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1. Introduction

For general notation and concepts in graphs and digraphs see [2, 4, 7, 14].
For Further definitions in chromatic graph theory, see [5, 8]. Unless specified
otherwise, all graphs mentioned in this paper are simple, connected and
undirected graphs.

The vertex colouring or simply a colouring of a graph is an assignment
of colours or labels to the vertices of a graph subject to certain conditions.
In a proper colouring of a graph, its vertices are coloured in such a way that
no two adjacent vertices in that graph have the same colour. The chromatic
number χ(G) ≥ 1 of a graph G is the minimum number of distinct colours
that allow a proper colouring of G. Such a colouring is called a chromatic
colouring.

Different types of graph colourings and related parameters have been
introduced in various studies on graph colourings. Many practical and
real life situations paved paths to different graph colouring problems. In
this paper, we study the graphs admitting chromatic colourings subject to
certain conditions.

2. Rainbow Neighbourhoods in a Graph

Unless mentioned otherwise, we follow the convention that we consider the
colouring (c1, c2, c3, . . . , c ), = χ(G) in such a way that the colour c1 is
assigned to maximum number of vertices, then the colour c2 is given to
maximum number of remaining vertices among the remaining uncoloured
vertices and proceeding like this, at the final step, the remaining uncoloured
vertices are given colour c . This convention may be called the rainbow
neighbourhood convention.

In view of the convention mentioned above, the notion of a rainbow
neighbourhood in a graph is defined as follows.

Definition 2.1. Let G be a graph with a chromatic colouring C defined
on it. The rainbow neighbourhood in G is the closed neighbourhood N [v]
of a vertex v ∈ V (G) which contains at least one coloured vertex of each
colour in the chromatic colouring C of G.

If N [v] is a rainbow neighbourhood, then we say that vertex v yields
a rainbow neighbourhood. It is interesting to observe that the number
of vertices which yield rainbow neighbourhoods differ significantly even
within the same graph classes. This fact makes the study on the number of
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vertices yielding rainbow neighbourhoods in different graph classes much
interesting. Next we define the rainbow neighbourhood number of a graph.

Definition 2.2. Let G be a graph with a chromatic colouring C defined on
it. The number of vertices in G yielding rainbow neighbourhoods is called
the rainbow neighbourhood number of the graph G, denoted by rχ(G).

It is very interesting to note that after in-depth study a sensible colour-
ing cohesion index can be discovered. Intuitively such colouring cohesion
index could have a similar application for colouring as connectivity has for
graphs. This motivates us to proceed further in this direction by studying
the above mentioned notions.

The following results discuss the rainbow neighbourhood number of
some fundamental graph classes.

Proposition 2.1. For n ≥ 1, rχ(Pn) = n.

Proof. Since χ(P1) = 1, the result is trivial. For n ≥ 2, we have
χ(Pn) = 2, since any vertex v ∈ V (Pn) with colour c1 is adjacent to at least
one vertex coloured c2 and vice versa. Hence, the result follows. 2

Proposition 2.2. For n ≥ 3, rχ(Cn) =

(
3, if n is odd,
n, if n is even.

Proof. Case -1: Let n be even. Then χ(Cn) = 2. Then, the result for
cycle Cn follows similarly to that of the path Pn.

Case -2: Let n be odd. Then, χ(Cn) = 3 and only one vertex in Cn

has the colour c3. All other vertices are alternatively coloured using the
colours c1 and c2. Let the vertices be labeled clockwise and consecu-
tively v1, v2, v3, . . . , vn. Without loss of generality, assume that vj , j ∈
{2, 3, 4, . . . , − 1} is coloured c3. Clearly, only the vertices vj−1, vj , vj+1
has closed neighbourhoods containing all colours c1, c2, c3. Hence the re-
sult follows. 2

Proposition 2.3. For n ≥ 1, rχ(Kn) = n.
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Proof. For Kn, we have N [v] = V (Kn), ∀ v ∈ V (Kn). Hence, the result
follows. 2

Proposition 2.4. For n ≥ 3, the rainbow neighbourhood number of a
wheel graph Wn+1 = Cn +K1 is given by

rχ(Wn+1) =

(
4, if n is odd,
n+ 1, if n is even.

