Task’s relocation, it creates a signi�cant overhead for
communication.

In works [18, 37, 38], SW and HW tasks communicate
through FIFO bu�ers. FUSE [12] shows implementation
of an SW-HW communication interface for dynamically
recon�gurable HW accelerators. In that work, the commu-
nication drivers located on the soware side can be loaded
dynamically, thereby providing a means of their run-time
customization. However, the hardware side of the interface
is �xed, and the work does not show implementation in
which the accelerators are dynamically recon�gured. One of
the interesting works on channel-based communication for
SW-HW Multitasking systems is presented in [39]. In this
work, the tasks communicate through dynamically allocated
channels managed by a hardware-based communication
manager. Although performance advantages of the hardware
implementation are mentioned, the work does not allow for
optimizations based on a type of communication.Moreover it
does not actually support blocking communication semantics
as our work does.

We show a complete model and implementation of
a channel-based intertask communication and synchro-
nization allowing for Point-2-Point (P2P) communication
between the tasks, similarly to [39]. Unlike [18, 37–39], it
allows for optimization of the communication based on a
given pair of tasks. �is is achieved by, �rstly, matching the
type of the channel to communication requirements and, sec-
ondly, by allowing the channel interfaces to be allocated and
deallocated together with HW tasks. Unlike [39], this work
allows for truly blocking communication semantics. Unlike
the previous works, the presented inter-task communication
and synchronizationmechanism is suitable for clock-scalable
and preemptable HW tasks.

Dynamic Frequency Scaling (DFS) [40, 41] makes it
easier to balance the trade-o� between the performance
and power consumption of the resources held by an HW
task. It has been widely used in single and multicore CPUs
as a method to balance the trade-o� between low power
consumption and high performance depending on current
processing demands of applications. In the �eld of FPGAs,

previous works either only discussed this mechanism in
general [42, 43] without the context of HW multitasking or
only assumed its presence in their scheduling mechanisms
without showing any implementation [31]. �e works in [44,
45] show implementation of a HW task utilizing the regional
clocking resources available in Xilinx FPGAs in order to
enhance HW task relocation and provide means of discrete
clock division. It is, however, not a substitute for continuous
clock-scaling functionality, but rather its enhancement.

�is work proposes a complete model and implementa-
tion of theOS4RS supporting preemptable and clock-scalable
HW tasks. �e DFS presented in this work is supported by
all services provided by the OS4RS, that is, management,
scheduling, recon�guration, and inter-task communication
and synchronization.

3. OS Architecture

3.1. Architecture Model: Overview. Instead of building the
OS4RS completely from scratch, we decided to use an already
available OS kernel with a well-established API as a base
and create a HW multitasking extension for it. �is was
done to utilize already available SW multitasking support
and to facilitate future reuse of already available applications.
�e HW multitasking extension is general enough, so that a
variety of existing SWmultitasking RTOS kernels [10, 24, 33]
could be used as its base.

�e soware-hardware codesigned extension, called
Rainbow, follows a layered architecture in both soware and
hardware, which improves code reuse and portability and
helps in grouping di�erent OS services. An abstracted view
of the developed OS4RS architecture is shown in Figure 1(b).
�e HW Task Management and Communication Layer man-
ages HW tasks’ high-level execution state, re�ecting the API
calls made by interacting SW and HW tasks, as well as
inter-task communication and synchronization. �e state of
SW tasks is managed independently, by the base OS kernel.
�e HW Task Scheduling and Placement Layer is responsible
for scheduling allocations, deallocations, and preemptions of
HW tasks as well as process of their clock dynamic frequency
scaling. Finally, the HW Task Con�guration Layer, which is
speci�c to a given FPGA architecture, manages the related
low level aspects of these activities.

�e soware part of the extension is executed on a CPU
together with the base OS kernel, whereas hardware part is
implemented on an FPGA. Hardware part is comprised of
a Con�guration Controller which belongs to the HW Task
Con�guration Layer and HW Task Wrappers whose modules
logically belong to all three layers. �e Con�guration Con-
troller gives a physical means of allocation and preemption of
HW tasks by providing an interface to access the FPGA’s CM.
�e HW Task Wrapper contains a Dynamic Partial Recon-
�guration (DPR) Controller which also belongs to the same
layer as the Con�guration Controller. It handles the low-level
physical aspects of the DPR technology related to HW task’s
allocation and preemption [46–48]. �e Dynamic Frequency
Scaling (DFS) Controller is another module which belongs to
the HW Task Con�guration Layer. It provides access to clock
frequency scaling feature of HW tasks. �e Recon�gurable
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Figure 1: OS architecture model: Traditional versus Rainbow-extended.

Region (RR) LockTimer, being part of theHWTask Scheduling
and Placement Layer, is used to implement a mechanism
of timely reservation of recon�gurable resources, described
in Section 6.2. Finally, the Management API Call Interface
Modules and the Communication API Call Interface Modules
belong to the HW Task Management and Communication
Layer. �ey comprise a Hardware Task Operating System
Interface (HWT OSIF) which is an interface for HW tasks to
access the OS services.

Figure 1 shows the relationship between SW tasks and
HW tasks in a traditional and Rainbow-extended OS. In the
traditional OS, SW tasks use HW platform drivers provided
by theHardware Abstraction Layer (HAL) to access the FPGA
resources. �ese drivers have to be customized on per HW
accelerator basis, thus making porting di�cult. In the OS4RS
based on the Rainbow extension, the HW tasks are treated
as active objects which have access to the same OS services
as SW tasks do. �e services are accessed by means of a
high-level API, which improves application portability. �e
Rainbow extension uses HAL drivers internally, only to bind
together its soware and hardware components.

�ere are two types of service calls the SW and HW
tasks can make: Management API Calls and Communication
API Calls. �e Management API Calls give the tasks an
ability to directly control their state and the state of other
tasks. It includes calls for task activation, termination, task-
dependent synchronization, for example, suspension and
resumption, as well as clock management functionality for
the HW tasks, that is, DFS calls. �e Communication API
Calls give the means of communication between tasks and
task-independent synchronization, that is, the one imple-
mented by communication primitives.

When compared to the traditional OSes, the inter-task
communication implemented by Rainbow is based on a
concept of channel adopted from Electronic System-Level

(ESL) Design Methodology [49]. �e channels are abstract
objects encapsulating communication between two comput-
ing processes. In our case, the channels are referenced by their
Identi�ers (IDs) and provide the tasks with an easy interface
to access communication and synchronization resources of
the OS.

3.2. A Recon�gurable Hardware Architecture Model. �e de-
veloped OS4RS assumes the hardware model of a recon�g-
urable architecture shown in Figure 2. SW tasks execute on a
CPU. HW tasks are represented by con�guration bitstreams
stored in the HW Task Repository and take a form of digital
circuits once con�gured in the Recon�gurable Region (RR) by
means of the Con�guration Controller.

Depending on placement restrictions imposed on HW
tasks, we can distinguish di�erent models of recon�gurable
area [6]. 2D model is the most �exible and does not impose
any restrictions on the placement of the tasks, provided
that they do not overlap. In 1D model vertical dimension
is �xed, but allows unconstrained placement in horizontal
dimension. Finally, in �xed-slots model tasks can be only
placed at prede�ned positions. An additional, �xed-regions
model can be thought of as a generalized �xed-slots model
in which not all of the regions are of the same dimensions.
�is may be a disadvantage by limiting task relocation to
compatible regions only, but on the other hand allows them
to better match their associated regions, thereby alleviating
the problem of region’s internal fragmentation.

Due to increasing heterogeneity of FPGAs, accompa-
nied by limitations of frame-based Con�guration Memory’s
architecture and Partial Recon�guration (PR) technology,
the last two models are by far the most suitable for recent
FPGA devices and their supporting design tools. �e �xed-
regions model is currently widely used by Xilinx and Altera
and has been also adopted in our model of recon�gurable
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architecture. In this model, HW tasks are prepared o�ine
and loaded at run-time to prede�ned regions. �e HW tasks
have also their state which can be saved and restored if
the preemption mechanism is available. Furthermore, they
can migrate between compatible regions if the bitstream
relocation [36, 50–53] is supported.

3.3. Rainbow Extension: So�ware Structures Overview. �e
details of the architecture of the soware side of the Rainbow
extension are given in Figure 3.

�e key structures of the soware side of the extension
are the arrays ofHWTask Control Blocks (HWTCBs) andHW
Task Region Control Blocks (HWTRCBs) which span all three
layers.

Entries in the arrays of HWTCBs and HWTRCBs corre-
spond to the HW tasks and RRs with given IDs. �e HW
tasks’ IDs are currently considered separately from those of
SW tasks, managed by the base OS. As the task IDs are passed
toManagementAPICalls, this requires that di�erentAPI calls
are used for SW and HW tasks. �is is not the case with
Communication API Calls which use a common ID space for
all channels. �e common ID space for both SW and HW
tasks would allow for entirely uni�ed API for SW and HW
tasks. It is le as a part of future work.

3.3.1. HW Task Con�guration Layer. Part of the HWTCB
located in this layer holds information such as memory
address and size of the bitstream(s) needed to con�gure a
given task as well as initialize, save, and restore its state. It
is represented by the Bitstream Descriptors and the Physical
State Descriptors initialized during OS4RS boot-up, while
the bitstreams representing the HW tasks are read from an
external nonvolatile storage and stored in a faster volatile
memory serving as a bitstream repository.

3.3.2. HW Task Scheduling and Placement Layer. �e key
structure related to scheduling is an array ofHWTCBs queues
ordered by priority, that is, ready queues. EachRR,whereHW
tasks are allocated, has an independent array of ready queues
associated with it. It is located in the HWTRCB.

�is layer implements a preemptive scheduling with
timely and priority-based resource reservation, called RR

Locking, described in details in Section 6. �e hardware side
of this layer implements the Time-out Timer used in the
RR Locking. �e HWT Dispatcher shown in Figure 3 is an
additional SW task which is started whenever a scheduling
decision results in requests for allocation, deallocation, or
clock management. �e Dispatch Flags entry in the HWTCB
is used to pass information about actions to be performed
between the scheduler and the HWT Dispatcher.

3.3.3. HW Task Management and Communication Layer.
Each HWTCB in this layer stores the HW task state and
extended information, such as, for example, ID of the system
it was made for, retrieved from the con�guration bitstream
upon OS initialization. It also holds control information of
the Management API Call Module such as whether the HW
taskwas blocked as a result of executing theAPI call (API Call
IF Mgmt Flags), and the return value that should be passed
to it when it is released from blocking and allocated again.
�e API Call IF Mgmt Flags are used to control operation of
the Finite State Machine (FSM) located in the Management
API CallModule.�e control information entries are updated
by the Management API Call Interrupt Handler and A�er
Physical HWT Activation Callback.

�e Management API Call Interrupt Handler is executed
whenever a HW task makes a Management API Call. �e
Before Physical HWT Inactivation and the A�er Physical
HWTActivation callbacks are functions of theHWTaskMan-
agement and Communication Layer registered and executed
within the HW Task Con�guration Layer. �e �rst callback
contains code which is to be executed just before theHW task
is deallocated or its clock is suspended, whereas the second
one contains the code to be executed just aer the HW task
is allocated or its clock is switched on.

�eCon�g Lock �eld of theHWTCB is used to implement
a con�guration locking mechanism used by the inter-task
communication. �e idea behind it is to prevent possible
HW task deallocations when the transfer over the channel
connecting the task is in progress.

A key structure in the HW Task Management and Com-
munication Layer is theChannel Control Tablewhich controls
the communication and synchronization over channels. �e
table is updated by the Comm Event Interrupt Handlers, SW
Task API calls, Copy Task, and Callbacks which act together
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Figure 3: Rainbow extension—soware structures and soware-hardware interface.

in order to provide communication services to SW and HW
tasks.

�e Comm Event Interrupt Handlers are interrupt han-
dlers executed in response to channel events which are
generated by the hardware side of the OS4RS whenever HW
tasks access the communication channels. SW Task API calls
are communication calls provided by the OS4RS which are
executed by the SW tasks. �e Copy Task is an additional
SW task executed whenever a direct point-to-point (P2P)
communication between the HW tasks is not possible. All of
them are described in details in Section 8.

3.4. Rainbow Extension: Hardware Components Overview

3.4.1. Con�guration Controller. �eCon�gurationController
provides physical means of allocation and preemption of HW
tasks. It accomplishes this job by talking to the con�guration
port of the FPGA and transferring con�guration bitstreams
representing HW tasks between their storage memory and
FPGA’s CM.

3.4.2. HW Task Wrapper. �e HW Task Wrapper can be
divided into static part, that is, Static Region (SR), and
recon�gurable part, that is, Recon�gurable Region (RR).
Logically, the RR serves as a container where HW modules,

representing HW tasks, can be plugged in. Physically, once
the whole system is programmed on an FPGA, the RR
becomes an area on the FPGA where HW tasks are allocated
and deallocated. Figure 4 shows the HW Task Wrapper and
the HW Task allocated in the RR.

To alleviate timing issues during placement and routing
of a DPR system, the boundary between the SR and the RR
must be designed in an appropriate way. More speci�cally, all
signals crossing the SR-RR boundary should be registered by
inserting FFs before they are passed to the other side of the
boundary. In the developed HW Task Wrapper, the SR side
of the boundary is always registered, whereas the RR side is
registered on per task basis.

�e HW Task Wrapper is composed of two planes: a
Data Plane and a Control Plane. �e Data Plane contains
an HW Task Communication Module and a Data Intercon-
nect Interfacing Logic module, whereas the Control Plane is
composed of an OS Control Module and a Ctrl Interconnect
Interfacing Logic module. �e OS Control Module is further
divided into an RR Lock Time-out Timer, a Translation Table
(TT), a DFS Controller, a DPR Controller, an HW Task
Communication Event Control, and anHWTaskManagement
API Call Module.

�e HW Task Communication Module, the HW Task
Communication Event Control, the TT, and Communication
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Figure 4: HW Task and HW Task Wrapper.

Channel Interface Modules located in the HW Task logically
belong to a group of Communication API Call Interface
Modules. �e HW Task Management API Call Module and
the API Call channel located in the HWTask logically belong
to another group called Management API Call Interface
Modules. Both groups form the HWT OSIF and described
before. AllHW Task Wrapper’smodules are brie�y described
below.

HW Task Communication Module. �e HW Task Commu-
nication Module and the Data Interconnect Interfacing Logic
module give access formaster- and slave-sideCommunication
Channel Interface Modules to the physical interconnect. �e
HW Task Communication Module contains additional FIFO
bu�ers and pipelining logic. �e FIFO bu�ers are required
by the master interface of the Data Interconnect Interfacing
Logicmodule in order to allow burst transfers.�e pipelining
logic is required by the slave interface of theData Interconnect
Interfacing Logic module to allow for burst transfers to and
from the storage located within the RR as transfers over the
SR-RR boundary undergo additional latency.

Translation Table (TT). �e communication channels are
accessed through the channel interfacemodules by providing
their IDs. �ese IDs are assigned globally and used by
all channels in the system. Locally, within each HW task,
channel interface modules are assigned index numbers. �e
index numbers are used to facilitate mapping of channel
interfaces on both sides of the channel to their location in the
address space.

�e Translation Table is used to translate the channel
index, provided by the master-side interface, into address of
the slave-side interface located in another HW task. �anks
to local index addressing of channels, rather than global
ID addressing, the size of the table can be reduced to the
maximum number of indices allowed per HW task.

