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Abstract

Let K
(k)
n be the complete k-uniform hypergraph, k ≥ 3, and let ` be an integer

such that 1 ≤ ` ≤ k − 1 and k − ` divides n. An `-overlapping Hamilton cycle in

K
(k)
n is a spanning subhypergraph C of K

(k)
n with n/(k− `) edges and such that for

some cyclic ordering of the vertices each edge of C consists of k consecutive vertices
and every pair of adjacent edges in C intersects in precisely ` vertices.

We show that, for some constant c = c(k, `) and sufficiently large n, for every

coloring (partition) of the edges of K
(k)
n which uses arbitrarily many colors but no

color appears more than cnk−` times, there exists a rainbow `-overlapping Hamilton
cycle C, that is every edge of C receives a different color. We also prove that, for
some constant c′ = c′(k, `) and sufficiently large n, for every coloring of the edges

of K
(k)
n in which the maximum degree of the subhypergraph induced by any single

color is bounded by c′nk−`, there exists a properly colored `-overlapping Hamilton
cycle C, that is every two adjacent edges receive different colors. For ` = 1, both
results are (trivially) best possible up to the constants. It is an open question if our
results are also optimal for 2 ≤ ` ≤ k − 1.

The proofs rely on a version of the Lovász Local Lemma and incorporate some
ideas from Albert, Frieze, and Reed.
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†Supported in part by the Polish NSC grant N201 604940 and the NSF grant DMS-1102086.
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1 Introduction

By a coloring of a hypergraph H we mean any function φ : H → N assigning natural
numbers (colors) to the edges of H. (In this paper we do not consider vertex colorings.)
A hypergraph H together with a given coloring φ will be dubbed a colored hypergraph.
A subhypergraph F of a colored hypergraph H is said to be properly colored if every two
adjacent edges of F receive different colors. (Two different edges are adjacent if they
share at least one vertex.) We say that a subhypergraph F of a colored hypergraph H is
rainbow if every edge of F receives a different color, that is, when φ is injective on F .

In order to force the presence of properly colored or rainbow subhypergraphs one has
to restrict the colorings φ, either globally or locally. A coloring φ is r-bounded if every
color is used at most r times, that is, |φ−1(i)| ≤ r for all i ∈ N. A coloring φ is r-degree
bounded if the hypergraph induced by any single color has maximum degree bounded
by r, that is, ∆(H[φ−1(i)]) ≤ r for all i ∈ N.

In this paper we study the existence of properly colored and rainbow Hamilton cycles
in colored k-uniform complete hypergraphs, k ≥ 3. (A hypergraph is k-uniform if every
edge has size k; it is complete if all k-element subsets of the vertices form edges.) There
is a broad literature on this subject for k = 2, that is, for graphs. Indeed, setting
r = cn, Alon and Gutin proved in [2], improving upon earlier results from [5, 6, 16] that
if c < 1 − 1/

√
2 then any r-degree bounded coloring of the edges of the complete graph

Kn yields a properly colored Hamilton cycle (for the history of the problem, see [3]). It
had been conjectured in [5] that the constant 1− 1/

√
2 can be replaced by 1

2
which is the

best possible.
Rainbow Hamilton cycles in r-bounded colorings of the complete graph have been

studied in [1, 8, 10, 12]. Hahn and Thomassen conjectured that their existence is guar-
anteed if r = cn for some c > 0. This was confirmed by Albert, Frieze, and Reed in
[1] with c = 1

64
. Again, c = 1/2 seems to be a critical value here, since one can use

each of n − 1 colors exactly n/2 times, making the presence of rainbow Hamilton cycles
impossible. In striking contrast, there is literally nothing known on properly colored or
rainbow Hamilton cycles in colored k-uniform hypergraphs for k ≥ 3.

The notion of a hypergraph cycle can be ambiguous. In this paper we are not concerned
with the Berge cycles as defined by Berge in [4] (see also [11]). Instead, following a recent
trend in the literature ([7, 13, 15]), given an integer 1 ≤ ` < k, we define an `-overlapping
cycle as a k-uniform hypergraph in which, for some cyclic ordering of its vertices, every
edge consists of k consecutive vertices, and every two consecutive edges (in the natural
ordering of the edges induced by the ordering of the vertices) share exactly ` vertices.
(See Fig. 1 for an example of a 2-overlapping and a 3-overlapping 5-uniform cycle.)