Proof. Since, the central vertex, say v ofWn+1 is adjacent to all vertices
of Cn and hence N [v] is clearly a rainbow neighbourhood in Wn+1. There-
fore, χ(Wn+1) = χ(Cn) + 1 and the proof the result follows immediately.
2

Proposition 2.5. For a complete -partite graphs Kr1,r2,...,r , ≥ 2, ri ≥
1, rχ(Kr1,r2,...,r ) =

P

i=1
ri.

Proof. For ≥ 2, ri ≥ 1, the complete -partite graphs Kr1,r2,...,r

has vertex partitioning Pi, 1 ≤ i ≤ and vertices vi,j ∈ Pi, 1 ≤ j ≤ ri
may have the same colour ci. Since vertex vi,j is adjacent to all vertices
vm,k ∈ Pm, 1 ≤ k ≤ rm for i 6= m it follows that N [vi,j ] yields a rainbow

neighbourhood. Hence, the result, rχ(Kr1,r2,...,r ) =
P

i=1
ri. 2

Proposition 2.6. For a ladder graph Ln = Pn2P2, n ≥ 3 , we have
rχ(Ln) = 2n.

Proof. Let the poles of the ladder be P
(1)
n and P

(2)
n with vertices consecu-

tively labelled top to bottom, v1,1, v1,2, v1,3, . . . , v1,n and v2,1, v2,2, v2,3, . . . , v2,n
respectively. Let the steps be the edges v1,iv2,i, 2 ≤ i ≤ n− 1. Colour the
vertices of P

(1)
n using the rule c(v1,i) = c1 for odd values of i and c(v1,i) = c2

for even values of i. Also, let c(v2,i) = c1, if i is even and c(v1,i) = c2, if
i is odd. It can now easily follow that any vertex v ∈ V (Ln) with colour,
say c1, is adjacent to at least one vertex coloured c2 and vice versa. This
colouring is obviously a chromatic colouring of Ln. Hence, the result follows
immediately. 2
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3. Some New Results on rχ(G)

In this section we present preliminary results in respect of the rainbow
neighbourhood number for certain graphs. We begin the study by stating
some important results before we proceed to specific graphs. We recall that
a graph G of order n has χ(G) = n if and only if G is complete.

Theorem 3.1. Any graph G of order n has χ(G) ≤ rχ(G) ≤ n.

Proof. For n = 1 the graph K1 has χ(K1) = 1 and rχ(K1) = 1. For
n = 2, the path P2 has χ(P2) = 2 and rχ(P2) = 2. For n = 3, the path
P3 has χ(P3) = 2 and rχ(P3) = 3. Also the cycle C3 has χ(C3) = 3 and
rχ(C3) = 3. Therefore, rχ(G) ≥ χ(G) for all graphs of order 1 ≤ n ≤ 3.

Assume the result holds for all graphs of order 1 ≤ n ≤ k. Consider
graph of order k. Hence rχ(G) ≥ χ(G). Now attach a new vertex u to a
number say, t, 1 ≤ t ≤ k vertices of G to obtain a new graph G0. If possible,
identify a colour in the chromatic colouring of G with which vertex u can
be coloured such that G0 with or without recolouring of vertices, has a
chromatic colouring. It implies that χ(G0) = χ(G) and also rχ(G

0) ≥ rχ(G).
Hence the result holds for the graph G0. Alternatively, an additional colour
is indeed required to allow a chromatic colouring for G0 hence, χ(G0) =
χ(G) + 1. Then N [u] yields a rainbow neighbourhood containing χ(G) + 1
colours. Further to that, then N [v] yields a rainbow neighbourhood ∀ v ∈
N(u) because the induced subgraph hN [u]i is necessary complete (a clique).
Therefore, rχ(G

0) = χ(G)+1 = χ(G0). So the result rχ(G
0) ≥ χ(G0) holds.

