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ABSTRACT

Real time operation studies such as reservoir operation, flood forecasting, etc., necessitates good

forecasts of the associated hydrologic variable(s). A significant improvement in such forecasting can

be obtained by suitable pre-processing. In this study, a simple and efficient prediction technique

based on Singular Spectrum Analysis (SSA) coupled with Support Vector Machine (SVM) is proposed.

While SSA decomposes original time series into a set of high and low frequency components, SVM

helps in efficiently dealing with the computational and generalization performance in a

high-dimensional input space. The proposed technique is applied to predict the Tryggevælde

catchment runoff data (Denmark) and the Singapore rainfall data as case studies. The results are

compared with that of the non-linear prediction (NLP) method. The comparisons show that the

proposed technique yields a significantly higher accuracy in the prediction than that of NLP.
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INTRODUCTION

In the last decade or so, machine learning techniques such

as Artificial Neural Networks (ANN), fuzzy logic, genetic

programming, etc., have been widely used in the modeling

and prediction of hydrologic variables. One common way

to improve the prediction accuracy is to perform some

pre-processing of the inputs. Changing the representation

of data is one such technique, for example. Ideally, a

pre-processing that most matches the specific learning

problem should be chosen. In this study, Singular

Spectrum Analysis (SSA) is proposed as a novel

pre-processing technique for the deterministic chaotic

systems, e.g. the rainfall and runoff processes, and the

resulting input representation is trained with Support

Vector Machine (SVM) for forecasting.

SSA, as proposed by Vautard et al. (1992), is generally

seen as an adaptive noise-reduction algorithm. It is used to

perform a spectrum analysis on the input data, eliminate

the ‘irrelevant features’ (high-frequency components) and

invert the remaining components to yield a ‘filtered’ time

series. This approach of filtering a time series to retain

desired modes of variability is based on the idea that the

predictability of a system can be improved by forecasting

the important oscillations in time series taken from the

system. The general idea is to filter the record first and

then use some model to forecast on the filtered series

(Elsner & Tsonis, 1997). For example, Lisi et al. (1995)

applied SSA to extract the significant components in their

study on Southern Oscillation Index (SOI) time series and

used a back-propagation neural network for prediction.

They reconstructed the original series by summing up the

first ‘p’ significant components.

Although SSA is seen as an adaptive noise-reduction

(filtering) algorithm, in this study SSA is used as an

efficient pre-processing algorithm which results in the

modified representation of the input vectors where new

features are linear functions of the original attributes. This

is because for deterministic chaotic systems like the rain-

fall and runoff processes (Jayawardena & Lai, 1994; Sharifi

et al., 1990; Sivakumar et al., 1998; Islam et al., 2000), it is

difficult to precisely demarcate signal and noise com-

ponents and the suppression of certain high frequency

components may alter the resulting filtered output signal.

Thus, the prediction accuracy may be better when the

learning machine is presented with all components of
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the spectrum analysis for training. However, such an

approach has an obvious disadvantage in terms of the cost

one has to pay for the computational and generalization

performance of the learning machine, which degrades

rapidly with the growth in the number of input features.

SVM is proposed to overcome this problem. SVM offers an

efficient way to deal with the computational and general-

ization performance in a high-dimensional input space

owing to the dual representation of the machine in which

the training patterns always appear in the form of scalar

products between pairs of examples.

In summary, this paper addresses the forecasting

problem in two steps: (1) pre-processing the input time

series based on Singular Spectrum Analysis (SSA) into a

set of high and low frequency signals resulting in a high

dimensional input space; (2) training the Support Vector

Machine (SVM) to learn this preprocessed data and sub-

sequent prediction. Further, a new ‘kernel’ function is

proposed to improve the efficiency of the SVM prediction.

The paper is organized as follows. First, SVM and SSA

techniques are described. Then the proposed technique is

applied for single-lead day prediction of Singapore rainfall

and that of the Tryggevælde catchment runoff. Finally, a

brief discussion concludes the paper.