Communication Events Control.�ismodule is used to collect
the events from all channel interface modules located within
a currently allocated HW task and notify the soware side
of the OS about their occurrence. When it happens, a
dedicated interrupt handler, that is, theCommEvent Interrupt
Handler mentioned previously, is executed. It contacts the
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Communication Events Control to retrieve the index of the
channel generating the event.

HW Task Management API Call Module.�eHW Task Man-
agement API Call Module serves as amiddleman between the
HW task and the soware side of the OS4RS, whenever the
HW task makes a Management API Call. It is described in
Section 7.2.

DFS Controller.�e DFS Controller is used to implement the
very feature of dynamic clock frequency scaling. It consists
of the main part, being the Frequency Synthesizer module
itself and the wrapping logic built around it. As the Frequency
Synthesizer module, a Digital Clock Manager (DCM) [54]
or Phase-Locked Loop circuits common in modern FPGAs
may be used.�e wrapping logic provides the OS4RS with an
interface to control the process of frequency scaling.

DPR Controller. �e Dynamic Partial Recon�guration (DPR)
Controller is used to control the low-level aspects of recon�g-
uration and preemption of HW tasks. �is includes isolation
of the SR-RR boundary during recon�guration and preemp-
tion as well as clock suspension.

RR Lock Time-out Timer.�e RR Lock Time-out Timer is used
in implementation of the developed scheduling mechanism.
It is a simple count-down counter, started and stopped by the
OS4RS, which generates an interrupt once its reaches value
zero.

3.4.3. HW Task: Architecture. From the architectural point
of view, the HW Task, shown in the bottom right corner of
Figure 4, is composed of a HW Task Core, Communication
Channel Interface Modules (referred to as channel interface
modules), and the remaining HW task glue logic. �e HW
Task Core represents a computational part of the HW Task,
which can be either synthesized from a high-level description
using an HLS tool or already provided in form of an HDL
description.

�e HW Task Core communicates with an outside world
through ports using standardized signal protocols. �e pro-
tocol can be either nonblocking or blocking. �e channel
interface modules, shown as white-yellow ovals connected
to the HW Task Core, are implemented keeping these simple
and standardized protocols in mind. Depending on the side
of channel where they are located, the channel interface
modules can be of two types: master side and slave side.
�e type de�nes which module is responsible for starting the
transaction over the physical interconnect.

�e channel interface modules are part of the HW
Task and recon�gured along with it. �e channel interface
modules implement local storage space for the data to be
sent or received by the HW Task Core over the physical
interconnect. �ey are also the key components interacting
with the soware side of the OS4RS during initialization and
completion of the data transfer over the channel.

�e slave-side interfaces of the communication channels
are accessed from outside the HW Task Wrapper as a part

of one contiguous address space de�ned by the HW Task
Wrapper. �is allows for a �xed interface between the static
part of theHWTaskWrapper and the RR containing theHW
Tasks, irrespective of the number and type of channels HW
Tasks use. �e �xed interface is required by the current DPR
design �ows provided by the major FPGA manufacturers,
that is, Xilinx [46] and Altera [47]. As a result, the multi-
plexers and address decoding logic must be a part of theHW
Task’s glue logic.

If the number of master-side interface modules is big-
ger than one, the HW task glue logic will also contain
a lightweight arbiter controlling access of those interface
modules to the HW Task Communication Module, in turn,
giving them access to the physical interconnect.

�eAPI Call channel, shown in Figure 4, is a special kind
of channel. It is used by the HW Task Core at the time of
making theManagement API Call.

�e HW Task works in two, potentially unrelated clock
domains, that is, Fixed Clock (FCLK) domain and Variable
Clock (VCLK) domain. �e FCLK domain is controlled by a
system-wide clock, whose frequency is �xed during operation
of the system. On the other hand, the clock in the VCLK
domain can be dynamically adapted depending on the per-
formance and power consumption needs of an application,
provided that the maximum frequency of operation of the
related logic allows for it. �e HW Task Core works in the
VCLK domain, whereas the glue logic works in the FCLK
domain, just as the HW Task Wrapper does. �e channel
interface modules work partly in the FCLK and partly in the
VCLK domain. �ey encapsulate the details of clock domain
crossing to the HW Task glue logic and the HW Task Core.

3.4.4. HW Task: Architecture’s Pros and Cons. �e ability of
the HW Task Core to operate at di�erent frequencies solves
many issues and lets designs avoid the limitations of the
DPR technology. �e HW Task Cores which can work at
much higher frequencies than the rest of the system are not
restricted by it anymore. On the other hand, the HW Task
Cores which may have problems in achieving frequencies
de�ned by the rest of the system will also not impose any
limitations on the system itself. Although in the cases above,
bridge logic could be used on the interconnect, the �xed clock
in the RR would still make the slowest HW Task limit the
performance of the other tasks that may be allocated to this
RR. �e downside of this approach is, however, increased
latency of data communication.

A fundamental question about the architecture of the
proposed HW Task, that may arise, concerns placement of
the channel interfacemodules within the RR. Since it is better
to transfer data directly between HW tasks rather than using
shared memory as an additional middle man, the channel
interfaces and the related storage are not placed outside the
HW Task Wrapper. It will be especially bene�cial in case
of Network-On-Chip (NoC) where latencies associated with
transferring data between nodes may be high.

�e HW Task Wrapper contains logic common for all
the HW Tasks. Common local storage for all the channel
interface modules can be a bottleneck. Also, number and
type of used channels are speci�c to each HW task and
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thus may vary among di�erent tasks. Since we want the
communication to be customized on per HW task basis, the
channel interface modules are not placed in the HW Task
Wrappers.

Although, in Figure 4, slave-side interface modules share
the access to the interconnect, multiple other HW tasks may
prefetch the data to storage contained in these modules, one
aer another, while the HW Task Core is executing. �is way
the communication and execution of the whole application
composed of SW and HW tasks may be overlapped. Besides,
more interfaces could be provided depending on the per-
formance requirements of a given system. Since the current
state of channels constitutes the context of the executing
HW Task, the placement of the interface modules within
the RR also facilitates HW task’s preemption. �e developed
architecture does not support HW task preemption when the
actual transfer over the channel is in progress, that is, the
preemption is possible only once the whole data transferred
over the channel has been stored in the storage element of the
interface module.

Another question may concern the decision about the
location of the boundary of FCLK and VCLK domains. Its
locationwithin theHWTask rather than at the SR-RR bound-
ary was dictated by performance reasons. For improved
throughput of streaming data communication across two
unrelated clock domains, asynchronous FIFOs provide sig-
ni�cant advantage over the double-�opping synchronization
method.While the latter one could be easily adopted tomatch
the requirements of the SR-RR interface, it is not the case with
the asynchronous FIFOs. For this reason, we decided to place
the clock domain boundary within the HW Task.

A downside of the proposed approach may be increased
size of HW tasks and, as a result, their longer recon�guration
time. However, our evaluation results in Section 9.4 show
that, in many cases, the increase in logic area due to the
additional logic is not high when compared to the size of the
computing HW Task Cores.

4. Base OS Kernel

As a base OS kernel for the implementation of the OS4RS,
we used the Toppers ASP RTOS kernel [24]. It mainly
targets highly reliable small-scale real-time embedded sys-
tems, althoughmemory protection extension is also available,
making it applicable to larger scale systems. Toppers ASP
kernel is of a small size which results in lowmemory usage. It
follows a one object linkingmodel, where both the kernel and
the application are merged together and run in a privileged
CPU mode.

ASP kernel provides basic services for the application
composed of SW tasks, such as task state management,
scheduling, and inter-task communication and synchroniza-
tion. It implements a preemptive-priority scheduling and a
Task Control Block (TCB) model, where special structures,
that is, TCBs, are used by the kernel to store information
related to task’s execution state, its priority, and so forth.
�e kernel provides basic communication/synchronization
primitives for SW tasks, that is, data queues, mailboxes,
semaphores, and event �ags, to name a few [9]. It also

provides means of task-dependent synchronization, to allow
an SW task to block or unblock another task by executing a
system call.

�e kernel is highly portable as the large part of it
is CPU architecture independent. Only small part related
to low-level system initialization, interrupt processing, and
task dispatching depends on a given processor’s architecture.
Although a wide gamma of CPU architectures is currently
supported by the ASP kernel, the Power PC (PPC) 405
processor being part of the FPGA used in our tests was not.
For this reason, we had to port the architecture-dependent
part of the kernel to the PPC 405 processor’s architecture.

5. HW Task Configuration and Clock Scaling

�e HW Task Con�guration Layer implements a model of
a HW task state accessible by means of the Con�guration
Port Access (CPA) approach presented in [48, 55]. In this
approach, the state is described by complete con�guration
frames rather than separate bits within the frame. While
it may lead to redundancy, it is a much more portable
approach, which leads to more e�cient implementation of a
preemptionmechanism. In this approach amapping between
the state-containing frames, stored in the bitstreams, and
those in FPGA’s Con�guration Memory (CM) is established
and used aerwards by the save and restore functions. We
developed a tool, called Bitformatter, whose role is to analyze
the con�guration bitstream representing a given HW task
and to extract all the state-related information, creating
a sort of extension containing the information about the
aforementioned mapping of the state frames. �e extended
bitstream follows a developed DBF (Dynamically partially
recon�gurable system’s Bitstream Format).

�e DBF �le is divided into six sections, as shown
in Figure 5. Main Header corresponds to the header of
the original con�guration �le, State Data Descriptor Table
(SDDT) Header contains information about the SDDT itself,
whereas each State Data Descriptor (SDD) is composed of
three-word elements. �e �rst one is the o�set of the �rst
frame which contains the state information, calculated versus
beginning of the con�guration bitstream. Knowing the base
address of the con�guration bitstream, we can calculate
the address of the state-related frame within the HW task
bitstream repository. �e second word in the SDD indicates
the number of words in the state frames. Finally, the third
word in the SDD is the start address of the �rst frame in the
CM. Primary Con�guration Bitstream section represents the
original con�guration bitstream thatmay be slightlymodi�ed
for the purpose of preemption [48, 55]. FF Init Data bitstream
is used to reinitialize and restore the state of all tasks, whereas
Mem Init Data bitstream only is used to reinitialize the state
of a memory-based HW tasks.

5.1. Con�guration Controller and HTIC Bus. ICAP-DMA,
presented in [48, 55], is a recon�guration/readback controller
which also controls the physical aspects of HW Tasks’
recon�guration and preemption.�e controller’s architecture
allows for burst transfers of both con�guration and readback
data, which results in signi�cantly improved recon�guration
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and preemption times. Moreover, it allows for bu�ering
of all requests related to recon�guration and preemption,
thereby reducing CPU utilization. Management of the physi-
cal aspects of the recon�guration and preemption is done via
the HTIC bus which connects the ICAP-DMA with the DPR
Controller inside the HW Task Wrapper.

�e HTIC bus has a simple, one master (ICAP-DMA),
multiple slaves (HW Task Wrappers) topology and is a write
only bus. EveryHTIC bus slave interface has a unique RR ID
assigned at a systemdesign time and used later onwhen being
addressed by the ICAP-DMA.

5.2. DPR Controller. In the developed method [48, 55],
saving of the HW task’s state is based on readback of the
con�guration bitstream from the FPGA’s CM and its �ltering,
in order to retrieve the task’s state. Restoring of the state
is accomplished by con�guring the CM with the bitstream
containing previously saved state and assertion of the reset
signal. �e last one brings back all the storage elements
constituting the HW task to their previously saved state. As
the mechanism presented in [48, 55] was only suitable for
synchronous logic, some additions were needed to make it
work with the clock-scalable HW tasks.

�e DPR Controller is composed of three modules: a
Parent Control Module and two Child Modules. �e Parent
Module and one of the Child Modules work in the FCLK
domain, whereas the other Child Module, in the VCLK
domain. Communication between the parent and its children
is based on sending request signals and receiving feedbacks.
�ese handshaking signals have to be additionally synchro-
nized for the case of Parent and the VCLK Child Module.
Aer the control Finite State Machine (FSM) in the Parent
Module sends the request, it waits for feedback, beforemoving

to the next state. In order to support dynamic frequency
scaling, the clock in the VCLK Child Module has to be
suspended whenever the DCM generating the clock is being
recon�gured. For this reason, the DPR Controller is not used
at that time.

In order to make sure that upon restoring of the task’s
state both FCLK and VCLK domains come out of reset
simultaneously, the Parent Module has to adhere to the
following order of steps. First, it requests both Child Modules
to assert reset, then to switch on clocks, so that the both
domains are reset, then switch o� the clocks back, and �nally
deassert the reset. Since the Parent Module waits for the
feedback when following the aforementioned procedure, we
ensure that the reset is asserted for long enough to reset the
domain with much slower clock than the static part. Apart
of switching of resets and clocks, the DPR Controller is also
responsible for enabling and disabling the SR-RR interface as
well as enabling and disabling memory accesses within the
HW task. �e corresponding steps are not given for the sake
of simplicity.

5.3. DFS Controller. Our implementation of the DFS Con-
troller is based on the DCM module available on Virtex-
4 FPGAs, which we used as the Frequency Synthesizer. �e
wrapping logic built around the DCM contains a control
FSM which directly interfaces the Dynamic Recon�guration
Port (DRP) of the DCM [54]. Further details on DCMs and
di�erent ways of interfacing them can be found in [42, 43, 54].

�e wrapping logic also implements a set of registers:
Clock Multiplier, Clock Divider, Control, Status, and registers
for enabling and acknowledging interrupts. First two registers
control the frequency of the clock generated by the DCM
module with respect to its input clock. Control and Status are
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used to request dynamic clock frequency scaling and to check
its current progress status. Finally, interrupt-related registers
control generation and acknowledgment of the interrupt
indicating completion of the scaling operation.

Although logically, the DCM-based DFS Controller
(DCM Controller) is a part of the HW Task Wrapper, phys-
ically it is connected to it externally but still being controlled
by theHWTaskWrapper.�is is done to simplify application
of timing constraints on the VCLK generated by the DCM.

6. HW Task Scheduling and Placement

6.1. HW Task and Recon�gurable Region’ State. While above
the HW Task Scheduling and Placement Layer tasks are only
seen as Runnable and Non-runnable, this layer makes an
actual decision upon which HW task to allocate and start
execution and is responsible for managing caching of HW
tasks. HW task’s states visible from the perspective of this
layer are shown in Figure 6. READY and UNCACHED are
used to describe deallocated HW tasks. HW tasks in READY-
CACHED and CACHED states are allocated, but only their
part located in the FCLK domain is operating, whereas the
computational part, that is, the HW Task Core, is o�. Finally,
in EXEC state, both clock domains of the HW task are
operating.

While maintaining the state of HW tasks, the HW Task
Scheduling and Placement Layer is also responsible for man-
aging the state of the RRs where the HW tasks are allocated.
�e RRs can be in one of three states: DEALLOCATED,
ALLOCATED, andACTIVATED.�ey are shown in Figure 7.
�e RR in the �rst state is ready for new allocations, in the
second state is already allocated with some HW task which

is currently not executing, and in the third state is allocated
with some HW task which is currently executing.

�e labels near transition edges in Figures 6 and 7 denote
the callsmade to theHWTask Con�guration Layer in order to
realize a given state. TCFG allocate() and TCFG deallocate()
denote HW tasks’ allocation and deallocation requests for
a given RR, and they additionally cause the FCLK to
be switched on and o�, respectively. TCFG vclk act() and
TCFG vclk inact() denote requests for switching the VCLK
clock in the HW Task Core on and o�, respectively.