Through induction the result then holds for all graphs of order n ∈ N .
Also, rχ(G) ≤ n is obvious, therefore the result holds. 2
Note that Theorem 3.1 holds for any graph and not only for the main

class of graphs under study.

Theorem 3.2. If G is a bipartite graph on n vertices, rχ(G) = n.

Proof. For any bipartite graph G, we have χ(G) = 2 and hence the
result is an immediate consequence of the proof of Proposition 2.5 and
Theorem 3.1. 2

We observe that if it is possible to permit a chromatic colouring of any
graph G of order n such that the star subgraph of G, whose vertex set is
N [v] such that v is the central vertex and the open neighbourhood N(v)
is the set of pendant vertices, has at least one coloured vertex from each
colour for all v ∈ V (G), then rχ(G) = n.

Scielo
Rectángulo

Scielo
Rectángulo



474 Johan Kok, Sudev Naduvath and Muhammad Kamran Jamil

Lemma 3.3. For any graph G, the graph G0 = K1 + G has rχ(G
0) =

1 + rχ(G).

Proof. Let the graphG permit the chromatic colouring (c1, c2, c3, . . . , c ),
where = χ(G). Certainly, we note that the graph G0 = K1+G requires a
chromatic colouring (c1, c2, c3, . . . , c , c +1). Without loss of generality, let
c(K1) = cχ(G)+1. Obviously, any vertex v ∈ V (G) that yields a rainbow
neighbourhood in G will include the colour c +1 in its new closed neigh-
bourhood in K1 + G. Hence, a vertex v ∈ V (G) which yields rainbow
neighbourhood in G, yields a rainbow neighbourhood in K1 +G also.

On the other hand, a vertex u ∈ V (G) that does not yield a rainbow
neighbourhood in G will include the colour c +1 in its new closed neighbour-
hood in K1 + G, but not all colours in (c1, c2, c3, . . . , cχ(G), c +1). Hence,
those vertices u ∈ V (G), which do not yield rainbow neighbourhoods in G,
cannot yield rainbow neighbourhoods in the graph K1 +G.

Finally, we note that the closed neighbourhoodN [K1] consists of at least
one coloured vertex of each colour in (c1, c2, c3, . . . , c , c +1). Therefore,
rχ(K1 +G) = 1 + rχ(G). 2

Let V(G) be the collection of all subsets of the vertex set V (G). Select

any number, say k, of non-empty subsets Wi ∈ V(G) such that
kS

i=1
Wi =

V (G), with repetition of selection allowed. For the additional vertices
u1, u2, u3, . . . , uk, add the additional edges uivj , ∀vj ∈ Wj . The resul-
tant graph is called a Chithra graph of the given graph G, denoted by C(G)
(see [12]). Hence, we have the following theorem.

Theorem 3.4. If say, t copies of K1 are joined to G to obtain a Chithra
graph of G, then rχ(t ·K1 +G) = t+ rχ(G).

Proof. The result is an immediate consequence of Lemma 3.3. 2

Theorem 3.5. Consider two graphs G and H of order n1, n2 respectively.

(i)

(
rχ(G ∪H) = rχ(G) + rχ(H); if χ(G) = χ(H);
rχ(G ∪H) < rχ(G) + rχ(H); otherwise.

(ii) rχ(G+H) = rχ(G) + rχ(H).

(iii)

(
rχ(G ◦H) = n1(1 + rχ(H)); if χ(H) ≥ χ(G)− 1;
rχ(G ◦H) = rχ(G); otherwise.

Scielo
Rectángulo

Scielo
Rectángulo



Rainbow neighbourhood number of graphs 475

Proof. Let χ(G) = 1 and χ(H) = 2. Then,

Part (i): If χ(G) = χ(H) = , then both permit the same chromatic
colouring on colours (c1, c2, c3, . . . , c ). Therefore, in the disjoint union of
G and H, the operation cannot increase or decrease the respective values,
r
1
and r

2
. Hence, the result follows. Next, without loss of generality,

let χ(G) < χ(H), then no vertex v ∈ V (G) can be adjacent to at least
one of each colour found in (c1, c2, c3, . . . , c 2

). Therefore, rχ(G ∪ H) <
rχ(G) + rχ(H).