SUPPORT VECTOR MACHINE

Introduction

SVM is basically a linear machine, which can be seen as a

statistical tool that approaches the problem similar to

Artificial Neural Networks (ANN). It is an approximate

implementation of the principle of Structural Risk

Minimization (SRM) which helps it to generalize well on

unseen data. While on one hand it has all the strengths of

ANN, yet on the other hand it overcomes some of the

basic lacunae as reported in the application of ANN

(ASCE Task Committee, 2000a, b). In this paper, a

brief discussion on the strengths of SVM over ANN is

presented.

Although most of the research work till now has been

focused on the SVM classifiers and its applications,

recently some applications have been seen in the regres-

sions and time series predictions as well. Mukherjee et al.

(1997) applied SVM for non-linear prediction of chaotic

time series (the Mackey–Glass time series, the Ikeda map

and the Lorenz time series) and compared the results with

different approximation techniques (ANN, polynomial,

RBFs, local polynomial and rational). They concluded that

SVM gave excellent performance in chaotic time series,

outperforming all other techniques. Dibike (2000) con-

cluded that SVM does generalize better than both ANN

and genetic programming in his case study of rainfall-

runoff modeling. Babovic et al. (2000) concluded that

SVM produced consistently better results over 12 lead

periods than ANN for water level forecasting in the city of

Venice. Liong & Sivapragasam (2000) and Sivapragasam

& Liong (2000) demonstrated that SVM shows good

generalization performance in their applications on flood

forecasting and rainfall-runoff modeling, respectively.

SVM theory

According to the Structural Risk Minimization (SRM)

principle, the generalization ability of learning machines

depends more on capacity concepts than merely the

dimensionality of the space or the number of free

parameters of the loss function (as espoused by the classi-

cal paradigm of generalization). Thus, for a given set of

observations (x1,y1), . . ., (xn,yn), the SRM principle

chooses the function f*b in the subset {fb: b∈L}, for which

the guaranteed risk bound, as given by Equation (1) below,

is minimal. In other words, the actual risk is controlled by

the two terms in Equation (1):

where the first term is an estimate of the risk and the

second term is the confidence interval for this estimate.

The parameter h is called the VC dimension (named after

Vapnik and Chervonenkis) of a set of functions. It can be

seen as the capacity (or the flexibility of the functional

class in fitting the underlying learning problem) of a set of

functions implementable by the learning machine. If the
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function is too complex (for the given amount of training

data), then chances of overfitting arise. In the case of

ANN, for a chosen architecture, the capacity is fixed and

we try to minimize the empirical risk, whereas in SVM,

the empirical risk term and the capacity term are

simultaneously controlled.

SVM is an approximate implementation of the SRM

principle. The final approximating function for SVM for

regression is of the form

where K(xi,,x) = Kf(x).f(xi)L is called the kernel function,

which performs the inner product in feature space, f(x).

To act as a kernel, a function needs to satisfy Mercer’s

condition (discussed in the subsection on the proposed

kernel function). Kernel representation offers a powerful

alternative for using linear machines for hypothesizing

complex real world problems as opposed to Artificial

Neural Network based learning paradigms, which

uses multiple layers of threshold non-linear functions

(Cristianini & Shawe-Taylor, 2000).

The approximating function is designed to have the

smallest e deviation (given by Vapnik’s e-insensitive loss

function) from measured targets, di, for all training data.

Slack variables, x and x*, are introduced to account for

outliers in the training data. The algorithm computes the

value of Lagrange multipliers, ai and a*i , by minimizing

the following objective function:

Subject to di − (a.xi + b) ≤ e + xi

(a.xi + b) − di ≤ e + xi*

xi xi* ≥ 0

expressed in the dual form as

subject to the following constraints:

0 ≤ ai ≤ C, i = 1,2,....., N

0 ≤ ai* ≤ C, i = 1,2,....., N

where C is a user specified constant and it determines the

trade-off between the flatness of f(x) and the amount up to

which the deviation can be tolerated. It should be noted

that, both in the objective function given by Equation (4)

and in the approximating function given by Equation (2),

the training patterns appear as dot products between the

training pairs.