The two extreme cases of ` = 1 and ` = k − 1 are referred to as, respectively, loose
and tight cycles. Note that the number of edges of an `-overlapping cycle with s vertices
is s/(k − `). Note also that when k − ` divides s, every tight cycle on s vertices contains
an `-overlapping cycle on the same vertex set (with the same cyclic ordering).

Given a k-uniform hypergraph H on n vertices, where k−` divides n, an `-overlapping
cycle contained in H is called Hamilton if it goes through every vertex of H, that is, if
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Figure 1: A 2-overlapping and a 3-overlapping 5-uniform cycle.

s = n. We denote such a Hamilton cycle by C
(k)
n (`).

In this paper we prove the following two results. Let K
(k)
n be the complete k-uniform

hypergraph of order n.

Theorem 1.1 For every 1 ≤ ` < k there is a constant c = c(k, `) such that if n is

sufficiently large and k − ` divides n then any cnk−`-bounded coloring of K
(k)
n yields a

rainbow copy of C
(k)
n (`).

Theorem 1.2 For every 1 ≤ ` < k there is a constant c′ = c′(k, `) such that if n is

sufficiently large and k − ` divides n then any c′nk−`-degree bounded coloring of K
(k)
n

yields a properly colored copy of C
(k)
n (`).

Note that for loose Hamilton cycles (i.e. ` = 1) the above results are optimal up to the
values of c and c′. Theorem 1.2 is trivially optimal, as the largest maximum degree can
be at most r =

(
n−1
k−1

)
∼ 1

(k−1)!n
k−1. To see that also Theorem 1.1 is optimal up to the

constant for ` = 1 consider any coloring of K
(k)
n using each color precisely

r =

(
n
k

)
n
k−1 − 1

∼ k − 1

k!
nk−1

times, and thus using only n
k−1 − 1 colors altogether. Such a coloring is r-bounded and,

clearly, there is no rainbow copy of C
(k)
n (1).

Problem 1.3 For all k ≥ 3 and ` = 1, determine sup c and sup c′ over all values of c and,
respectively, c′ for which Theorems 1.1 and 1.2 hold.

We believe that Theorems 1.1 and 1.2 are optimal up to the constants also for ` ≥ 2,
that is, we believe that the answer to the following question is positive.

Problem 1.4 For all k ≥ 3 and 2 ≤ ` ≤ k − 1, does there exist an r-bounded (r-degree

bounded) coloring φ of K
(k)
n such that r = Θ(nk−l) and no copy of C

(k)
n (`) is rainbow

(properly colored)?

As some evidence supporting our belief, consider the bipartite version of both problems
for k = 3 and ` = 2. Let K

(3)
n,2n = (V1, V2, E), where |V1| = n, |V2| = 2n and E = {e ⊂

V1 ∪ V2 : |e ∩ Vi| = i, i = 1, 2}. To every edge e assign the pair e ∩ V2 as its color.
Clearly, every color appears exactly n times and hence such a coloring is n-bounded (and
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thus n-degree bounded). Finally, note that every tight Hamilton cycle in K
(3)
n,2n induces a

cyclic sequence of vertices with a repeated pattern of two vertices from V2 followed by one
vertex from V1. Hence, there is a pair of consecutive edges with the same color (actually,

there are n such pairs), and so no copy of a properly colored (or rainbow) C
(3)
n (2) exists.

2 The proofs

We will need a special version of the Lovász Local Lemma. A similar result was already
established in [1, 9, 14]. Contrary to the above results, in our formulation of the lemma
we avoid conditional probabilities so that we do not need to make a priori assumptions
that certain events have positive probability.

Lemma 2.1 Let A1, A2, . . . , Am be events in an arbitrary probability space Ω. For each
1 ≤ i ≤ m, let [m] \ {i} = Xi ∪ Yi be a partition of the index set [m] \ {i} and let

d = max{|Yi| : 1 ≤ i ≤ m}. (1)

If for each 1 ≤ i ≤ m and all X ⊆ Xi

Pr

(
Ai ∩

⋂
j∈X

Aj

)
≤ 1

4(d+ 1)
Pr

(⋂
j∈X

Aj

)
(2)

then Pr
(⋂m

i=1Ai
)
> 0. (We adopt the convention that

⋂
j∈∅Aj = Ω.)