Part (ii): Let the colouring (c1, c2, c3, . . . , c 1
) be a chromatic colouring of G

and (c
1+1, c 1+2, c 1+3, . . . , c 1+ 2

) be a chromatic colouring of H. Then, we
note that the colouring (c1, c2, c3, . . . , c 1

, c
1+1, c 1+2, c 1+3, . . . , c 1+ 2

) is a
chromatic colouring of the graph G+H. Clearly, any vertex v ∈ V (G) that
yields a rainbow neighbourhood in G also yields a rainbow neighbourhood
in G +H and vice versa. Also, any vertex u ∈ V (G) that does not yield
a rainbow neighbourhood in G, cannot yield a rainbow neighbourhood in
G+H and vice versa. Therefore, the result follows.

Part (iii): For any vertex v ∈ V (G) with c(v) = ci recolour all vertices
u ∈ V (H), which have c(u) = ci to the colour cχ(H)+1. Then the first part
of the result, χ(H) ≥ χ(G)− 1, is a direct consequence of Lemma 3.3.

Otherwise, it is clear that all vertices v ∈ V (G) that yield a rainbow
neighbourhood will yield a rainbow neighbourhood in G ◦ H. Therefore,
rχ(G ◦H) ≥ rχ(G). But, no vertex w ∈ V (H) can yield a rainbow neigh-
bourhood in G ◦H. This can be verified as follows. Assume that a vertex
w ∈ V (H) of the t-th copy of H joined to v ∈ V (G) is a vertex yielding a
rainbow neighbourhood in G ◦H. It means that vertex w has at least one
neighbour for each colour ci, 1 ≤ i ≤ 2 < 1− 1 as well as the neighbour v
with the colour c(v) = c

2+1. Since, c 2+1 can at best be the colour c
1−1,

the colour c
1

/∈ N [w] in rχ(G ◦ H) which is a contradiction. Therefore,
rχ(G ◦H) = rχ(G). 2

Corollary 3.6. If χ(H) ≥ χ(G) − 1, then χ(G ◦ H) = χ(H) + 1 and
χ(G ◦H) = χ(G), otherwise.

Note that the number of rainbow neighbourhoods of a graph is inde-
pendent from degree parameters or number of edges or number of vertices.
Also, the size of the rainbow neighbourhoods may differ.

To illustrate these observations, consider the cycle C5 and label the
vertices consecutively v1, v2, v3, v4, v5. Any triple of consecutive vertices is
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a rainbow neighbourhood and each vertex hex has degree 2. Consider the
chromatic colouring c(v1) = c1, c(v2) = c2, c(v3) = c1, c(v4) = c2, c(v5) = c3.
Attach any finite number ∈ N of pendant vertices to say, v1 to obtain
the thorn cycle C5 and colour the pendants c2. In the thorn cycle, the
closed neighbourhood N [v1] is a rainbow neighbourhood and d(v1) = +2.
The closed neighbourhood N [v4] is also a rainbow neighbourhood and all
vertices have degree 2.

We observe that the Petersen graph, denoted PG, has χ(PG) = 3 and
has the interesting property that only one vertex does not yield a rainbow
neighbourhood. Hence, rχ(PG) = 9 whilst |V (PG)| = 10.

4. On sum and product of rainbow neighbourhood number

of a graph and its line graph

We begin by presenting results on the sum and product of rχ(G) and
rχ(L(G)) for certain well known graph classes.

Proposition 4.1. For n ≥ 2, rχ(Pn) + rχ(L(Pn)) = 2n − 1 and rχ(Pn) ·
rχ(L(Pn)) = n(n− 1).

Proof. Since L(Pn) = Pn−1, we have rχ(Pn) = n and rχ(L(Pn)) =
rχ(Pn−1) = n− 1. Then, the result is immediate. 2

Proposition 4.2. For n ≥ 3, we have

(i) rχ(Cn) + rχ(L(Cn)) =

(
6, if n isodd,
2n, if n iseven.