6.2. Preemptive Scheduling with Reservation of Recon�gurable
Resources. �e HW Task Scheduling and Placement Layer
maintains Ready Queues and a Priority Map for each RR.�e
Priority Map is used in speeding up searching of the highest
priority task located in these queues. �e Ready Queues
(Figure 8) link together all runnable tasks and one task which
was granted lock on the RR resource. �e latter one is kept
in the �rst entry, in one of the queues even if it becomes
Non-runnable. �is way, tasks which block only for a short
time can be kept allocated on the FPGA and restartedwithout
recon�guration overhead.Whenever a task acquires the lock,
its priority is elevated to the priority of the resource, in case
it was lower than it, or remains unchanged otherwise. If the
RR’s priority is set to the highest possible value, no task will
be able to preempt that which holds the lock, resulting in a
nonpreemptive scheduling. Setting priority of the RR to any
lower valuewill allow some critical task to preempt the locked
task. �e lock will be restored when the critical task �nishes
execution.

A HW task may request the lock by means of
Rbow hwt req RR lock() API call; however, granting of
the lock will occur only when it is selected by the scheduler
as shown in Figure 8. �e lock may be requested with
an additional time-out value or EXIT REL FLAG which
makes the HW task releases the lock upon completion
of its execution. �e timely lock, which expires aer a
speci�ed amount of time, may be used as a deadlock [56]
recoverymeasure. It may be also used to prevent unnecessary
preemptions in certain phases of execution of an application,
still taking advantage of the preemption while waiting for
some data from external source. Whenever a task which was
granted the lock with time-out becomes NON-RUNNABLE,
that is, idle, a RR Lock Time-out Timer, located in the HW
Task Wrapper, will be started. When the counter’s value
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reaches zero, the executed interrupt handler will release the
lock, possibly making the other RUNNABLE task allocated.

6.3. Delayed Execution of Con�guration and Preemption
Requests. �e processing done by the HW Task Scheduling
and Placement Layer can be divided into two steps. �e �rst
one is done at the caller’s side; that is, it is implemented by
a function of the HW Task Scheduling and Placement Layer
called by the upper layer as a result of executing an API call.
�is processing consists of statemanagement and scheduling.
�e second step is done by the HW Task Dispatcher task,
which is started in the �rst step whenever the allocation,
deallocation, or clock management is requested.

�e main job of the HW Task Dispatcher is to process all
these requests and call appropriate functions of theHW Task
Con�guration Layer to realize them.�eHWTask Dispatcher
is implemented as a highest priority task in the base OS in
order to make the necessary allocations, deallocations, or
clock management operations start with a minimum delay.

�e interaction between the scheduler and the HW Task
Dispatcher is based on the idea of pointers to the HWTCB
of the scheduled task and currently allocated task as well as
additional Dispatch Flags. �e pointer corresponding to the
scheduled task is maintained and assigned by the scheduler,
whereas the pointer corresponding to the currently allocated
task is assigned by the HW Task Dispatcher. When the HW
Task Dispatcher starts, it compares the pointers and starts
allocations and deallocations accordingly.When it completes,
it assigns the scheduled task’s pointer to the currently allo-
cated task’s pointer. �e Dispatcher Flags are used to signal
additional requests related to clock management, while the
aforementioned pointers are equal.

Since the allocations, deallocations, and clock manage-
ment operations may take some time to be completed, the
state maintained by the HW Task Scheduling and Placement
Layer can be pending for that period of time. �e state and
a Pending Flag are set in the �rst step, mentioned above,

whereas the actual realization of that state and clearing of that
�ag are done within the HW Task Dispatcher.

�e main advantage of the aforementioned division in
processing is that API calls which do not result in requests for
allocation, deallocation, or clock management are very short.
Moreover, when the requests are actually being processed, the
SW andHW tasks may continue their execution; that is, their
processing is overlapped with the processing performed by
the HW Task Con�guration Layer; it is shown in Figure 9.
In the �gure, the Send Request to Con�guration Controller
corresponds to processing done by the HW Task Con�g-
uration Layer. It sends the recon�guration and readback
requests to the Con�guration Controller and then blocks,
waiting for the processing to be completed.�is interaction is
based on semaphore, acquired by theHWTask Con�guration
Layer and released by the dedicated Con�guration Controller
interrupt handler. In case of clock scaling requests, the HW
Task Con�guration Layer talks to DFS Controller module
(DCM Controller), following similar procedure as in case
of Con�guration Controller (ICAP-DMA). �e Before Inact
Callback and theA�er Act Callback refer to function callbacks
of the upper layer described previously in Section 3.3.3

�e Init Req Processing corresponds to accessing of the
structures related to the request, shared between the HW
Task Dispatcher and the scheduler. At this time, also the
decision aboutwhich functions of theHWTaskCon�guration
Layer to call is made. �is decision is based on checking the
status of theDispatch Flags and comparison of the pointers of
the scheduled and currently allocated task, described before.
In the Final Req Processing, the assignment of the pointer
corresponding to the currently allocated task and clearing of
the Pending Flag is conducted. �e latter one is performed,
provided that no further requests have been made, while the
processing which has now completed was in progress.

�e actions in the Init Req Processing, the Final Req
Processing, and those in the Callbacks are performed in the
state of disabled interrupts, enforcing exclusive access to the
shared OS4RS structures.
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7. HW Task Management

7.1. HW Task Management API. �e Table 1 shows theMan-
agement API Calls for SW and HW tasks. We provided
API Calls for SW tasks as C preprocessor macros which
reference the functions of the HW Task Management and
Communication Layer. We also provided implementation of
these calls for HW tasks coded in C and synthesized using
eXCite [57] HLS tool. �ese are converted into states of
the control FSM accessing ports of the synthesized HW
Task Core module, mentioned in Section 3.4. Outside the
HW Task Core, the ports are connected to the interface of
the Management API Call Channel, described later on in
Section 7.2.

�e calls with∗ can be only executed by the SW task
caller. �e restriction for Rbow swt exit() is natural as it is
a voluntary exit call to be made only by the SW tasks. �e
restriction for the other calls comes from the fact that the
calls made by the HW task caller are actually executed on its
behalf by a dedicated interrupt handler. Currently, the base
OS implementing SWmultitasking does not provide support
for these calls made within the interrupt context. Extension
of the base OS is a part of a future work.

While the majority of calls in the Table 1 are typical for
conventional OSes [9, 24], the other ones have been specif-
ically designed for the HW tasks. Rbow hwt acq RR lock
and Rbow hwt rel RR lock() are used to reserve and release
the recon�gurable resources for a given HW task (RR
Locking), described in Section 6.2. �e Rbow hwt prefetch()
call is used in HW task prefetching, that is, putting it
into a PREFETCH state, described in Section 7.3. �e actual
activation of the task put into the PREFETCH state is done
when the Rbow hwt prefetch act() call is executed. Another
special call, Rbow hwt updt freq(), is used to dynamically
update the clock frequency of aHW task. If the new requested
frequency is within the range of frequencies supported by
the HW task and the Frequency Synthesizer module itself,
the clock frequency scaling will be requested from the HW
Task Con�guration Layer. �e new frequency is calculated
using the clock frequency multiplier (MULT) and divider
(DIV) parameters passed to the call as well as the input clock

Table 1: Management API.

SW tasks HW tasks

— Rbow hwt prefetch (HWT ID)

— Rbow hwt prefetch act (HWT ID)

Rbow swt act (SWT ID) Rbow hwt act (HWT ID)

Rbow swt term (SWT ID)∗ Rbow hwt term (HWT ID)

Rbow swt exit ()∗ Rbow hwt exit (HWT ID)

Rbow swt chg pri (SWT ID,
NEW PRI)∗

Rbow hwt chg pri (HWT ID, NEW
PRI)

Rbow swt susp (SWT ID)∗ Rbow hwt susp (HWT ID)

Rbow swt resm (SWT ID)∗ Rbow hwt resm (HWT ID)

Rbow swt rotate queue (PRI) Rbow hwt rotate queue (RR ID, PRI)

—
Rbow hwt acq RR lock (HWT ID,
EXIT REL FLG, TMOUT VAL)

— Rbow hwt rel RR lock (HWT ID)

—
Rbow hwt updt freq (HWT ID,
MULT, DIV)

— Rbow hwt wait state (HWT ID)

Rbow ch lock acq (CH ID) Rbow ch lock acq (CH ID)

Rbow ch lock rel (CH ID) Rbow ch lock rel (CH ID)
∗Only supported by the SWT caller.

frequency of the Frequency Synthesizer module, given as a
system-wide constant.

Some of calls may result in long HW task’s allocation
or clock scaling process. As mentioned in Section 6, these
are done in background, while other tasks continue their
execution. As a result, by the time the API call returns to
the caller, and the allocation or clock scaling will be still
in progress. �is is done to allow the caller for further
execution without waiting for the time-consuming process
to complete. In some situations, it may be required to
synchronize the further task’s execution with the completion
of the time-consuming recon�guration. �is is where the
Rbow hwt wait state() call comes into play.�is call will only
make the caller wait if the previous call resulted in any of the
aforementioned time-consuming processes and otherwise



International Journal of Recon�gurable Computing 15

API Call

H
W

T
 A

P
I 

C
al

l M
o

d
u

le
 I

F

H
W

T
 C

o
re

 I
F

VCLK domainFCLK domain

Async. FIFO

API Call (Send)

Return Value (Receive)

Parameter #1

Parameter #N

· · ·

Return Value

API Call ID

Control FSM

HWT Mgmt. API Call
Module

HW Task Core

SYNC

s0

s1 s2

Figure 10: Management API Call Channel.

will return immediately. It is currently supported only by the
SW task caller. It should be noted that communication calls,
presented later in this paper, do not require this additional
synchronization call as they always block if the conditions for
the communication are not met.

Finally, the Rbow ch lock acq() and Rbow ch lock rel()
calls are used in tandem with the RR Locking and only when
the HW task is involved in communication. Although they
are related to communication, they logically belong to the
group ofManagement API Calls. �e �rst call acquires a lock
on a channel, whereas the second one releases it.�e channel
lock is an idea, described in details in Section 8.4.1, which
optimizes the communication by reducingOS4RS processing
overhead.

7.2. Processing of HW Task Management API Call

7.2.1. Management API Call Channel. A Management API
Call Channel, shown in Figure 10, is a special kind of channel
used by the HW Task Core to pass the information about the
Management API Call it makes, that is, API call ID and its
parameters, to the Management API Call Module, located in
the HW Task Wrapper, and then get the return value of the
call when it completes. �e API call ID and the parameters
are �rst bu�ered in the FIFO structure of the channel and
then read by theManagement API Call Module. �e bu�er is
used to decrease the latency of sending the API call-related
information across the asynchronous clock domains. �e
return value is passed to the HW Task Core using a standard
double �opping synchronization scheme.

7.2.2. Processing of Management API Call. While SW task
callers make the OS4RS service calls by directly calling the
API functions of the Rainbow extension, this process is
di�erent for HW tasks. It is shown in Figure 11.

Firstly, the HW Task Core, being part of the HW task,
sends the ID of the call and its parameters to the API
Call channel. �e control FSM of the Management API Call

Module constantly checks for presence of data in the channel.
When the HW Task Core sends the data, the control FSM
detects it and noti�es the soware side of the OS4RS about it
by generating an interrupt. As a result, a dedicated interrupt
handler, called Management API Call Interrupt Handler, is
executed which grants the request in the Management API
Call Module. �is starts prefetching of the data from the
channel to the internal storage of the Management API
Call Module. �e soware side of the OS4RS waits till the
prefetching is over and then reads the ID and parameters of
the call from theManagement API Call Module. �e API call
made by theHWtask is then executed on its behalf and return
value sent back to the API Call channel. �is completes the
calling process for the HW task caller. However, if the call
made by the HW task results in its preemption or blocking,
then the return value is saved, at this time, in the HWTCB
and passed to theHWTask Core later on, upon its allocation.

7.3. A HW Task State. Figure 12 shows the HW task state
diagram from the perspective of the HW Task Manage-
ment and Communication Layer. ACT, TERM, EXIT, SUSP,
RESUME, WAIT, and REL WAIT labels near the transition
edges indicate a corresponding action requested from the
HW Task Management and Communication Layer, which
results in the state transition. ACT corresponds to task
activation, TERM corresponds to its forced termination,
and EXIT corresponds to voluntary exit, whereas the SUSP,
RESUME correspond to blocking and resumption as a result
of execution of the task-dependent synchronization calls.
Finally,WAIT and REL WAIT denote actions requested as a
result of communication of the HW task over channels.

�e PREFETCH state being part of the RUNNABLE
macrostate is a special state. In this state, the SR-RR interface,
mentioned in Section 3.4, is enabled, but only the part of the
HW task operating in the FCLK clock domain is switched
on. On the other hand, the computational part, that is, the
HW Task Core, is o�. For this reason, the channel interface
modules and their storage elements are accessible from
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outside of the HW task. �ese conditions allow other tasks
to prefetch data to the channel interface modules before the
HW Task core starts executing and so cannot possibly block
on any API calls and be deallocated.

�eWAIT macrostate is composed ofWAIT CH EXIST,
WAIT CH DATA, WAIT CH SYNC, and WAIT SHD CH
states. �ese states indicate waiting condition on the com-
munication channel. �e �rst one indicates that the HW

task is waiting for the other side of the channel, that is,
its interface module, to become allocated. �e second one
means that the HW task either waits for the storage element
being part of the channel interface on the other side of
the channel to be empty, so that the data can be written
to it, or waits for the storage element on its side of the
channel to �lled, so that the data can be read from it. �e
third one is used when the HW task communicates over
the Message (MSG) channel, where a sending HW task
is blocked and put to WAIT CH SYNC till the other side
executes the complementary API call and receives the data.
Finally, the WAIT SHD CH state is used whenever the P2P
communication over the channel is not possible and an
intermediate shared memory, called Shadow Channel, has to
be used. As the communication over the Shadow Channel
takes more time than the P2P communication, it may happen
that the HW task will try accessing the channel again, before
the previous communication completes. If that happens, the
HW task will be put into WAIT SHD CH state. Details on
the intertask communication and synchronization are given
in Section 8.

8. Intertask Communication and
Synchronization

8.1. Overview. �e inter-task communication and synchro-
nization implemented by the presented OS4RS is based on
the concept of channel. In our opinion, it is more suitable
for SW-HW multitasking systems than previous approaches
which directly follow the model of communication and syn-
chronization based on data queues and semaphores, known
from traditional SW multitasking OSes.
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�e channel provides interface for tasks to communicate
with other tasks, located either in soware or hardware.
�e data sent to the channel is transfered over the physical
interconnect provided by the hardware platform before it can
be received by another task. Multiple channels can share the
same interconnect.

We have implemented four types of channels which can
be used by SW and HW tasks. �ese are FIFO,MSG, Shared
Memory (SHARED MEM), and Register (REG) channels.
�e FIFO channel implements FIFO like, unidirectional,
P2P communication. In this style of communication, the
receiver blocks only if the sender has not sent the data yet
(FIFO empty condition), while the sender is able to send as
much data as is the depth of the channel, before it blocks
(FIFO full condition). �e MSG channel implements a uni-
directional, P2P, rendezvous style of communication where
the receiver and the sender block till their communicating
partner makes a corresponding Communication API Call
and sends or receives the data. �e SHARED MEM channel
implements a nonblocking, bidirectional communication
based on the storage located externally to tasks. Finally, the
REG channel implements a nonblocking communication and
is used for polling-based synchronization of SW and HW
tasks communicating over the SHARED MEM channel.