Proof. We prove by induction on t = 1, . . . ,m, that for every T ⊆ [m], |T | = t, and for
every i ∈ T , setting S = T \ {i}, we have

Pr

(⋂
i∈T

Ai

)
> 0 and Pr

(
Ai

∣∣∣⋂
i∈S

Ai

)
≤ 1

2(d+ 1)
. (3)

For t = 1 we apply (2) with X = ∅, obtaining for each i that Pr (Ai) ≤ 1
4(d+1)

, equivalently

Pr
(
Ai
)
≥ 1− 1

4(d+1)
> 0, which confirms (3) for t = 1.

Now, assume truth for some t, 1 ≤ t ≤ m− 1, and consider a set T = {i} ∪ S, where
i 6∈ S and |S| = t. Set X = S ∩ Xi and Y = S ∩ Yi, and observe that S = X ∪ Y
and |Y | ≤ |Yi| ≤ d. By the induction assumption Pr(

⋂
j∈S Aj) > 0. If Y = ∅ (and thus

X = S), by our assumption (2),

Pr

(
Ai

∣∣∣ ⋂
j∈S

Aj

)
≤ 1

4(d+ 1)
.

Otherwise, |X| < |S| = t and, again by (2) (in the numerator) and the induction assump-
tion (in the denominator) we argue that

Pr

(
Ai

∣∣∣ ⋂
j∈S

Aj

)
=

Pr
(
Ai ∩

⋂
j∈Y Aj

∣∣∣⋂j∈X Aj

)
Pr
(⋂

j∈Y Aj

∣∣∣⋂j∈X Aj

) ≤
1

4(d+1)

1− |Y | 1
2(d+1)

≤ 1

2(d+ 1)
.
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Thus,

Pr

(⋂
j∈T

Aj

)
= Pr

(
Ai

∣∣∣ ⋂
j∈S

Aj

)
Pr(
⋂
j∈S

Aj) > 0,

which completes the proof of Lemma 2.1.
The proofs of Theorems 1.1 and 1.2 extend some ideas introduced by Albert, Frieze

and Reed in [1].

Proof of Theorem 1.1. Fix 1 ≤ ` < k and a cnk−`-bounded coloring φ of K
(k)
n for some

constant c > 0 to be specified later. Define

M = {{e, f} : e, f ∈ K(k)
n , |e ∩ f | ≤ ` and φ(e) = φ(f)}.

Moreover, for every pair {e, f} ∈M set

Ae,f = {C ⊂ K(k)
n : C ∼= C(k)

n (k − 1) and {e, f} ⊂ C}.

In order to prove Theorem 1.1 it suffices to show that⋂
{e,f}∈M

Ae,f 6= ∅. (4)

Indeed, if (4) is true then there is a tight Hamilton cycle C ∼= C
(k)
n (k − 1) such that for

every pair of its edges e and f with |e∩f | ≤ ` we have φ(e) 6= φ(f). Since, by assumption,

k − ` divides n, C contains a copy of C
(k)
n (`) which is rainbow, as required.

To prove (4) we apply the probabilistic method and Lemma 2.1. To this end, for a
given pair {e, f} ∈M let

Ye,f = {{e′, f ′} ∈M : {e′, f ′} 6= {e, f} and (e ∪ f) ∩ (e′ ∪ f ′) 6= ∅}

and
Xe,f = M \ (Ye,f ∪ {e, f}) .

To estimate d (cf. (1)), we bound from above the size of Ye,f as follows. For given edges e
and f we can find at most 2knk−1 edges e′ sharing a vertex from e ∪ f . For every such e′

we have at most cnk−` candidates for f ′, since e′ and f ′ must have the same color. Thus,

d = max
{e,f}∈M

|Ye,f | ≤ 2ckn2k−`−1. (5)

Now, let us consider a uniform probability space consisting of all tight Hamilton cy-
cles C ∼= C

(k)
n (k−1) inK

(k)
n . In order to prove (4), and thus finish the proof of Theorem 1.1,

it suffices to show that

Pr

 ⋂
{e,f}∈M

Ae,f

 > 0. (6)
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Thus, it remains to verify assumption (2) of Lemma 2.1 with m = |M |, Ai := Ae,f ,
Xi := Xe,f , and Yi := Ye,f . Fix {e, f} ∈M and X ⊆ Xe,f and set

C =
⋂

{e′,f ′}∈X

Ae′,f ′

and
C1 = Ae,f ∩

⋂
{e′,f ′}∈X

Ae′,f ′ .