(ii) rχ(Cn) · rχ(L(Cn)) =

(
9, if n isodd,
n2, if n iseven.

Proof. Since L(Cn) = Cn, we have rχ(L(Cn)) = rχ(Cn) = n if n is
even and rχ(L(Cn)) = rχ(Cn) = 3 if n is odd. Then, the result is straight
forward. 2

Proposition 4.3. Ladders, Ln, n ≥ 3 that: rχ(Ln) + rχ(L(Ln)) = 5n− 4
and rχ(Ln) · rχ(L(Ln)) = 2n(3n− 4).
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Proof. In view of Proposition 2.6, we have that rχ(Ln) = 2n. By
replacing each edge along the two poles, respectively and along the steps,
the line graph is a n− 2 layered graph as depicted in Figure 1.

It immediately follows that rχ(L(Ln)) = 3n − 4. Therefore, rχ(Ln) +
rχ(L(Ln)) = 5n− 4 and rχ(Ln) · rχ(L(Ln)) = 2n(3n− 4). 2

Proposition 4.4. For n ≥ 3, we have

(i) rχ(Wn) + rχ(L(Wn)) =

⎧
⎪⎨
⎪⎩

10, if n = 3,
n+ 4, if n ≥ 5 and odd,
2n+ 1, if n ≥ 4 and even.

(ii) rχ(Wn) · rχ(L(Wn)) =

⎧
⎪⎨
⎪⎩

24, if n = 3,
4n, if n ≥ 5 and odd,
n(n+ 1), if n ≥ 4 and even.

Proof. The line graph of any wheel is structured with a complete graph
Kn as inner core. The inner core results from the spokes of the wheel since
they are all incident with the central vertex. Each edge of the cycle of the
wheel is adjacent to two other edges of the cycle as well as to spokes of the
wheel, so the outer structure of the line graph is firstly, that of triangles
to form a (complete) n-sun graph and secondly the tips of the n-sun graph
are linked to form a cycle Cn.

Marisol Martínez
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The general structure of the line graph L(Wn)) is depicted in Figure 2.

Hence, in conjunction with Proposition 2.5 all results follow immediately.
2

Note that all the possible -partite graph structures were not exhausted
in Proposition 4.3. It seems that further studies in this area are required.
We introduce a new construction method to obtain a new graph associated
to a given graph G, called the expanded line graph of G, as follows.

(a) Label the edges of the graph G as e1, e2, e3, . . . , eε(G).

(b) Replace each vertex v ∈ V (G) with a complete graph Kt, t = dG(v)
such that each distinct vertex of the complete graph is inserted into a
distinct edge incident with vertex v. Hence, each edge ei ∈ E(G) will
have two new vertices inserted. The complete graph KdG(v) is called
the v-clique of vertex v.

(c) For each edge ei, label the new inserted vertices ui,1 and ui,2.

(d) Connect the pairs of vertices ui,1, ui,2 with a broken line edge.

The expanded line graph of G is denoted by L··(G). Clearly by con-
tracting all broken line edges hence, by merging all vertices ui,1 and ui,2 for
1 ≤ i ≤ ε(G) we obtain the line graph L(G).

Figure 3 depict a graph G and the corresponding expanded line graph
L··(G). Similar to the notion of a simple graph, it is important to note that

Marisol Martínez
figu-2
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two distinct cliques say, the v-clique and the u-clique can be linked by at
most one broken line edge.

Theorem 4.5. For any graph G, ∆(G) ≥ 3, a vertex w ∈ V (L(G)), yields
a rainbow neighbourhood (in L(G)) if and only if ui,1 or ui,2 from which w
resulted, is a vertex of a maximum v-clique of some v ∈ V (G).

Proof. Both the necessary and sufficient conditions follows directly from
considering the expanded line graph.