8.2. HW Task Wrapper: Implementation Details. As men-
tioned previously in Section 3.4, HW Tasks access commu-
nication services of the OS4RS via a dedicated interface,
that is, the HWT OSIF, which consists of the HW Task
Communication Module, theHWTask Communication Event
Control, and theTranslation Tablemodules located in theHW
Task Wrapper.

�e proposed communication model has been imple-
mented on top of IBM CoreConnect buses. �e Processor
Local Bus (PLB) is used for data transfers, whereas theDevice
Control Register (DCR) bus is used to control the HW task’s
OS interface. Nevertheless, it is also suitable for other types
of interconnects. �e bene�ts of the model will be especially
visible in case of NoC, which promotes P2P communication
and where communication latencies between nodes may be
high.

Channel interfaces use ID addressing globally and index
addressing locally, within the HW task. �e maximum
number of channel indices allowed in the HW task was set to

16 whichmade it possible to reduce the size of the Translation
Table to 16 entries. �e table was implemented with LUT-
RAMs allowing for index to address translation within one
clock cycle aer the translation request is sent by theHWTask
Communication Module.

8.3. Hardware Side View

8.3.1. Channel with Recon�gurable Interfaces. �e channel
interface used by a HW task is a hardware module which
lets the task access the channel with an easy protocol
while taking care of the intricacies of conducting the actual
communication over the channel. �e channel interface has
its local storage used to bu�er the data received over the
channel, before it can be accessed by the task or data that is
written by the task, before sending it over the channel.

One of the ideas used in the developed inter-task com-
munication and synchronization mechanism is the one of
a recon�gurable channel interface, shown in Figure 13. �e
recon�gurable channel interface is an interface allocated and
deallocated together with the HW task which uses it.

As interfacing modules, containing local storage, are part
of the HW tasks, the P2P communication between two
already con�gured HW tasks is possible. Moreover, thanks to
this speci�c location of the channel interfaces, their number,
type, and size of their local storage can be de�ned based
on communication needs of the task. As in the developed
OS4RS, theHWTask Core and the remaining part of the HW
Task use separate clocks, prefetching of data to the channel
interfaces is still possible, while the computational part is
halted.

8.3.2. Hardware-Side Channel Interface Modules. �e chan-
nel interfaces for HW tasks are implemented by the hard-
ware modules presented in Figure 14, referred to as channel
interface modules or simply channel interfaces. �e channel
interface modules have two sides: the interconnect side and
the HW task Core side. For the presented modules, the
interconnect side is shown on the le side of the module,
whereas the HW task Core side is shown on the right side of
it.

Depending on the type of the interconnect interface, there
are two major types of interfacing modules for FIFO and
MSG channels.�ese aremaster-side and slave-sidemodules.
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Figure 14: Hardware-side Channel Interface Modules.

SHAREDMEM channel interface modules and REG channel
interface modules are only available as master- and slave-
side modules, respectively. �e modules for FIFO, MSG
and REG channels can be additionally divided based on a
direction of the channel, that is, whether they are connected
to the sender or receiver. We will refer to them as read-side
(receive-side) modules and write-side (send-side) modules.
�is terminology will be used in the rest of the text. �e
exception is the interface modules for the SHARED MEM
channel which is bidirectional.

Channel interface modules operate partly in the FCLK
domain and partly in the VCLK domain. �e interface
between the asynchronous domains is implemented by
means of the asynchronous FIFO and double-�opping syn-
chronization primitives. As such, channel interface modules
encapsulate communication across the clock domains.

As mentioned before, all channel interface modules
implement a local storage for data. FIFO,MSG, and SHARED
MEM channels utilize the asynchronous FIFO, whereas the
REG channels implement a register. �e register is placed in

the HW task Core’s clock domain to allow one clock cycle
to access latency by the HW task Core. It is required by the
nonblocking access protocols used by the HW task Cores
implemented by HLS tools. Depth of the asynchronous FIFO
is always set to the integer power of two. In order to handle
di�erent FIFO depths, additional programmable empty and
full �ags are provided. Asynchronous FIFOs with depths of
less than four are always implemented with depth equal to
four. �is restriction is imposed by the FIFO design.

Our design of the asynchronous FIFO is based on that
presented in [58]. When compared to that design, the clock
domain crossing is implemented by means of synchronous
FFs in order to support the developed HW task preemption
scheme utilized by the OS4RS. �e DPR Controller module
ensures that the reset signal is asserted for long enough to
reset the FFs in the slower clock domain.

In case of HW-HW communication, the depth of asyn-
chronous FIFO located in FIFO and MSG channel interface
modules is set to the same value on both sides of the
channel. It is referred to as a depth of the channel. �is is
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done to simplify processing of the Channel Communication
Events (channel events). �e Channel Communication Events
are interrupts generated by the channel interface modules,
whenever the HW Task Core starts accessing the channel or
state of the local storage implemented by the interfacemodule
changes.

�e depth of the channel de�nes the unit of communi-
cation over the FIFO andMSG channels that is, tasks cannot
communicate over the channel with �ner data granularity. In
case of SHAREDMEM channel, the depth of the bu�ers is set
up depending only on performance requirements of the com-
munication, and it does not de�ne the unit of communication
over the channel.�e tasks are allowed to de�ne the size of the
data to be transfered at each time they want to communicate
over the SHAREDMEM channel. �is is achieved by passing
an extra argument to the communication API call.

Except of the REG channel interface module, all interface
modules implement an OS Control IF port, used by the
soware side of the OS4RS to control operation of the
modules. �is includes generation of the channel events and
granting access to the physical interconnect. In Figure 14,
parts of the modules related to control which are enclosed
in blue dotted lines are only present in read-side modules,
whereas signals drawn with red dashed line are only present
in write-side interfacemodules of theMSG channel.�eREG
channel does not support events since it implements non-
blocking communication and is used only for polling-based
synchronization of the SHARED MEM channel.

�e FIFO and MSG channel interface modules provide
the HW tasks Cores, which are connected to them, with two
ports: HWT Data IF and HWT Stat IF. �e �rst one is used
to transfer data over the channel, whereas the latter one to
receive the status of a transfer and pass it as a return value to
the communication API call. SHAREDMEM channel has an
additional HWT Qualif IF port used by the HW Task Core
to provide address o�set and size of the transfer. �e REG
channel only contains the HWT Data IF port.

OS control part in the write side of the MSG channel
implements a special Unblock �ag. Aer the HW task Core
sends the data over the channel, it requests the status of
performed communication. If the Unblock �ag is not set, the
status read request will not be acknowledged, and the HW
task Core will be kept waiting. �is is used by the OS4RS to
delay execution of the HW task Core till the other side of
the channel starts receiving the data, thereby implementing
a rendezvous style of communication.

8.4. So�ware Side View

8.4.1. OS4RS Structures and Concepts

Channel Control Table. �e Channel Control Table is the
main control structure used by the developed channel-
based communication/synchronization model. �e table is
indexed by the channel ID and is composed of constant and
variable parts. �e constant part is generated by the design
�ow tool based on channel con�guration information.
�is information includes channel index (mentioned in
Section 3.4), type of channel, whether it is used for SW-SW,

SW-HW, or HW-HW communication, channel depth,
whether master side is located in soware or hardware,
direction of the channel, that is, whether master-side is the
write-side or the read-side of the channel, and IDs of the
communication and synchronization objects provided by the
base OS, and �e last ones are used to implement SW-SW
communication and to implement synchronization between
SW and HW side in SW-HW communication. For SW-SW
communication, data queues and semaphores are used,
whereas for SW-HW communication, event �ags are used.
�e main reason for using the event �ags was that several
waiting conditions, described later, required by the SW-HW
communication could be implemented by separate bits of
the event �ag.

Since each entry of the table has to handle all possible
types of channels, the constant part of the table also contains
information about the address of the memory region imple-
menting SHAREDMEM channel, Shadow Channel, and their
status �ags.

�e variable part is updated by the Communication
Agents, described later on, while communication in the
channels progresses. �e main �elds of this part are related
to the current RR location of slave- and master-side chan-
nel interface modules and their status, that is, whether
they are allocated and whether they are empty or �lled.
Moreover, it contains the access status of the HW and SW
tasks using the channel. A given task may have started the
access (ACCESS START condition), may have blocked if the
channel interface module on the other side of the channel
was not allocated yet (WAIT EXIST condition), may have
blocked on writing if the bu�er on the other side of the
channel was not empty (WAIT DATA condition), may have
blocked on reading if the bu�er in the channel interface
module it is connected to was not �lled with the data yet
(WAIT DATA condition), may have blocked on accessing the
MSG channel if the data it had sent was not yet received by
the other task (WAIT SYNC condition), or may have blocked
on writing if the temporarily setup Shadow Channel was
still in use (WAIT SHD CH condition). �e access status
�eld allows to control the progress of communication over
the channel without a knowledge of the execution state of
SW tasks, which is managed by the base OS kernel. It also
allows implementation of a concept of Channel Lock used
to optimize the communication over the channel. All the
�elds in the variable part are updated dynamically in order
to ensure proper access to the channel.

Channel Lock.�eChannel Lock is an idea which prevents the
HW tasks from being put into waiting state even if its access
to the channel would result in it. In other words, the Channel
Lock prevents the HW Task Scheduling and Placement Layer
from being called. �e whole communication is handled
by the HW Task Management and Communication Layer
which utilizes the channel access status �ags in the Channel
Control Table to control the progress of the communication.
An executing HW task which communicates over the locked
channel appears as if it never blocked.�is is useful when the
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communication over the channel ismade in formof short, but
frequent data transfers which could otherwise result in high
overhead of calling the underlying HW Task Scheduling and
Placement Layer. However, a special caution has to be made
when developing an application which utilizes these calls in
order to avoid deadlock [56] situations.

Con�guration Lock. Con�guration Lock is used to prevent
deallocation of a HW task when the transfer over the channel
connected to the task is in progress. �e lock is acquired just
before the start of the transfer over the channel and is released
upon completion of the transfer.

�e Con�guration Lock is implemented using the event
�ag.�e IDof the event �ag is stored in theHWTCB.�e lock
will cause the Before Physical HWT Inactivation Callback, to
block upon execution of the event �ag’s wait function. It will
make theHW Task Dispatcher, in whose context the callback
is executed, block, resulting in switching to another task.�e
HW Task Dispatcher will be released from waiting on the
event �ag, when the call releasing the lock, that is, setting the
event �ag, is executed.

8.4.2. Shadow Channel. Shadow Channel is a region in a
shared memory which serves as a temporary data storage
for transfers between tasks if the P2P communication over
MSG or FIFO channel was not possible. Currently, Shadow
Channels are implemented using an externalmemory. A large
capacity of the memory allowed to have one Shadow Channel
per each channel in the system. �e Shadow Channel can be
set up by one of the Communication Agents, described later.
It happens whenever a write side of the channel is not able to
send data over the channel because the interface module on
the other side is not allocated.

�e Shadow Channel is managed by a dedicated Copy
Task, described later, which is started whenever data is to be
transfered from or to the Shadow Channel.

8.4.3. Communication Agents. Communication Agents are all
these processing units of the OS4RS which act together in
order to provide the inter-task communication services for
SW and HW tasks. To achieve this goal, all Communication
Agents share access to the Channel Control Table. �e follow-
ing processing units are called Communication Agents: SW
task executing communication SW-side API calls, Channel
Communication Event Interrupt Handlers, Copy Task, and
Callbacks.

SW-Side API Calls. API calls executed by SW tasks transfer
data to or from HW tasks aer ensuring that the conditions
for the transfer are met.

Channel Communication Event Interrupt Handlers.�e Event
Interrupt Handlers are executed as a result of the event inter-
rupts generated by the channel interfacemodules.�ey could
be divided into master- and slave-side interrupt handlers,
depending on the side of the channel they are generated
at. Master-side event handlers are only used in HW-HW

communication, whereas the slave-side event handlers are
used in both SW-HW and HW-HW communications.

�eData Notify event handlers are executed as a result of
change in status of the bu�er located in the channel interface
module, for example, when the bu�er becomes empty (read-
side interface) or the bu�er becomes �lled with data (write-
side interface). �e Data Notify event handlers update the
Channel Control Tablewith the information about the current
status of the bu�er.�is information is used later on to control
the transfer over the channel.�e status in the table is cleared
by the Communication Agent which completes the transfer to
or from the bu�er.

�e Start Access event handlers are executed whenever a
HW task starts accessing the channel; thus they update the
Channel Control Table with the information about the access.
When executed on behalf of the interface module located
at the read side of the channel, they block the reading HW
task if it started the access before the write side, as the data
is not available yet. �e blocked HW task is put into the
WAIT CH DATA state then. When executed on behalf of the
write side of the channel, they release the read side if it started
before and was blocked.

In case of SW-HWcommunication, the SW task is always
on the master side of the channel since it runs on a CPU
which has a master interface to the physical interconnect.
Consequently, it is the SW task which transfers the necessary
data to or from the channel interface located in the HW task.

For HW-HW communication, the Start Access event
handlers are responsible for starting the physical transfer over
the interconnect.�ey accomplish it by talking to the control
FSM located in themaster side interfacemodule and granting
the transfer.When it happens, the master side interface sends
the transfer request to the HW Task Communication Module
located in the HW Task Wrapper and data transfer is started.
As the transfer over the physical interconnect is master side
oriented, it is always the master side which starts the read
or write transfer. For this reason, in order to perform the
transfer, the Master side Start Access event handlers have to
talk to themaster interface which generated the event (case of
FIFO,MSG, and SHAREDMEM channel), whereas the Slave
side Start Access event handlers have to talk to the master
interface on the other side of the channel (FIFO and MSG
channels only). In case of SHARED MEM channel, which
utilizes shared storage external to HW tasks, the Start Access
event handler always grants the transfer. In case of FIFO and
MSG channels, the Start Access event handlers always make
sure that the interface module at the other side of the channel
is currently present, before granting the transfer. If it does not
and the HW task which triggered the event is at the read side,
it will be put into waiting state. However, if the HW task is at
thewrite side of the channel, a ShadowChannel, mentioned in
Section 8.4.2, will be set up and data safely transfered to it. In
case of master-side, the data will be transfered by the channel
interfacemodule. In case of slave-side, theCopy Taskwill read
the data from the channel interfacemodule and write it to the
Shadow Channel.

Before the transfer is started, the Con�guration Locks,
described in Section 8.4.1, are acquired to prevent deallo-
cations of the channel interfaces, while the transfer is in
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Figure 15: Channel event processing example—MSG read-side channel interface.

progress. In case of direct transfers, Con�guration Lock is
acquired for HW tasks located at the both sides of the
channel. In case of transfers to or from the Shadow Channel,
only lock for the related side is acquired. �e Con�guration
Locks are released once the transfer has completed, that is,
either by the Copy Task or the End Access Event handler.

�e End Access Event handler is only generated by the
master-side interface modules. Its main role is to signal
completion of the transfer over the physical interconnect
and release the aforementioned Con�guration Locks. In case
of MSG channel, it will also put the HW task located at
the write side of the channel into waiting state, that is,
WAIT CH SYNC, if the reader has not yet started accessing
the channel.