In other words, C is the set of all copies C of C
(k)
n (k− 1) in K

(k)
n such that {g, h} 6⊂ C for

all {g, h} ∈ X, while C1 = {C ∈ C : {e, f} ⊂ C}.
If C1 = ∅ then the R-H-S of (2) equals zero and there is nothing to prove. Otherwise,

we rely on the following technical result the proof of which is postponed to the next
section.

Proposition 2.2 For all 1 ≤ ` < k there exist constants δ = δ(k, `), 0 < δ < 1, such

that for every pair e, f of edges of K
(k)
n with |e ∩ f | ≤ ` and for every set X of pairs g, h

of edges of K
(k)
n satisfying (g ∪ h) ∩ (e ∪ f) = ∅, if C1 6= ∅, one can find a disjoint family

{SC : C ∈ C1} of sets of copies of C
(k)
n (k− 1) from C (indexed by the copies C ∈ C1) such

that for all C ∈ C1 we have |SC | ≥ δn2k−`−1.

We are now able to specify the constant c by setting

c =
δ

10k
, (7)

where δ = δ(k, `) is the constant given by Proposition 2.2. Then by Proposition 2.2, (5),
and (7)

Pr
(
Ae,f ∩

⋂
{e′,f ′}∈X Ae′,f ′

)
Pr
(⋂

{e′,f ′}∈X Ae′,f ′
) =

|C1|
|C|
≤ |C1|∑

C∈C1 |SC |
≤ 1

δn2k−`−1 ≤
1

4(d+ 1)
.

Hence, (2) holds and we are in position to apply Lemma 2.1 and conclude that (6) and,
consequently, (4) is true. This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. This proof goes along the lines of the proof of Theorem 1.1. Let
c′ = δ

10k2
, where δ = δ(k, `) is the constant given by Proposition 2.2. Fix a c′nk−`-degree

bounded coloring of K
(k)
n . Here we slightly modify the definition of M . Let

M = {{e, f} : e, f ∈ K(k)
n , 1 ≤ |e ∩ f | ≤ ` and φ(e) = φ(f)}.

As before,
Ae,f = {C ⊂ K(k)

n : C ∼= C(k)
n (k − 1) and {e, f} ⊂ C}.
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and in order to prove Theorem 1.2 it suffices to show that⋂
{e,f}∈M

Ae,f 6= ∅. (8)

Indeed, if (8) is true then there is a tight Hamilton cycle C ∼= C
(k)
n (k − 1) such that for

every pair of its edges e and f with 1 ≤ |e ∩ f | ≤ ` we have φ(e) 6= φ(f). Since, by

assumption, k − ` divides n, C contains a copy of C
(k)
n (`) which is properly colored, as

required.
We define sets Ye,f and Xe,f as before and recalculate the upper bound on |Ye,f |. For

given edges e and f we can find at most 2knk−1 edges e′ sharing a vertex from e∪ f . For
every such e′ we have at most c′knk−` candidates for f ′ since e′ and f ′ intersect and have
the same color. Thus,

|Ye,f | ≤ 2c′k2n2k−`−1.

The rest of the proof is identical to the proof of Theorem 1.1 and therefore is omitted.

3 Proof of Proposition 2.2

Let e and f be given edges in K
(k)
n such that |e∩f | ≤ ` and let C ∈ C1 be a tight Hamilton

cycle containing e and f and missing at least one edge from each pair {g, h} ∈ X. We
describe two constructions depending on the size of e ∩ f .

Construction 1: for 2 ≤ |e ∩ f | ≤ `.
Let |e ∩ f | = a and let e = (u1, . . . , uk) and f = (v1, . . . , vk) be such that uk−a+1 =
v1, uk−a+2 = v2, . . . , uk = va. This way we fix an orientation of C where e precedes f . Let
P = C \ {e ∪ f} be the segment of C between f and e of length n − 2k + a. We select
arbitrarily 2k−a−1 vertex disjoint edges g1, . . . , g2k−a−1 from P , so that C is of the form
e  f  g1  · · ·  g2k−a−1  e, where the symbol  indicates a path between the
given edges. Clearly, we have Ω(n2k−a−1) = Ω(n2k−`−1) choices for the gi’s.