If G is 3-regular then all maximal cliques in L(G) are K3 (triangles)
hence, the clique number is ω(L(G)) = 3 and the result follows immediately
because pairwise, distinct cliques share at most one common vertex. Now
assume graph G has m vertices of maximum degree ∆(G) 6= δ(G). Hence,
in the line graph, m maximum cliques K∆(G) exist, and only the vertices of
these maximum cliques can yield a rainbow neighbourhood on the colours
(c1, c2, c3, . . . , c∆(G)) in L··(G).

Clearly after contracting the broken line edges these vertices remain the
same and χ(L(G)) = ∆(G) remains because pairwise, two distinct cliques
share at most one common vertex. Therefore, the result. 2

Corollary 4.6. Let a graphG have vertices of degree∆(G) then rχ(L(G)) ≤
·∆(G).

Corollary 4.7. Consider any t-regular graph G, t ≥ 3. Let the order of G
be n. Then for the line graph we have

Marisol Martínez
figu-3
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(i) rχ(L(G)) = ε(G) which implies that:

(ii) rχ(G)+rχ(L(G)) = rχ(G)+ε(G) and rχ(G)·rχ(L(G)) = rχ(G)·ε(G).

Proposition 4.8. For n ≥ 2, we have rχ(Kn)+rχ(L(Kn)) =
n
2 (n+1) and

rχ(Kn) · rχ(L(Kn)) =
n2

2 (n− 1).

Proof. The line graph of Kn is 2(n − 2)-regular on n
2 (n − 1) vertices

and generally very difficult to present graphically. The proof follows from
Theorem 4.5 and Corollary 4.6. 2

Proposition 4.9. For a complete -partite graph Kr1,r2,...,r , where ≥
2, ri ≥ 1 and ri ≥ ri+1 > r , 1 ≤ i ≤ − 2 we have

(i) rχ(Kr1,r2,...,r ) + rχ(L(Kr1,r2,...,r )) =
P

i=1
ri +

r
2

−1P

i=1
ri(

−1P

i=1
r1 − 1).

(ii) rχ(Kr1,r2,...,r ) · rχ(L(Kr1,r2,...,r )) =
P

i=1
ri ·

r
2

−1P

i=1
ri(

−1P

i=1
r1 − 1).

Proof. The result is a direct consequence of Theorem 4.5 and Corollary
4.6. Note that the complete -partite graph under consideration has exactly
r maximum complete graphs in the corresponding line graph. 2

Results from applying Theorem 3.2 and Corollary 4.7 to some important
2-chromatic graphs are given in Table 1.
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4.1. Important observations

Following from Theorem 3.1 we have that rχ(G) ≥ χ(G) ⇒ rχ(L(G)) ≥
χ(L(G)) and rχ(G) ≥ χ(G). Hence, all known Nordhauss-Gaddum lower
bounds apply in respect of the sum and the product of rainbow neighbour-
hood numbers for G, L(G) and G. So do other lower bounds for χ(G) and
correspondingly for L(G) and G, apply. Note we adopt the convention that
K1 = K1 and L(K1) = K1. For a graph of order n ≥ 1 and size q ≥ 0, we
list a few of these bounds below.

(i) 2
√
n ≤ rχ(G) + rχ(G) ≤ 2n, and n ≤ rχ(G) · rχ(G) ≤ n2.

Marisol Martínez
table-1
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(ii) 2 ≤ rχ(G) + rχ(L(G)) ≤ n + · ∆(G), and 1 ≤ rχ(G) · rχ(L(G)) ≤
n ·∆(G).

(iii) It is known that if graph G is t-regular then χ(G) ≥ n
n−t and therefore,

χ(G) ≥ n
t+1 . Hence, rχ(G) + rχ(G) ≥ n(n+1)

(n−t)(t+1) and rχ(G) · rχ(G) ≥
n2

(n−t)(t+1) .

(iv) Let γ(G) be the domination number of G. Since γ(G) ≤ n −∆(G)
it follows that rχ(G) + γ(G) ≤ 2n−∆(G) and rχ(G) · γ(G) ≤ n(n−
∆(G)). Also since, we have the upper bound γ(G) ≤ dn+1−δ(G)

2 e
similar inequalities are found in terms of δ(G).