Figure 15 shows exemplary processing done by the
Master-Side Start Access event handler. It is generated when
the HW task attempts to read data from theMSG channel via
the channel interface module whose storage bu�er is empty;
that is, data has not been delivered yet. In the presented case,
the channel is not locked, so that theHWTask Scheduling and
Placement Layer is called. When the corresponding interrupt
handler is executed, it will �rstly update the Channel Control
Tablewith the information about the access; that is, HWTask
started access, but is waiting for data. �en, it will update the
HW Task execution state located in the HWTCB of the HW

Task Management and Communication Layer. �en, it will
block the HW task by calling the appropriate function of the
HWTask Scheduling and Placement Layer. As a result theHW
Task Dispatcher, presented in Section 6.3, will be called and
the HW Task, together with its channel interface modules,
will be deallocated.

Copy Task. Copy Task is a background task with one priority
level lower than the HW Task Dispatcher. Its main job is to
transfer the data between the SW tasks or channel interfaces
located in the HW tasks and the Shadow Channel. �e Copy
Task can be implemented as an SW task executing on a CPU
or as an additional Direct Memory Access (DMA) IP. While
the latter implementation has obvious performance bene�ts,
the former one can be used if the logic resources provided
by the FPGA are limited. In our system, we used the �rst
implementation, due to the aforementioned reason.

Copy Task may be started by other Communication
Agents. To facilitate searching of the shadow channel which
needs to be handled, a request map structure is used. �e
request map is composed of an array of 32-bit masks, where
each bit in the mask indicates request corresponding to the
shadow channel of a given ID. �e array is used to allow for
more than 32 channels to be supported. Before the Copy Task
is started, a bit in the request map is asserted. When the Copy
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Task starts, it contacts the request map to checkwhich shadow
channels need to be handled by it and then does the necessary
processing for each channel, one by one.

Callbacks. Callbacks are functions of the HW Task Manage-
ment andCommunication Layerwhich implement processing
to be conducted just aer the HW task is allocated, or the
clock in its computational part, that is, HW Task Core, is
switched on (A�er Physical HWT Activation Callback), and
the processing to be conducted just before the HW task is
deallocated, or the clock in its computational part is switched
o� (Before Physical HWT Inactivation Callback). Callbacks
are registered in the HW Task Con�guration Layer upon
OS initialization and then executed within the HW Task
Dispatcher.�e processing implemented by theA�er Physical
HWT Activation Callback includes actions performed upon
allocation of the slave-side and master-side interfaces of
the channel, passing the return value of the Management
API Call which caused the HW task to be deallocated as
well as enabling Management API Call interrupts and event
interrupts. One of the actions performed upon allocation
of channel interface modules is releasing the tasks from
waiting, which blocked on the channel due to absence of the
channel interface module on the other side of the channel.
As this module is allocated at this time, this action has to be
performed as well. Another action is related to activation of
the Copy Task if the data could not be previously delivered
directly to the channel interface module and had to be stored
in the Shadow Channel.

�e Before Physical HWT Inactivation Callback imple-
ments processing done before the master- and slave-side
channel interface modules are deallocated. �is processing
is related to updating the Channel Control Table with the
information about the channel interfaces becoming absent.
It also implements waiting on the Con�guration Lock as well
as disabling of theManagement API Call interrupts and event
interrupts.

Enabling and disabling of interrupts is required to prevent
generation of the events and noti�cations of theManagement
API Calls when the OS4RS already acknowledged dealloca-
tion.

8.5. SW and HW Task Communication/Synchronization
API. Table 2 gives the API of supported communica-
tion/synchronization calls. Rbow send mem ch() and Rbow
recv mem ch() represent send and receive calls for the
SHARED MEM channel. Both calls take as their parameters
ID of the channel, o�set from the base address of thememory
region implementing the channel, size of the data to be
sent or received, and the pointer to the bu�er from which
the data is to be read and sent over the channel or to
which the received data is to be written. Rbow send reg ch(),
Rbow recv reg ch(),Rbow send �fo ch(),Rbow recv �fo ch(),
Rbow send msg ch(), andRbow recv msg ch() represent send
and receive calls for REG, FIFO, and MSG channels, respec-
tively. As their parameters, they only take the channel’s ID
and the pointer to the bu�er.�e depth of the REG channel is
always one, whereas the depth of the FIFO andMSG channels
and the size of the bu�er are a constant de�ned at a design

Table 2: Communication/Synchronization API.

SW/HW tasks

Rbow send mem ch (CH ID, ADDR OFFS, DATA SIZE, &Data)

Rbow recv mem ch (CH ID, ADDR OFFS, DATA SIZE, &Data)

Rbow send reg ch (CH ID, &Data)

Rbow recv reg ch (CH ID, &Data)

Rbow send �fo ch (CH ID, &Data)

Rbow recv �fo ch (CH ID, &Data)

Rbow send msg ch (CH ID, &Data)

Rbow recv msg ch (CH ID, &Data)

time.�is constant is stored in theChannel Control Table and
also passed to the HDL code implementing the HW Tasks
before they are synthesized. �e depth of the channel passed
to the HDL code con�gures the depth of the asynchronous
FIFOs being part of the channel interface modules.

On the soware side, we provided these calls in form of C
preprocessor’s macros which directly reference the functions
of the HW Task Management and Communication Layer. On
the hardware side, we provided implementation of these calls
for HW tasks coded in C and synthesized using eXcite [57]
HLS tool. �e calls are converted into states of the control
FSM, being part of the synthesized HW Task Core module,
which accesses its I/O ports. Outside the HW Task Core, the
ports are connected to the channel interface modules.

Internally, FIFO and MSG channel API calls intended
for SW tasks contact the Channel Control Table in order to
deduce the type of communication, that is, SW-HW or SW-
SW. Later, the processing corresponding to a given type of
communication is performed. As the REG channel is only
intended for SW-HW inter-task communication, only this
very processing is part of the API call’s implementation.
Finally, the processing done by the calls of the SHARED
MEM channel is independent of the SW/HW location of the
communicating sides.

�ere are two additional calls which are used to optimize
communication over a channel.�ese areRbow ch lock acq()
and Rbow ch lock rel() calls which acquire and release the
lock on the channel. Since these calls logically belong to the
group of Management API Calls, they were described with
otherManagament API Calls in Section 7.1.

8.6. SW-SW Communication/Synchronization. Figure 16
shows an abstract view of the channel-based inter-task com-
munication between SW tasks. In this type of communi-
cation, the access to the channel is provided through its
interfaces implemented by the Communication API Calls.

FIFO andMSG channel-based inter-task communication
and synchronization between SW tasks utilize the commu-
nication and synchronization objects already provided by
the underlying base OS kernel. �ese are data queues and
semaphores. In the base OS, the data queue can be con�gured
to either provide a means of synchronous or asynchronous
communication. �e �rst case is realized by con�guring the
depth of the queue to zero, whereas the latter one is realized
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by setting it to any other value. In the �rst case, a sender will
block till the receiver side starts accessing the data queue and
sowill the receiver if it tries to read from an empty data queue.
In the second case, the sender will be blocked only if the data
queue is already full, while it attempted to send more data to
it. �e semaphore primitive provided by the base OS can be
con�gured as a counting semaphore or a binary semaphore,
that is, mutex. For our purposes, only the latter con�guration
was needed. �e data queues and semaphores are referenced
by their IDs de�ned at the time of con�guring the base OS
kernel.

�e FIFO channel-based communication API call
directly uses the access functions of the data queue object
to transfer the data. �e ID of the data queue is stored in
the Channel Control Table and retrieved by the call using the
channel ID. �e depth of the data queue is con�gured to be
the same as the depth of the channel. �e depth also de�nes
how many times the send or receive function of the data
queue will be called internally by the the FIFO channel API
call.

Depending on the depth, the MSG channel may be
either implemented with the data queue object con�gured
for synchronous operation or data queue object con�gured
for asynchronous operation with an additional semaphore to
enforce synchronous operation. If the depth of the channel
is equal to one, then the data queue is enough, whereas for
bigger depths, the data queue con�gured for asynchronous
operation and an additional semaphore have to be used.
Similarly to FIFO channel, the depth of the MSG channel
de�nes how many times the send or receive function of the
data queue will be called internally by the the channel API
call before the semaphore is acquired or released.

Depending on the priorities of the communicating SW
tasks, the communication through the data queue may result
in multiple context switches which add up to the overhead
of inter-task communication. In the worst case, when the
receiver has already started the access to the channel and the
sender has lower priority than the receiver, then at each word
sent, the base OS will switch from the sender to the receiver.

Inter-task communication over the SHAREDMEM chan-
nel is implemented using low-level I/O functions to transfer
data to and from memory. �e address of the region in the
memory to write to or read from is known by contacting the
Channel Control Table.

8.7. SW-HW Communication/Synchronization. Figure 17
shows an abstract view of channel-based inter-task commu-
nication between SW and HW tasks. In this type of
communication, the access to the channel is provided
through its interfaces implemented by the Communica-
tion API Calls on the SW side and by the channel
interface modules on the HW side. �e SW-HW inter-
task communication is based on interaction between the
SW tasks executing the API call and the Communication
Event Interrupt Handlers executed on behalf of the HW tasks
accessing the channel.

When the FIFO or MSG channel API Call is executed
by a SW task, it is �rst checked if the bu�er in the channel
interface located in the HW task is �lled with data, in case
of the receive call, or it is empty, in case of the send call.
If these conditions are met, the API call will proceed with
execution, otherwise it will block, putting the SW task into
waiting state. �e blocking is implemented by means of the
synchronization objects provided by the underlying base OS
(event �ags). �e SW task will be released by the Data Notify
event handler.

�en, it is checked if the HW task has blocked before
while accessing the channel. If it is the case, the HW task will
be released from waiting. Next, it is checked if the channel
interface module located on the hardware side is present. If
the HW task was previously blocked and deallocated and the
previous step released it from waiting, then at this time, the
API call will block till the HW task and its channel interfaces
are allocated again. �e SW task making the API call will
be released from waiting by the Callback which manages
allocation of the channel interface modules.

Finally the transfer to the storage located in the channel
interface module is performed. In case Shadow Channel is
used, its current state is con�rmed at the beginning of the
API call, potentially resulting in blocking of the SW task. It is
required as the transfer over the Shadow Channel, managed
by the Copy Task, may take much longer than the direct
transfer. For this reason, it may happen that the soware side
starts next access, while the previous transfer has not been yet
completed. If the SW task blocks on Shadow Channel, it will
be released by the Copy task when it completes the previous
transfer. �e Shadow Channel is only used with FIFO SW-
HW channels in order to allow the SW caller to continue
execution even if the hardware side is not present.

In case of MSG channels, the send call blocks aer the
transfer is completed, if the hardware side has not started the
access yet. It will be released by the Slave-side Start Access
event handler. �e read call sets the Unblock �ag in the
channel interfacemodule of the HW task.�is �ag causes the
interface module to acknowledge the request to read status
of the transfer, made by the HW Task Core. Shall the �ag
be not set, the HW Task Core will be kept waiting for the
acknowledge without making further progress in execution.

8.8. HW-HW Communication/Synchronization. Figure 18
shows an abstract view of channel-based inter-task commu-
nication between HW tasks. In this type of communication,
the access to the channel is provided through its interfaces
implemented by the channel interfacemodules locatedwithin
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the HW tasks. �e HW-HW inter-task communication is
based on interaction between the Communication Agents.
It is partly managed by the event interrupt handlers, which
unlike SW tasks, do not have their state and cannot be
blocked. While it could be still handled by the SW tasks;
that is, some of the processing done by the event interrupt
handlers could be deferred to dedicated SW tasks, it is not
done so for performance reasons. As a result of this decision,
the control over the communication between the HW tasks
is distributed over the Communication Agents.

�e key role in this processing is done by the Start Access
event handler. �e Start Access event handler representing
read side will cause the receiving HW task to be blocked if
it starts before the write side, and so the data is not available
yet. �e Start Access event handler for the write side of the
channel will check the condition for the transfer, that is, if the
read side interface exists and if its bu�er is empty. In case the
read-side interface does not exist, the Shadow Channel will
be set up, and data will be directed to it. When the read-
side becomes allocated, the Copy Task will be started, and
data will be transfered to it. In case the bu�er is not empty,
the sending HW task will be put into waiting. �e further
processingwhen the bu�er becomes empty cannot be done by
the Start Access event handler as it cannot be put into waiting
state. For this reason the processing will be continued either
by the Data Notify handler or by the Callback. �e latter one
will happen if the write side does not exist when the read side
sends noti�cation about the empty bu�er. Either of them will
release the previously blocked HW task.

�e key processing that has to be done by these Commu-
nication Agents is starting of the transfer. As in the SW-HW

case, if at the time the transfer is to be started, the read side
does not exist, and the Shadow Channel will be used.

Several such cases had to be thoroughly analyzed tomake
this scheme work.

9. Evaluation Results

9.1. Experimental Setup. As a testing bed for our framework,
we used a XilinxML410 board hosting a Virtex-4 FX60 speed
grade-11 FPGA which was programmed with our system
shown in Figure 19. �e system was implemented using
Xilinx EDK and PlanAhead v14.2 tools. Partial bitstreams
representingHW tasks as well as FPGA initialization �le were
copied onto the compact �ash card andused aerwards by the
system.

In the presented system, the PPC405 CPU, located on
the Virtex-4 FX’s fabric, BRAM-based CPU memory, and its
controller, the peripherals, and all the buses are running at
100MHz. CPU instructions are entirely placed in on-chip
BRAMs, whereas the data is placed in the external DDR
memory which also serves as a bitstream repository. CPU
instruction and data caches are on. �e recon�guration con-
troller is connected to the DDR2 memory controller, Xilinx
Multi-Port Memory Controller (MPMC) IP core, through
a 64-bit PLB bus. �e HW Task Wrappers are connected
to a separate bus for faster HW-HW communication. As
a consequence, the SW-HW communication experienced
additional latency as it had to go through an additional
PLB2PLB bus bridge. �e external timer shown in Figure 19
was used to implement theOS tick timer. Timemeasurements
were conducted using the time base timer being part of the
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Table 3: ICAP-DMA—synthesis results.

With HWT state
extraction

w/o HWT state
extraction

Slices 1543 1161

FFs 1096 776

LUTs 2223 1723

BRAMs 5 5

ICAP 1 1

Max. Clk freq. (MHz) 158.8 200.8

PPC405’s register set. To interact with this timer, additional
inline assembly functions were implemented. �e PLB2DCR
Bridge being part of the IP repository provided by Xilinx and
used to control the HW Task Wrappers had to be modi�ed.
Speci�cally, the bitwidth of its timeout counter had to be
extended in order to support HW tasks running at low-
frequency clocks.

9.2. HW-SideOS4RSModules: Synthesis Results. Table 3 gives
the synthesis results for the developed con�guration con-
troller (ICAP-DMA) with Xilinx Synthesis Tool (XST) v14.2
and default synthesis options. HW Task State Extraction
indicates whether the state extraction module used in HW
task preemption is included in the ICAP-DMA. If it is not,
the corresponding functionality is implemented in soware.
In our tests, for improved preemption performance, the
module was included. In such a con�guration, the ICAP-
DMA occupies about 6%of the total area of theVirtex-4 FX60
used in the experiments.

Table 4 presents synthesis results for the HW TaskWrap-
per. �e table presents the synthesis results separately for
the DCM Controller, being logically a part of the HW Task
Wrapper, and the rest of the logic contained in the HW Task
Wrapper. �e reason is that to simplify application of timing
constraints for the whole IP, we decided to provide the DCM
Controller externally to the HW Task Wrapper, yet making
it fully controlled by the HW Task Wrapper. �e HW Task
Wrapper, including the DCMController, takes up about 7.5%
of the logic resources available on the FPGA used in tests.
Keeping inmind, that Virtex-4 wasmanufactured a few years

Table 4: HWT wrapper—synthesis results.