Let gi = (wi1, . . . , w
i
k) for 1 ≤ i ≤ 2k − a − 1, where we list the vertices of gi in

the order of appearance on P . In order to create a cycle C̃ ∈ SC , we remove all edges
which contain at least one vertex from (e ∪ f) \ {u1, vk} and also all edges whose first
vertex (in the order induced by C) is wij for 1 ≤ i ≤ 2k − a − 1 and j = 1, . . . , k − 1.
After this removal, the vertices in the set {u2, . . . , uk, va+1, . . . , vk−1} become isolated and
the remains of the cycle C form a collection of vertex disjoint paths vk  w1

k−1, w
1
k  

w2
k−1, w

2
k  w3

k−1, . . . , w
2k−a−1
k  u1.

To create C̃, we connect the above paths by absorbing the isolated vertices. Formally,
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w1
1 w

1
2 w

1
3 w

1
4 w2

1 w
2
2 w

2
3 w

2
4 w3

1 w
3
2 w

3
3 w

3
4 w4

1 w
4
2 w

4
3 w

4
4 w5

1 w
5
2 w

5
3 w

5
4

v4 v3 u4 u3 u2 u1

g2 g3g1 g4 g5

ef

Figure 2: The first construction for k = 4 and a = 2. The dashed and solid lines denote
C and C̃, respectively.

we define C̃ as the following sequence of vertices (see Fig. 2):

vk  w1
1, w

1
2, . . . , w

1
k−1, vk−1, w

1
k

 w2
1, w

2
2, . . . , w

2
k−1, vk−2, w

2
k

 . . .

 wk−a−11 , wk−a−12 , . . . , wk−a−1k−1 , va+1, w
k−a−1
k

 wk−a1 , wk−a2 , . . . , wk−ak−1 , uk, w
k−a
k

 wk−a+1
1 , wk−a+1

2 , . . . , wk−a+1
k−1 , uk−1, w

k−a+1
k

 . . .

 w2k−a−2
1 , w2k−a−2

2 , . . . , w2k−a−2
k−1 , u2, w

2k−a−2
k

 w2k−a−1
1 , w2k−a−1

2 , . . . , w2k−a−1
k−1 , u1  w2k−a−1

k , vk.

It is easy to check that every new edge intersects a vertex from e∪f . Thus, C̃ \C contains
no edge from any pair of edges belonging to X. Moreover, note that different choices of
gi yield different cycles C̃. Thus, |SC | = Ω(n2k−`−1).

It remains to show that for any two tight Hamilton cycles C 6= C ′ ∈ C1 we have
SC ∩ SC′ = ∅. In order to prove it, one can reverse the above procedure and uniquely
determine C and the edges g1, g2, . . . , g2k−a−1 from C̃. Note that we do not know the
order in which the vertices of e and f are traversed by C.

To reconstruct C, we first find in C̃ a unique e f path Q with no endpoint in e∩ f
and exactly on vertex from e and f . From this we deduce that u1 = Q ∩ e, vk = Q ∩ f
and w2k−a−1

k is the last vertex on Q before vk. Now we start at vk and follow C̃ in the
direction opposite to w2k−a−1

k . Before we reach u1 we will intersect f ∪e exactly 2k−a−2
times. This way we restore the vertices vk−1, vk−2, . . . , va+1, uk, uk−1, . . . , u2 (in the order
of appearance on C). Note that every one of these vertices is adjacent to two vertices
wjk−1 and wjk for some 1 ≤ j ≤ 2k − a− 2. Consequently, we can uncover all edges gi and
hence C itself.
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Construction 2: for |e ∩ f | ≤ 1.
Here we show a stronger result, namely, we construct a family SC of size Ω(n2(k−1)).
Let e = (u1, . . . , uk) and f = (v1, . . . , vk). Note that it might happen that uk = v1 if
|e ∩ f | = 1. Let P be a segment of vertices between e and f of size Ω(n). For given two
vertices x and y denote by d(x, y) the number of vertices on P in the segment between x
and y. Now we select 2(k − 1) vertex disjoint edges g1, . . . , g2(k−1) from P so that C is of
the form e f  g1  · · · g2(k−1)  e and

d(vk, w
1
k−1) < d(w1

k, w
2
k−1) + 1 < d(w2

k, w
3
k−1) + 1 < · · · < d(wk−2k , wk−1k−1) + 1, (9)

where gi = (wi1, . . . , w
i
k) for each 1 ≤ i ≤ 2(k − 1) and the vertices in gi are listed in the

order of appearance on P . This way we fix an orientation of C. (The above sequence of
inequalities will be needed later to establish the orientation of C from C̃.) Clearly, we
have Ω(n2(k−1)) choices for gi’s.