Theorem 4.10. For a connected graph G of order n ≥ 3 we have rχ(G) =
χ(G) if and only if G is an odd cycle or complete.

Proof. It is clear that if G is a cycle Cn, n is odd or a complete graph,
Kn, then rχ(Cn) = 3 = χ(Cn) and rχ(Kn) = n = χ(Kn).

Conversely, let n = 3 then G is either the path P3, ór, the cycle C3 or
put alternatively, the complete graph K3. Since rχ(P3) = 3 6= 2 = χ(P3)
the result, G = C3 (or K3)⇒ rχ(G) = χ(G) holds. Similarly for a graph
on n = 4 vertices the result cannot hold for P4, C4, star S1,3 or the 1-chord
cycle. It only holds for that G = K4 ⇒ rχ(K4) = χ(K4) = 4. Assume the
result holds for all graphs G of order 3 ≤ ≤ t if G is either C , is odd,
or K , ∀ ∈ N .

Consider any graph G of order t + 1. Clearly it holds that G = Ct+1,
t+1 is odd⇒ rχ(G) = χ(G) = 3. Also, G = Kt+1 ⇒ rχ(G) = χ(G) = t+1.
So let G be any other graph of order t+1 and assume rχ(G) = χ(G). Now
we have χ(G) ≤ rχ(G) < t+1. Hence, it is possible to find and remove one
vertex which does not yield a rainbow neighbourhood and the chromatic
number remains the same. Therefore, we obtain a new graph G0 of order
t such that G0 ⇒ rχ(G

0) = χ(G0). The aforesaid is a contradiction hence,
no such G exists. It implies that for any G of order t+ 1, only G = Ct+1,
t+ 1 is odd ⇒ rχ(G) = χ(G) or G = Kt+1 ⇒ rχ(G) = χ(G). 2

Corollary 4.11. Any connected graph of order n that have rχ(G) = χ(G)
is either 3-chromatic or n-chromatic.

Proof. The result follows directly from Theorem 4.10. 2
Consider a connected graph G on vertices v1, v2, v3, . . . , vn and add t

isolated vertices. Now join each isolated vertex to vertices v2, v3, v4, . . . , vn
to obtain G∗t . Since, rχ(G) ≥ χ(G) an easy to state the next theorem.
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Theorem 4.12. For a, b ∈ N, a ≥ b ≥ 2 there exists a graph G such that
rχ(G) = a, and χ(G) = b.

Proof. Let G = Kb and construct G
∗
a−b. The result follows immediately.

2

The graph constructed in Theorem 4.12 is minimum in order and size
as well. Note that Kb−1 + (a− b+ 1)K1 = K∗

b,(a−b).

5. Conclusion

Inherent to the proofs found in Proposition 2.3 and Proposition 2.4, where
n is even; and from Proposition 2.5, and in Proposition 2.6, we observe that
if it is possible to permit a chromatic colouring of any graph G of order n
such that the star subgraph obtained from vertex v as center and its open
neighbourhood N(v) the pendant vertices, has at least one coloured vertex
from each colour for all v ∈ V (G) then rχ(G) = n. It remains an open
problem to characterise such graphs, if possible.

Determining the rainbow neighbourhood number under other known
graph operations remains open for study. Also, finding an efficient algo-
rithm to examine the existence of the property in a given graph will be a
valuable contribution.

Note that the Rainbow Neighbourhood Convention for colouring ensures
that the minimum number of rainbow neighbourhoods are yielded. For
example, if the cycle C9 with vertices labeled consecutively, v1, v2, v3, . . . , v9
are coloured c(v1) = c1, c(v2) = 2, c(v3) = c3, c(v4) = 1, c(v5) = c2, c(v6) =
c3, c(v7) = c1, c(v8) = c2, c(v9) = c3, the number of rainbow neighbourhoods
are 9. We denote this as r+χ (C9) = 9. Studying the parameter r+χ (G) and
the relationship thereof with rχ(G) is a new field for further investigation.

It will be interesting to study possible results in respect of rχ(G), sim-
ilar to certain results found in [1, 3] and for the graphical embodiments
discussed in [11].
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