HWT wrapper
(PLB and DCR)

DCM
controller

Slices 1706 178

FFs 1721 175

LUTs 2340 310

BRAMs 0 0

DSPs 0 0

DCMs 0 1

BUFGs 2 2

FCLK freq. (MHz) 140.8 276.1

VCLK freq. (MHz) 527.4 315∗

∗For Virtex-4 speed grade-11 (HF Mode) [59].

ago, the latest FPGAs from Xilinx o�er much bigger capacity,
and this result is considered satisfactory. Also the maximum
clock frequency for the static part of the system, that is, FCLK
domain is high enough tomake the placement and routing for
the system running at 100MHz easier.

9.3. Channels Interface Modules: Synthesis Results. Tables 5
and 6 present synthesis results for the Management API
Call channel and communication channel interface modules
used by the HW Tasks, synthesized using XST v.14.2 with
additional constraints required for the developed CPA-based
preemptionmechanism.�ese additional constraints include
enforcing the FFs’ set and reset signals to be synthesized
as a part of set/reset paths [48]. Additionally, the memory
extraction style option had to be set to distributed, that
is, LUT-RAMs. While technically the developed mechanism
supports preemption of BRAMs, we encountered problems
in the �nal system, which are very likely to be on the
manufacturer’s side. �is is why we had to implement all
channel interfaces with a distributed memory working as
their local storage.

In all presented results, thewidth of the data buswas set to
32 bits for all channels. �e depth of the asynchronous FIFO
implementing the storage of the API Call (Send) part of the
Management API Call channel was con�gured to four.
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Table 5: Management API Call Channel—synthesis results.

Channel Slices FFs LUTs FCLK freq. (MHz) VCLK freq. (MHz)

API call (send) 83 28 94 360.9 370

Return value (recv.) 101 174 73 383.7 439.1

Unless indicated otherwise, the values in the table are unitless.

Table 6: Communication Channels’ HW Interface Modules—synthesis results.

Interface module Depth (word) Slices FFs LUTs FCLK freq. (MHz) VCLK freq. (MHz)

SHDMEM RD +WR

1 317 242 403 215.4 263.8

8 342 258 451 205.4 238.6

32 554 293 730 196.1 213.9

128 1459 350 1782 196.4 181.6

FIFO (MST-side write)

1 158 89 221 240.8 276.6

8 173 97 251 210 254

32 272 115 378 217.7 210.8

128 721 144 897 182.8 208.2

FIFO (MST-side read)

1 190 130 262 238.1 328.5

8 211 141 300 228.8 251.6

32 325 159 455 209.4 227.5

128 784 188 993 191.1 182.3

MSG (MST-side write)

1 160 96 225 244.7 276.6

8 170 105 244 244.8 257.8

32 271 121 375 214.6 211.5

128 731 140 916 175.5 166.6

MSG (MST-side read)

1 196 135 274 235.3 328.5

8 212 145 304 227.7 261.8

32 332 164 468 203.5 234

128 791 211 1006 214.5 219.5

FIFO (SLV-side write)

1 101 61 119 367.2 333.8

8 112 74 139 283 283.8

32 219 84 281 232 226.5

128 679 102 819 179.4 166.4

FIFO (SLV-side read)

1 109 71 120 343 330

8 123 87 149 311.8 277

32 234 99 298 209.3 233

128 692 123 833 188.5 180

MSG (SLV-side write)

1 104 63 124 363.2 333.8

8 114 76 144 283 283.7

32 221 86 286 232 226.5

128 681 104 824 179.4 166.4

MSG (SLV-side read)

1 115 76 133 336.8 330

8 130 92 162 311.7 277

32 240 104 311 209.3 233

128 698 123 845 172.8 180

REG (write) 1 65 111 80 431.6 370

REG (read) 1 85 148 16 874.1 632.3

Data width = 32.
Unless indicated otherwise, the values in the table are unitless.
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�e �rst column of Table 6 denotes the type of channel
interface module, whereas the second column represents
depth of the storage element used by it. In case of FIFO,
MSG, and SHARED MEM channel interface modules, the
smallest depth of the storage elements, that is, asynchronous
FIFOs, that can con�gured, is equal to four, as mentioned in
Section 8.3.2. �is should be kept in mind when analyzing
the results for depth equal to one, which actually include
modules with the asynchronous FIFO of depth equal to four.
For small depths, the major contributor to the logic area is
the additional control logic being part of the channel interface
module. For bigger depths, the asynchronous FIFO becomes
the major part. It is especially visible for the SHARED MEM
channel interface module which implements the FIFOs for
both sending and receiving.

For very small HW Task Cores utilizing the presented
interface modules with bigger depths, the resource consump-
tion may be considered high. However, for bigger cores
synthesized from high-level descriptions, it will not be, in our
opinion, the case. Such a comparison for HLS-based cores is
conducted in Section 9.4. �e results for the FCLK, shown in
column six, do not seem to pose any limitations, considering
common case of 100MHz for the static part of the system.
�e worst-case result of VCLK, that is, 166.4MHz for MSG
(SLV-side write) and FIFO (SLV-side write) channel interface
modules with depth set to 128 words, shown in column seven,
is also considered satisfactory.

9.4. HW Tasks Used in Tests. As HW Task Cores in our tests,
we used the image processing (IDCT) core and cryptographic
(SHA) core taken from benchmark suite presented in [60]
and synthesized to HDL, using YXI eXCite HLS tool [57].
SHA implements a secure hash algorithm with a 160-bit hash
function and operates on 512-bit blocks of data. IDCT is an
inverse discrete cosine transform which processes an 8 × 8
matrix of 32-bit words per iteration.�ese original cores were
supplementedwith the channel interfacemodules and related
glue logic, described in Section 3.4.�e IDCT core �rst reads
data from its input port, processes it, and then writes it to
output. �e SHA core �rst reads the size of the data stream
to be processed, then reads as many words as indicated by
that size. While reading these words, it updates its structures.
Finally, when all the words have been read, it writes a 160-bit
message digest to the output.

9.4.1. Static Characteristic: Synthesis Results. Table 7 presents
synthesis results for the HW tasks used in tests, synthesized
with XST v. 14.2. �e �rst column denotes the HW Task
Core and its channel interface con�guration. IDCTMSG SW-
HW and HW-HW (×64) and IDCT FIFO SW-HW and HW-
HW (×64) denote HW Tasks using IDCT algorithm in the
HW Task Core part and implementing two MSG or FIFO
channel interfaces with depth equal to 64 words, and both
and con�gured as slaves. �is HW task is used for both SW-
HW and HW-HW communications. IDCT MEM-BC HW-
HW (×64) implements one SHAREDMEM channel interface
and two MSG channel interfaces used for synchronization.
�ese are set to depth equal to one, and the �rst one is

con�gured asmaster, whereas the second one is con�gured as
slave. �is task is used for testing HW-HW communication.
IDCT MEM-BC SW-HW (×64) implements one SHARED
MEM channel interface and twoMSG channel interfaces used
for synchronization. �ese are set to depth equal to one, and
both are con�gured as slaves. �is task is used for testing
SW-HW communication. IDCT MEM-REG SW-HW (×64)
implements one SHARED MEM channel interface and two
REG channel interfaces used for synchronization. �is task
is used for testing SW-HW communication. SHA FIFO SW-
HW (×16), SHA FIFO SW-HW (×32), and SHA FIFO SW-
HW (×64) denote HW tasks using the SHA algorithm in
the HW Task Core part. �ey implement one word MSG
channel interface for sending the size of the data stream
to be processed and two FIFO channel interfaces for data
communication, set to depth equal to 16, 32, and 64 words,
respectively. All channel interfaces in the SHA HW tasks are
con�gured as slaves.�ese tasks are intended to test SW-HW
communication only. Finally, the HW tasks at the bottom
of the table, which contain TB in their names, are testbench
tasks.�ey are used to testHW-HWcommunicationwith the
other HW tasks implementing IDCT algorithm, by sending
test vectors stored in their localmemory. IDCTTBMSGHW-
HW (×64) and IDCT TB FIFO HW-HW (×64) implement
two MSG and FIFO channel interfaces of depth 64 words,
both con�gured as masters. IDCT TB MEM-BC HW-HW
(×64) implements one SHAREDMEM channel interface and
twoMSG channel interfaces used for synchronization. �ese
are set to depth equal to one, and one is con�gured as master,
whereas the other one is con�gured as slave.

Column three, �ve, seven, and eleven show the over-
head in resource consumption of the preemptable HW task
including channel interfaces and the glue logic, with respect
to preemptable HW Task Core (top row in the cell) and
nonpreemptable HW Task Core (bottom row in the cell).
Columnnine shows the corresponding result in baseless units
rather than in percent. �e last column shows the di�erence
in clock frequency resulting frommaking theHWTask Cores
preemptable and adding the channel interfaces and the glue
logic. As the originalHWTaskCore operates only in one clock
domain which corresponds to VCLK domain in the table,
there is no column showing di�erence in FCLK.

As it is clear from the table, a big factor increasing the
resource utilization and decreasing clock frequency of the
created HW tasks is preemption mechanism which, due
to faced problems, did not allow for usage of Block RAM
(BRAM) resources present on Xilinx Virtex-4 FPGAs. It
should be stressed, however, that this is not the limitation of
our overall approach but a problemwith the design tool chain
provided by the manufacturer. If this was solved, the results
could be improved.

If we compare the results for the preemptable HW Tasks
with the preemptable HW Task Cores, we will see that the
overhead caused by additional channel interfaces and HW
Task glue logic is not prohibitively high. In terms of slices, it
is up to 41.66% for IDCT core and up to 68.63% for the SHA
core. Furthermore, it should be noted that theHWTask Cores
used in tests were coded without any additional parallelizing
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optimizations and synthesized bymeans of the HLS tool with
default options. If those optimizations were used, the logic
area of the HW Task Cores would be further increased, and
the relative overhead of additional logic would be lower.

Although the high logic overhead can be observed for
testbench tasks, we should keep in mind that they do not
implement any computational algorithm. Instead, they just
implement a local memory �lled with test vectors and the
control FSM which sends the test vectors to the tested HW
task and receives the result. Nevertheless, a conclusionwe can
make here is that for very small circuits the proposedmethod
creates too much overhead to be applicable.

Once a HW task is synthesized, the resulting netlist �le
has to be passed through the FPGA design �ow in order to
generate the �nal con�guration bitstream. A special proce-
dure has to be followed in order to make the implementation
of the HW tasks with VCLK frequency possible. �e initial
VCLK frequency set in the DCM of each HW Task Wrapper
will de�ne the frequency of all HW tasks allocated in the RR
contained in that wrapper.�is initial frequency has to be set
to maximum clock frequency among all HW tasks. Also the
frequency synthesismode in theDCMhas to be appropriately
set, based on this clock frequency setting. In order to make
the Static Timing Analysis (STA) work for each con�guration
of the static part of the system andHW tasks, the initial DCM
frequency has to be overridden on per HW task basis. In case
of our implementation based on Xilinx design �ow tools, it
is possible by applying an additional clock period constraint
to the VCLK clock path located within each HW task and
assigning a high priority to it.

9.4.2. Dynamic Characteristic: Bitstream and State Size.
Table 8 shows the size of recon�guration bitstreams as well
as recon�guration/readback and reinitialization times for the
tasks shown in column one and previously described in
this section. �e bistreams were generated by the PR design
�ow tools and processed with the additional design �ow
back-end tool, that is, Bitformatter, described in Section 5.
It should be noted that bitstream compression option was
not used. �e primary and secondary con�guration bit-
streams shown in columns two, three, and four are speci�c
bitstreams generated by the Bitformatter in order to make
the preemption possible. Columns �ve to eight show the
recon�guration, reinitialization and readback times achieved
when using these bitstreams. It is assumed that HW tasks are
recon�gured as a result of activation; that is, aer allocation,
they will start their execution form the beginning. �e
column �ve corresponds to allocation of the HW task which
has not been started yet, and column six corresponds to
HW task which has been started before, and so its state
needs to be reinitialized, whereas column seven corresponds
to reinitialization of already allocated task. As shown in
the table, for the tasks used in tests, the allocation can be
accomplished in about 2ms for IDCT and SHA cores and in a
bit more than 800�s for Testbench tasks. On the other hand,
the reinitialization without allocation, used in activation of
the HW task which held the RR lock and exited without
releasing it, can be accomplished in less than 300�s for IDCT
and SHA cores and in a bit more than 100 �s for Testbench

tasks. State readback times, presented in the last column, are
in the range of about 50–125 �s for the used tasks.

�e presented results include overhead of the ICAP-
DMA’s driver. �e bare transfer times accomplished by the
developed streaming recon�guration controller were mea-
sured to be 318–333MB/s for readback and 282–326MB/s
for recon�gurations. Although in Virtex-4 FPGA used in our
tests, throughputs of 400MB/s are theoretically possible, and
these were not reachable due to performance restrictions of
the memory controller used to access the external memory
where the bitstreams are stored.

�e preemption time for a given pair of tasks is equal to
the sum of deallocation time of the preempted task (shown in
column eight) and allocation time of the next task (shown in
column �ve). Considering the obtained results, preemption
could be used to improve FPGA utilization whenever HW
task stall time, due to delays in data delivery, is in the range
of milliseconds. While the HW task waits for data, another
HW task could be executed. In case of processing long
data streams, which may require even seconds to complete,
preemption could be used to improve system responsiveness,
when compared to nonpreemptive execution, by allowing a
more critical task to start earlier.

One prospective area of applications which could bene�t
from it is embedded systems with networking, which only
store the most essential data locally and larger amount of
data in some remote locations. In these systems, it may
happen that the packet containing the data of the computing
core has not been yet received from its remote storage.
Although the packet delivery latencies di�er depending on
the type of network and its infrastructure, in case of systems
communicating over the internet, delays in the range of a few
to tens of milliseconds are common.

Second prospective area of application is, for example,
FPGA-based accelerator cards for servers and personal com-
puters where memory virtualization with Hard Disk Drives
(HDDs) as a secondary storage is used [48]. Although the
work on the OS4RS presented in this paper does not consider
memory protection and virtualization per se, this very feature
is important in medium and large-scale embedded systems,
thus can be seen as a future extension of this work.

9.5. SW and HW Task Management API Calls: Performance
Results. Figure 20 shows the results of execution ofHWTask
Management API Calls by SW and HW Task callers for the
case when the VCLK frequency in the HW tasks is set to
100MHz. �e bottom chart is for the case when the HW
Task Dispatcher did not have to be started as a result of the
call, whereas the top chart is for the case when it had to be
started. In the tested cases, when the HW Task Dispatcher is
started, the control is switched from the SW Task executing
the call to theHWTask Dispatcher. �en, when theHWTask
Dispatcher blocks waiting for the HW Task Con�guration
Layer to complete recon�guration, the control is passed back
to the caller, which returns. �e times presented in both
charts were measured by starting the timer before the call
was executed and stopped, when it returned. While taking
the measurements, the tick-timer and UART interrupts were
disabled.
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Table 8: HW tasks size of bitstreams and recon�guration/readback times.

HW task
Bitstream size (KB) Time (us)

Primary
bitstrm

Secondary
bitstrm (logic)

Secondary
bitstrm (mem.)