In order to create a cycle C̃ ∈ SC , we remove all edges which contain at least one
vertex from (e ∪ f) \ {u1, vk} and also all edges whose first vertex (in the order induced
by C) is wij for 1 ≤ i ≤ 2(k − 1) and j = 1, . . . , k − 1. After this removal, the vertices in
the set {u2, . . . , uk−1, v2, . . . , vk−1} become isolated and the remains of the cycle C form a

collection of vertex disjoint paths vk  w1
k−1, w

1
k  w2

k−1, w
2
k  w3

k−1, . . . , w
2(k−1)
k  u1,

and uk  v1. (The latter may be degenerated to the set of isolated vertices.)
To create C̃, we connect the above paths by absorbing the isolated vertices. Formally,

we define C̃ as the following sequence of vertices (see Fig. 3):

v1, w
1
k−1,w

1
k−2, . . . , w

1
1  vk, w

1
k

 w2
1, w

2
2, . . . , w

2
k−1, vk−1, w

2
k

 w3
1, w

3
2, . . . , w

3
k−1, vk−2, w

3
k

 . . .

 wk−11 , wk−12 , . . . , wk−1k−1, v2, w
k−1
k

 wk1 , w
k
2 , . . . , w

k
k−1, uk−1, w

k
k

 wk+1
1 , wk+1

2 , . . . , wk+1
k−1, uk−2, w

k+1
k

 . . .

 w2k−3
1 , w2k−3

2 , . . . , w2k−3
k−1 , u2, w

2k−3
k

 w2k−2
1 , w2k−2

2 , . . . , w2k−2
k−1 , u1  w2k−2

k , uk  v1.

It is easy to check that every new edge intersects a vertex from e∪f . Thus, C̃ \C contains
no edge from any pair of edges belonging to X. Moreover, note that different choices of
gi yield different cycles C̃. Thus, |SC | = Ω(n2(k−1)).

It remains to show that for any two tight Hamilton cycles C 6= C ′ ∈ C1 we have
SC ∩ SC′ = ∅. In order to prove it, one can reverse the above procedure and uniquely
determine C and the edges g1, g2, . . . , g2(k−1) from C̃. Note that we do not know the order
in which the vertices of e and f are traversed by C.
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w1
1 w

1
2 w

1
3 w

1
4 w2

1 w
2
2 w

2
3 w

2
4 w3

1 w
3
2 w

3
3 w

3
4 w4

1 w
4
2 w

4
3 w

4
4 w5

1 w
5
2 w

5
3 w

5
4 w6

1 w
6
2 w

6
3 w

6
4

v4 v3 v2 v1 u4 u3 u2 u1

g2 g3 g4g1 g5

f

g6

e

Figure 3: The second construction for k = 4. The dashed and solid lines denote C and
C̃, respectively.

Note that there are exactly two shortest e f paths in C̃, say Q1 and Q2. One with
uk and v1 as its endpoints and the second one with uk−1 and v2 as the endpoints. Our goal
is to determine vertex v1. Once this is known then as in Construction 1 we can uncover
all edges gi and hence C itself.

We assume for a while that v1 = Q1 ∩ f . Then we start at v1 and follow C̃ in the
direction opposite to the second endpoint of Q1. Before we reach edge e we will intersect
edge f exactly k − 1 times. This way we pretend that we restore vertices vk, vk−1, . . . , v2
(in the order of appearance). Let d̃(x, y) be the number of vertices on C̃ between vertices
x and y. Note that d(vk, w

1
k−1) = d̃(v1, vk) − 1 and d(wjk, w

j+1
k−1) = d̃(vk−j+1, vk−j) − 2 for

1 ≤ j ≤ k− 2. Now we check if (9) holds. If so then Q1 is really the path with endpoints
uk and v1; otherwise Q2 is the one.
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