Recon�g.
(alloc. only)

Recon�g.
(alloc. +
reinit)

Reinit.
only

Readback
(dealloc)

IDCT MSG SW-HW and HW-HW
(×64) 633.38 68.94 20.56 2066.79 2126.57 287.32 119.33

IDCT FIFO SW-HW and HW-HW
(×64) 633.38 72.3 19.22 2071.27 2128.88 289.77 118.49

IDCT MEM-BC HW-HW (×64) 633.38 70.62 23.59 2049.29 2126.99 287.67 121.92

IDCT MEM-BC SW-HW (×64) 633.38 69.27 22.58 2057.2 2135.25 296.21 124.79

IDCT MEM-REG SW-HW (×64) 633.38 68.27 19.22 2048.87 2117.05 277.66 119.54

SHA FIFO SW-HW (×16) 633.38 55.5 18.88 2006.66 2063.5 223.62 119.61

SHA FIFO SW-HW (×32) 633.38 51.8 20.23 2011.84 2073.86 234.4 121.36

SHA FIFO SW-HW (×64) 633.38 54.16 19.89 2011 2073.09 233.98 123.11

IDCT TB MSG HW-HW (×64) 229.93 18.55 12.16 789.33 823.26 105.46 50.58

IDCT TB FIFOHW-HW (×64) 229.93 17.88 12.16 780.05 821.42 103.57 51.21

IDCT TB MEM-BC HW-HW (×64) 229.93 18.55 13.17 786.84 826.39 108.61 54.51

�eset of the tested calls includes activation of aHigh Pri-
ority (HP) Task, a Low-priority (LP) Task, their termination,
suspension, and resumption, task prefetching, activation of
the prefetched task, changing of task priority, rotation of the
ready queue, acquiring and releasing of the RR lock, and
updating of the HW task frequency. In the presented charts,
theCtxt switch corresponds to context switch, that is, theHW
task preemption.

While allocation times for theHWtasks used in tests were
presented in Section 9.4, the measured DCM recon�guration
times were in the range 49.2 �s to 64.1 �s.�emeasured range
is for the best and the worst case where the clock multiplier
and divider values passed to the DCM are low and high,
respectively.

As we can see from the charts, the execution time of
the calls which do not result in activation of the HW Task
Dispatcher is higher for the HW task caller. �e reason
for the increased latency is manyfold. �e HW task caller’s
latency includes hardware-side overhead for making the call,
additional interrupt response time, processing of a dedicated
interrupt handler, and �nally sending the return value to the
HW task caller. On the other hand, the calls which result
in activation of the HW Task Dispatcher take less time for
the HW tasks. �e reason is that the HW Task Dispatcher
is not activated till the interrupt handler, making the call on
behalf of the HW task, returns. �us, the HW task receives
the return value before the HW Task Dispatcher is actually
started.

Figure 21 show the results of execution of SW Task
Management API Calls by the SWandHWTask callers.�ese
calls are handled by the base OS kernel, that is, Toppers ASP.

�e tested set of SWTaskManagement API Calls includes,
starting from the le on the column charts, activation of an
LP task which does not result in the context switch as well as
an HP task which results in the context switch, termination
of an HP task resulting in the context switch, change of

the task priority which results or which does not result in
the context switch, rotation of the ready queue, suspension,
and resumption of an HP task which results in the context
switch. �e reason why some results are given only for the
SW Task caller is that the remaining calls are not supported
in the interrupt handler’s context, required to execute the
call on behalf of the HW task caller. �e measurements were
started before executing the API call and taken when the API
call returned or the other higher-priority SW task started
execution.

As shown in Figure 21, the latency of processing the
call experienced by the HW task caller is about 6.6–8.9�s
higher. �e reason for the increased latency has been already
explained when describing the HW task Management API
Calls.

If we compare the overhead created by the calls managed
by the Rainbow extension with the overhead created by the
base OS kernel, which manages the SW tasks, we will see
that the processing time of HW Task Management API Calls
which do not result in activation of the HW Task Dispatcher
is comparable to that of the SW Task Management API Calls
which do not result in context switch. Furthermore, if we look
at the results forHWTaskManagementAPICallswhich result
in starting of theHWTaskDispatcher task, wewill see that the
measured times are low when compared to allocation times
presented in Section 9.4 and the DCM recon�guration times
given in this section.

In general, it is di�cult to directly compare the obtained
results with other works due to di�erent communication
interconnects being used, di�erent CPUs and their speeds,
di�erent memory con�gurations, di�erent base OSes, and
lack of clock scaling (requiring clock domain crossing
synchronization) in other works. �e work which mostly
resembles this one in terms of CPU, interconnect, and OS
con�guration is ReconOS presented in [20]. In that work,
experiments are conducted on a system built on top of a
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Figure 20: HWTManagement API Call execution times.
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Figure 21: SWTManagement API Call execution times.

Xilinx Virtex-II FPGA. �at system also contains PPC405
CPU; however, it runs at 300MHz, that is, three times faster
than the CPU used in our tests. Similarly to our system, that
work uses a PLB bus for data communication and a DCR bus
to control the HW task’s OS interface.�e buses and the HW

tasks in both systems run at 100MHz. One of the base OS
kernels used by ReconOS is eCoS RTOS [10] which similarly
to our work is a lightweight RTOS providing only basic OS
services. �is makes the comparison more feasible than with
other works based on Linux kernels.

In order to compare the performance of CPU, memory,
and base OS con�gurations of ReconOS and our system, we
tested semaphore turn-around time for SW tasks. �is test
was performed on the base OS kernel, which in our case is
Toppers ASP kernel.When compared to 3.05 �s given in [20],
the same test run on our platform resulted in 4.68 �s.

In order to test the e�ciency of ReconOS with our
OS4RS, we compared the di�erence in time to make a call
by a SW task caller and a HW task caller. Although our
system does not use semaphores and mutexes for inter-task
synchronization, the call to acquire and release semaphore
presented in ReconOS [20] is performed in a similar way
as SW Task Management API Calls in our OS4RS. For this
very case, the di�erence in processing time between the
SW task caller and the HW task caller includes processing
time of the HW task OS interface, interrupt response time,
and further OS processing overhead. For ReconOS this
di�erence in time varies from 5.08 to 8.76�s for releasing
and acquiring mutex, respectively. In our case it is 6.56–
8.87 �s for SW task activation and rotation of the SW task
ready queue, respectively. Although our OS4RS supports the
HW task clock scalability, which requires additional signal
synchronization between clock domains, and the CPU runs
at lower frequency, results are similar.�is could be explained
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Figure 22: SW-SW communication times for di�erent sizes of data.

by the fact that in our OS4RS the calls made by the HW
task caller are handled by the soware side of the created
extension in more e�cient way. In the developed OS4RS, it
is the interrupt handler which makes the call on behalf of the
HW task without switching to a delegate SW task, as it is the
case in ReconOS.

9.6. SW-SWCommunication: Performance Results. Figure 22
presents results of SW-SW inter-task communication which
is managed by the base OS. FIFO (LP →HP) denotes FIFO
channel-based communication between a Low Priority (LP)
sender and a High Priority (HP) receiver. �e timer was
started when the sender made the call and was stopped when
the receiver’s call returned. FIFO (MP→MP) denotes FIFO
channel-based communication between task of the same
priority. In this case, the sender and the receiver made two
send/receive calls. While the sender completed its �rst call
without blocking, it blocked on the second one, due to FIFO
full condition. �e timer was started before the �rst send
and stopped aer the �rst receive call. MSG (HP → LP →
HP) denotes MSG channel-based communication between
an HP sender and an LP receiver. �e timer was started
when the sender made the call and was stopped when the
sender’s call returned.MEM (write) andMEM (read) denote
SHARED MEM channel-based inter-task communication.
While taking the measurements, the tick-timer and UART
interrupts were disabled.

In case of FIFO (LP→HP), the communication over the
channel with depths bigger than one resulted in multiple
context switches between the tasks. It is not the case with
FIFO (MP→MP) andMSG (HP→ LP→HP), where the SW
task sender can transfer thewhole data before switching to the
receiver. �e presented results for SHARED MEM channel-
based communication include read/write transfer times and
overhead of processing the API call. It should be noted
though that the actual communication over the SHARED
MEM channel would additionally require single-word FIFO
or MSG channel-based synchronization.

In case of FIFO (LP →HP), transfer time varies from
7.24�s to 764.34 �s for one word data and 128-word data,
respectively. In case of FIFO (MP→MP), transfer time varies

from 19.55 �s to 383.22 �s for one word data and 128-word
data, respectively. In case ofMSG (HP→ LP→HP), transfer
time varies from 16.5 �s to 201.28�s for one word data and
128-word data, respectively. MEM (write) takes from 1.26�s
to 32.41 �s, whereas MEM (read) from 1.29 �s to 44.46 �s for
one-word data and 128-word data, respectively.

9.7. SW-HWCommunication: Performance Results. Figure 23
shows results for the SW-HW communication for the FIFO,
MSG, and REG channels. �e results were measured using
HWTasks with theirHWTask Cores running at 100MHz and
the SR-RR boundary registered on both sides. While taking
the measurements, the tick-timer and UART interrupts were
disabled. �e results are for the case where the HW task
containing the channel interface is allocated and holds the
RR lock to prevent its deallocation. Furthermore, the channel
was locked, so that only the HW Task Management and
Communication Layer was involved in communication, that
is, the layers beneath it were not called when the HW task
waited for data. �ese conditions allowed for measuring the
communication overhead induced by the physical transfer
and the processing conducted only by theHW Task Manage-
ment and Communication Layer.

�e results for the SHARED MEM channel are not
included here, as these were presented in Section 9.6 for the
SW tasks and will be presented in Section 9.8 for the HW
tasks. In case of FIFO channel, the receiver was activated �rst
and blocked on empty FIFO. �en, the measurement was
started before the sender executed the API call and stopped
when the unblocked receiver completed execution of the API
call. In case of MSG channel, the sender was activated �rst.
�emeasurement was started before the sender executedAPI
call. �e measurement was then suspended when the sender
blocked waiting for the receiver to start. �e measurement
value was restored just before the receiver unblocked the
sender and, �nally, stopped when the sender’s API call
returned. �is was done to make it possible to compare the
obtained results with these for SW-SW communication.

�e calculated results is composed of two components.
�e �rst component are results taken at run-time, whereas
the second one is the results taken from the logic simulator.
At run-time, the transfer time between the bu�er used by
the SW task (local variable) and the bu�er used by the HW
task (channel interface module’s FIFO bu�er) was measured.
�is gave us the time of the physical transfer started and
completed by the SW task. Additionally, the processing time
of the SW task’s API call and processing time of the event
interrupt handler wasmeasured at run-time. In the simulator,
the latencies between the start of access to the channel by the
HW tasks and generation of event interrupts were measured.
�ese results were combined.

For FIFO (SWT → HWT) (case where SW Task is a
sender and HW task is a receiver), communication takes
from 2.78 �s to 30.78 �s for one-word data and 128-word data,
respectively. It gives speedup of up to 24.83x with respect to
corresponding FIFO (LP →HP) SW-SW communication.

For FIFO (HWT → SWT) (case where HW Task is a
sender and SW task is a receiver), communication takes from
12.2 �s to 78.27�s for one-word data and 128-word data,
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Figure 23: SW-HW communication times for di�erent sizes of data
(HWT @ 100MHz).

respectively. It gives speedup of up to 9.77x with respect to
corresponding FIFO (LP → HP) SW-SW communication.

For MSG (SWT → HWT), communication takes from
12.98 �s to 40.98 �s for one word-data and 128-word data,
respectively. It gives speedup of up to 4.91x with respect to
corresponding MSG (HP → LP →HP) SW-SW communi-
cation.

For MSG (HWT → SWT), communication takes from
2.75 �s to 68.81 �s for one-word data and 128-word data,
respectively. It gives speedup of up to 6xwith respect to corre-
spondingMSG (HP → LP →HP) SW-SW communication.

Finally, REG (SWT → HWT) and REG (HWT → SWT)
for one word of data take 1.35 �s and 1.76 �s, respectively.

As mentioned in Section 9.5, the work which is the
most similar to the presented work in terms of system
con�guration is ReconOS [20, 34]. We compared the SW-
HWcommunication based on FIFO semantics, implemented
by mailboxes in case of ReconOS and FIFO channels
in case of our OS4RS. For this type of communication,
ReconOS achieves throughput of 0.13MB/s, whereas our
OS4RS 16.6MB/s for the case where the SW task is a sender
and 6.54MB/s for the case where the HW task is a sender.
�is translates into 127.7x and 50.3x speedups, respectively.
�ese results are for the case of communication over a 128-
word deep channel. As the ReconOS’ results presented in [34]
have been conducted on 8 kB data, deeper FIFO channels are
preferable.

9.8. HW-HW Communication: Performance Results.
Figure 24 shows results for the HW-HW communication
for the FIFO, MSG, and MEM channels. �e results were
measured using HW Tasks with their HW Task Cores
running at 100MHz. Similar to SW-HW communication
tests, the tick-timer and UART interrupts were o�, and HW
tasks, which held the RR locks, communicated over the
locked channels.

�e calculated results are composed of two components.
�e �rst component is results taken at run-time, whereas the
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second one is the results taken from the logic simulator. At
run-time, the time between the generation of the Start Access
event and End Access event by themaster side weremeasured.
�is gave us the time of the physical transfer started and
completed by the master side. Additionally, the processing
time of the corresponding event interrupt handlers was
measured at run-time. In the simulator, the latencies between
the start of access and the channel by the HW tasks and
generation of event interrupts were measured, for both sides
of the channel. �ese results were combined.

For FIFO (MST write→ SLV read), where a master HW
task sends data to a slave HW task, communication takes
from 5.89 �s to 8.53 �s for one-word data and 128-word data,
respectively. It gives speedup of up to 89.61x with respect to
corresponding FIFO (LP → HP) SW-SW communication.

For FIFO (SLV write→MST read), where a master HW
task receives data from a slave HW task, communication
takes from 6.93 �s to 13.6 �s for one-word data and 128-word
data, respectively. It gives speedup of up to 56.2x with respect
to corresponding FIFO (LP → HP) SW-SW communication.

ForMSG (MST write→ SLV read), communication takes
from 10.53 �s to 13.17 �s for one-word data and 128-word
data, respectively. It gives speedup of up to 15.28x with
respect to corresponding MSG (HP → LP →HP) SW-SW
communication.

ForMSG (SLV write→MST read), communication takes
from 11.59 �s to 18.26 �s for one-word data and 128-word
data, respectively. It gives speedup of up to 11.02x with
respect to corresponding MSG (HP→ LP→HP) SW-SW
communication.

MEM (write) takes from 4.25 �s to 7.47 �s, whereas MEM
(read) takes from4.24�s to 8.15 us for one-word data and 128-
word data, respectively. Lower read time for one word, when
compared to write time, can be explained by an error due to
measurement precision.

When compared to results of memory read and write
times for SW tasks, read andwrite times forHWtasks are 3.4x
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higher when transferring single words. On the other hand,
when it comes to writing 128-word data, HW tasks are 4.4x
faster and, when it comes to reading it, 5.5x faster. �e lower
performance for small data quantities is mainly caused by
the additional latency of the synchronization logic located
at the FCLK-VCLK clock domain boundary and additional
logic located at the SR-RR boundary. �ese latencies are
compensated in case of bigger data quantities. It is because the
interface at the aforementioned boundaries is optimized for
streaming communication, and data over the bus is transfered
in bursts. �e SW tasks executing on the CPU transfer the
data in single words.

As mentioned previously, the work which is the most
similar to the presented work in terms of system con�gura-
tion is ReconOS [20, 34]. We compared HW-HW commu-
nication based on FIFO semantics. In case of ReconOS, it
is implemented by FIFO bu�ers accessed by HW tasks via
an additional communication API call decoder and FIFO
controller modules. In case of our OS4RS, it is implemented
by the FIFO channel whose data transfer is conducted over
the PLB bus. For the case of 128-word deep channel, we
achieved throughput of 60.02MB/s (case of FIFOMST write
→ SLV read) versus 127.20MB/s possible for ReconOS.As the
ReconOS’ results presented in [34] were conducted on 8 kB
data, deeper FIFO channels are preferable. If we extrapolated
obtained results for a 512-word deep FIFO channel, we
could get about 124MB/s which is a similar result as for
ReconOS. �is is because the communication overhead over
the FIFO channel is caused by the data transfer itself and
event channel processing overhead of the soware side of
the OS4RS. �e latter one can be assumed constant for all
channel depths. Additionally, this is the �rst transferred word
which undergoes the highest latency due to clock domain
and SR-RR boundary crossing. Further improvements are
possible by moving the processing related to HW-HW inter-
task communication to hardware.

While the results of HW-HW communication for Rain-
bow are similar as for ReconOS, we should take into account
additional advantage of dynamic frequency scaling and inter-
connect scalability o�ered by our approach. In ReconOS,
FIFOs are connected externally to the RRs and each FIFO
connects two RRs. Such an approach leads to quadratic
increase in the logic area used by the interconnect with the
number of RRs. While our approach has been evaluated
with a bus, it is suitable for di�erent and scalable types of
interconnects such as NoC.

9.9. SW- versus HW-Based Processing Speedups. Figures
25 and 26 show the execution times of IDCT and SHA
application, implemented in soware (SW-SW), codesigned
(SW-HW), and run fully in hardware. �e column charts
also show the breakdown of the execution time into bare
soware execution, bare hardware execution, and recon�g-
uration overhead and nonoverlapped OS overhead.�e non-
overlapped OS overhead is this overhead created by the
developed OS4RS which does not have impact on the total
execution time of a given application. �e charts also show

the speedup of execution performed in SW-HW and HW-
HW con�gurations versus SW-SW execution.

While analyzing the presented results, we should keep in
mind the bare HW versus SW speedups achieved by the HW
tasks synthesized with the HLS tool used in tests, that is, YXI
eXCiteHLS tool [57].�esewere calculated by comparing the
execution times of the algorithms in soware and hardware.
In soware, the times were measured for the con�guration
where input and output data for the algorithm are contained
in the local variables, and the instruction and data caches in
the PPC405 are on. �e execution times in hardware were
measured in the logic simulator. �e obtained speedup times
are 1.12x for the IDCT cores and 1.49x–1.52x for the SHA cores
in di�erent FIFO depth con�gurations.

While taking themeasurements, the tick-timer interrupts
were enabled, whereas the UART interrupts were disabled.
�e test involved testbench tasks which provided the test vec-
tors for the SW and HW tasks implementing the algorithms.
�e measurement for the SW-SW case was started once both
the testbench, and themain SW task was activated, before the
testbench task initiated the communication. �e measure-
ment was completed when the testbench task received the
result.

In the SW-HW case, the testbench was located in so-
ware, and time measurement was done in the same way as in
case of the SW-SW case. �e HW task was activated before
the tests. In the HW-HW case, additional channels were used
in theHW testbench taskwhichmade it possible to send Start
signal and receive Done signal when the communication was
completed.

As we can see from the charts, the IDCT application
bene�ts frommoving someor all of its processing to hardware
only if we restrict recon�gurations or even better prevent
the HW Task Dispatcher from being called frequently, as it
is done when the channel is locked. On the other hand, the
SW-HW codesigned SHA application bene�ts from moving
it to hardware even if we allow for recon�gurations. In the
performed tests only a few recon�gurations were needed.
While preemption can be used to increase FPGA utilization
and response time [48], we should only use it at the times
when it brings these bene�ts, while at other times execute the
application in a locked manner, as allowed by the developed
OS4RS. It should be noted that the SHA cores update
their state during the whole execution. While the tests were
performed for 8 kB data, the actual size of data streams could
be much bigger. It could result in other tasks starving for
resources, if the preemption was not allowed at all.

�e obtained results could be further improved if the
parallelizing optimizations were used during synthesis of the
HW tasks with the HLS tool. Due to capacity limitations
of the FPGA used in our experiments (Virtex-4 FX60)
and large size of the static part of the system, we were
compelled to restrict FPGA’s area available for Recon�gurable
Regions (RRs) and so the resources that can be used by HW
Tasks. �is, in turn, forced us to switch o� any parallelizing
optimizations in the HLS tool which could lead to increased
logic area of the synthesized circuit. As a result, the HW tasks
were synthesized as mostly sequential circuits with lower
HW versus SW performance speedups. For this reason, the
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Figure 25: HW versus SW processing speedups for IDCT.

obtained results can be further improved if newer and bigger
FPGAs are used. As there are more e�cient HLS solutions
available on the market [61, 62], changing the HLS tool itself
may also improve the results.

In case of the SHA HW task, aer the SW task sends to
theHW task, via theMSG channel, the size of the data stream
to be processed, both sides have to communicate multiple

times via the FIFO channel before the calculated data stream
checksum can be received by the SW task. For the tested 8 kB
size of the data stream, it is 128, 64, and 32 times for FIFO×16,
×32, and ×64, respectively.

Although, the OS4RS overhead due to event processing
may potentially limit the achieved speedups, here it is not
the case. It comes from the way the SHA HW task does its
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Figure 26: HW versus SW processing speedups for SHA.
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processing. Aer receiving the size of the data stream to be
processed, it starts receiving the consecutive chunks of data
and processes them, till the complete bitstream is received.
When the HW task reads the whole chunk of data from the
channel, it makes the FIFO on its side empty.�is triggers the
Data Notify Event releasing SW task from waiting on FIFO
and letting it sends the next chunk.

While the HW task does processing, the SW task is able
to send the next part of the data stream. Since the processing
of one chunk of data by the HW task takes only a bit less than
processing of Data Notify Event, releasing the SW task from
waiting and sending the data, the Nonoverlapped OS Mgmt +
Comm Overhead shown in Figure 26 is very small. �e REG
channel is used only for SW-HW communication, thus the
speedup with respect to SW-SW implementation could not
be calculated. For this reason, it is shown asN/A in Figure 25.

9.10. Evaluation of Scheduling. In embedded systems with
networking or these utilizing a virtual memory, a task may
be temporarily blocked while waiting for its input data to
be fetched from some remote locations or some secondary
storages. Figure 27 presents case of the SHA HW task which
is processing data being retrieved from the remote location
and blocks when the next chunk of data becomes unavailable.

�e packet delivery latencies di�er depending on the
type of network and its infrastructure. In case of systems
communicating over the internet, delays in the range of
a few to tens of milliseconds are common. Latencies of a
few milliseconds can be also experienced by systems with
memory virtualization which use HDDs as their secondary
data storage.

Figure 27(a) shows a case where the latency of the com-
munication link is high; thus it is advantageous to deallocate
the blocked task and allocate another one (shown as X-
task in the �gure), thereby improving FPGA utilization and
reducing application’s overall execution time. As our results
presented in Section 9.4.2 indicated, the recon�guration and
state restore time for the SHAHW task is about 2ms, whereas
its state saves time about 120�s (Table 8). Also, the time
required for clock scaling (frequency synthesis) is, for the
FPGA used in our tests, in the range of 49.2–64.1 �s, as
indicated in Section 9.5.�us, the total overhead of switching
HW tasks will be lower than the data delivery latencies. For
the high-latency case, the HW task communicating over the
link is activated with RR lock acquired before its execution
and expiring immediately aer it blocks. �e RR lock is
acquired to speedup the HW task’s execution, as presented
in our speedup results in the previous section. While in the
Figure 27(a), the RR lock’s timeout is set to zero, some small
nonzero value could be used to �lter out cases where the
blocking time is very short.

Figure 27(b) shows a case where the latency of the com-
munication link is low, thus justifying the decision to keep
the task allocated on the FPGA, while it is blocked. For this
low-latency case, the HW task communicating over the link
is activated with RR lock acquired before its execution, and
its timeout is set to some large values, greater than the mean
blocking time. Timeout is needed here as a recovery measure
when the HW tasks becomes nonresponsive for a long

time, making the other tasks starving for the recon�gurable
resources.

As shown in Figures 27(a) and 27(b), the RainbowOS4RS
allows the HW task scheduling to be adapted to match
the latency characteristics of a given system. Moreover, by
allowing dynamic frequency scaling, HW tasks may run at
the clock frequencies allowing their maximum execution
speedups.

ReconOS [32] implements cooperative scheduling which
allows for deallocations only at prede�ned time points, that
is, when a HW task blocks. Its scheduling result shown in
Figure 27(c) is similar to the one presented for Rainbow in
Figure 27(a). As ReconOS does not support clock scaling,
clock frequency of all HW tasks executing in the assigned RR
would be restricted by the slowest task in a set. For this reason,
the total execution time of SHA and X tasks would be higher
than for Rainbow.

�e clock scaling is restricted by the parameters of the
frequency synthesizing logic (Digital Clock Manager in our
case) and post-PAR clock frequency results forHW tasks.�e
performance improvement of an executing application which
results from the higher clock frequency will be restricted
by an additional time needed to perform the clock scaling.
As the higher clock frequency will mostly a�ect the HW
task execution phase only, the speed-up improvement for the
whole application will be also restricted by the e�ciency of
the communication link and overhead of the OS4RS which is
involved in the inter-task communication.

Our results in Section 9.9 showed that SHA task operating
at 50MHz, holding the RR lock and communicating over
unlocked FIFO channel, requires about 5.1ms to complete its
execution. As at this clock frequency, the OS overhead related
to communication is overlapped with the data processing
conducted by the HW task, and further decrease in the
clock frequency would only result in increase of its total
execution time.�eHWtask executing onReconOS could be
restricted to run at frequencies far below 50MHz increasing
its total execution time by milliseconds. In this context, even
additional 64.1 �s required for clock scaling would be worth
spending. Also the same scenario could be possible for the X
task.

Another point worth mentioning is that ReconOS would
schedule execution of the SHA and X tasks irrespective of the
blocking time as shown in Figure 27(c). For the low-latency
case, this would further increase total execution time of the
application by conducting time consuming and unnecessary
switching of HW tasks.

Also, response time for any critical task that is activated
while the X task, which performs very long processing, is
running can be higher for ReconOS which does not allow for
task preemption at arbitrary point in time, as Rainbow does.

Figures 28(a) and 28(b) compare scheduling results of
Rainbow OS4RS and ReconOS [32] for the periodically
executed IDCT HW task and SW task feeding it with
data. OS overhead shown in the �gure indicates inter-task
communication overhead incurred by the OS4RS. In case of
Rainbow, this includes channel event processing and transfer
of data. In case of ReconOS, this mainly includes execution
time of the delegate task which performs communication
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on behalf of the HW task by means of the communication
primitives located in the soware side of the OS4RS. As
indicated in our results presented in Section 9.7, the latter one
is signi�cantly bigger. In Figure 28(a),WAIT indicates period
of time where the HW task waits for the next chunk of data
to be received.

For ReconOS, the clock frequency of the IDCT task
could be restricted in the same way as in case of the SHA
task, described before. �is would in turn increase the total
execution time of the IDCT task.

�e longer communication and execution times de-
scribed above would cause ReconOS to miss deadline for the
IDCT task executed periodically. �is is shown in Figure 28.

10. Conclusions and Future Works

In this paper we presented a complete model and imple-
mentation of the lightweight and portable OS4RS supporting
preemptable and clock-scalable HW tasks. While DFS was
discussed in the context of FPGAs by the previous works,
none of them proposed a complete model and implemen-
tation of the OS4RS architecture supporting this concept.
�e DFS allows improveing performance of the SW-HW
codesigned applications and avoid some of the restrictions
imposed by the underlying DPR technology.

We showed a novel scheduling mechanism based on
timely and priority-based reservation of recon�gurable
resources allowing for use of preemption only at the time
it brings bene�ts to the total performance of the system.
�e architecture of the scheduler and the way it schedules
allocations and deallocations of the HW tasks on the FPGA
array results, as presented in our evaluation, in shorter latency
of API calls, thereby reducing the overall OS overhead.

Last but not the least, we presented a novel model and
implementation of a channel-based inter-task communica-
tion and synchronization suitable for SW-HW multitask-
ing with preemptable and clock-scalable HW tasks. When
compared to previous approaches, the model and its imple-
mentation allow for optimizations of the communication
on per task basis and takes advantage of more e�cient
point-to-point message passing rather than shared-memory
communication, whenever it is possible.While themodel has
been implemented on top of the bus interconnect, it is suitable
for more e�cient and scalable interconnects, such as NoC,
where its bene�ts would be evenmore visible. Our evaluation
results proved the e�ciency of the proposed model and its
implementation.

�e overall performance results could be further
improved if better HLS tools were used. A prospective area
of future work includes, but is not limited to, moving OS4RS
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processing related to HW-HW communication to FPGA and
more complex application tests.
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[19] E. Lübbers and M. Platzner, “Reconos: an RTOS supporting
hard- and soware threads,” in Proceedings of the International
Conference on Field Programmable Logic and Applications (FPL
’07), pp. 441–446, August 2007.

[20] E. Lubbers and M. Platzner, “A portable abstraction layer for
hardware threads,” in Proceedings of the International Confer-
ence on Field Programmable Logic and Applications (FPL ’08),
pp. 17–22, September 2008.

[21] D. Andrews, R. Sass, E. Anderson et al., “Achieving program-
ming model abstractions for recon�gurable computing,” IEEE
Transactions on Very Large Scale Integration, vol. 16, no. 1, pp.
34–43, 2008.

[22] MathWorks Simulink, http://www.mathworks.com/products/
simulink.

[23] V. Nollet, P. Coene, D. Verkest et al., “Designing an operating
system for a heterogeneous recon�gurable SoC,” in Proceedings
of the IEEE International Parallel and Distributed Processing
Symposium (IPDPS ’03), 2003.

[24] TOPPERS project. O�cial website, http://www.toppers.jp/.

[25] C. Steiger, H. Walder, and M. Platzner, “Operating systems for
recon�gurable embedded platforms: online scheduling of real-
time tasks,” IEEE Transactions on Computers, vol. 53, no. 11, pp.
1393–1407, 2004.

[26] J. A. Clemente, J. Resano, C. González, and D. Mozos, “A Hard-
ware implementation of a run-time scheduler for recon�gurable
systems,” IEEE Transactions on Very Large Scale Integration, vol.
19, no. 7, pp. 1263–1276, 2011.

[27] F. Gha�ari, B. Miramond, and F. Verdier, “Run-time HW/SW
scheduling of data �ow applications on recon�gurable architec-
tures,” Eurasip Journal on Embedded Systems, vol. 2009, Article
ID 976296, 2009.

[28] F. Dittmann and S. Frank, “Hard real-time recon�guration
port scheduling,” in Proceedings of the Conference on Design,
Automation and Test in Europe (DATE ’07), pp. 123–128, fra,
April 2007.

[29] F.Dittmann and S. Frank, “Caching in real-time recon�guration
port scheduling,” in Proceedings of the International Conference
on Field Programmable Logic and Applications (FPL ’07), pp.
740–744, August 2007.

[30] Y. Qu, J.-P. Soininen, and J. Nurmi, “Improving the e�ciency
of run time recon�gurable devices by con�guration locking,” in
Proceedings of the IEEE Conference on Design, Automation and
Test in Europe (DATE ’08), pp. 264–267, March 2008.
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