The solution of the above problem yields ai and a*i for

all i = 1 to N. It can shown that all the training patterns

within the e-insensitive zone yields ai and a*i as zeros. The

remaining non-zero coefficients essentially define the final

decision function. The training examples corresponding

to these non-vanishing coefficients are called support

vectors.

The values of e, C and the kernel-specific parameters

must be tuned to their optimum by the user to get the final

regression estimation. At the moment, identification of

optimal values for these parameters is largely a trial and

error process. Further, other than e-insensitive loss func-

tion, quadratic loss function (Figure 1) may also be used in

which case e = 0. In this study, the quadratic loss function

is preferred over the e-insensitive loss function, as the

former is less computer memory intensive. Details on

SVM can be found, for example, in Vapnik (1995), Drucker

Figure 1 | Illustrative figures for (a) e-insensitive loss function and (b) quadratic loss

function.
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et al. (1997), Smola & Scholkopf (1998), Haykin (1999),

Vapnik (1999) and Cristianini & Shawe-Taylor (2000).

In this study, SVM is implemented on the Singapore

Rainfall data and Tryggevælde catchment data using a

MATLAB tool developed by Gunn (1997).

Proposed kernel function

Kernel representation essentially involves two steps,

viz. transforming the data to a feature space, f(x), by

non-linear mapping and performing linear regression in

the feature space. These two steps can be merged into a

single step through the use of kernel functions, which

compute the inner product, Kf(x).f(xi)L, in the feature

space as a function of original input points. For a func-

tion to act as a kernel function, it must satisfy Mercer’s

theorem as defined below.

Let X be a finite input space with K(X,Z) a symmetric

function on X. K(X,Z) is a kernel function if and only if the

matrix,

[K] = (K(xi,xj))
N
i,j = 1 (5)

is positive semi-definite.

Previous works (Babovic et al., 2000; Sivapragasam &

Liong, 2000; Dibike, 2000) indicate the superiority of the

Radial Basis Function (RBF) kernel for hydrologic vari-

ables. However, in the present study it is found that a

combination of RBF and linear (simple dot product)

kernels are more robust than the RBF kernel only. It can

be easily proved that the proposed kernel function satisfies

Mercer’s theorem to qualify as a kernel.

Consider a finite set of points {x1,x2 . . ., xn}. Let [K1]

and [K2] be the matrices obtained by using two kernels K1

and K2. If K1 and K2 individually satisfies Mercer’s the-

orem, it can easily be proved that the linear combination

of such kernels K1 + K2 will also satisfy Mercer’s theorem

and therefore will also be a kernel.

If j is any vector such that j∈Rn, [K] is positive

semi-definite if jT[K]j≥0.
Now, for the combination of two kernels,

jT[K1 + K2]j≥0, i.e. jT[K1]j + jT[K2]j≥0, which is true.

Since the RBF kernel and the linear kernel are shown

to be kernel functions individually, for example, in

Cristianini & Shawe-Taylor (2000), the combination is

also a kernel function. The proposed kernel, Knew, is as

expressed below:

Knew = exp( − ((xi − xj)(xi − xj)
T)1/2/2s2) + xixj (6)

where s is the width of the RBFs.

Strengths of SVM over ANN

This section presents a brief discussion of the advantages

of SVM over ANN, particularly in terms of the nature of

the model, arriving at the optimal architecture and dealing

with multi-dimensional inputs. A more detailed discussion

on comparison between SVM and ANN can be found in

Liong & Sivapragasam (2000).

(a) SVM is not a black-box model: SVM is founded on

principles from computational learning theory.

Unlike ANN, where the final set of optimal weights

and threshold of the trained network cannot be

interpreted, the final values of Lagrange multipliers

in SVM show the relative importance of the training

patterns in arriving at the final decision.

(b) Optimal architecture: arriving at the optimal

architecture of the network is a time consuming and

laborious task in ANN. In contrast, SVM gives the

optimal architecture as a solution of quadratic

optimization problem.

(c) Multi-dimensional inputs: multi-dimensional input

vectors result in more complicated ANN

architecture with more number of tunable

parameters. However, in SVM there is no increase in

the number of tunable parameters with the size of

input dimension. Since in dual representation, the

dot product of two vectors can be easily estimated,

SVM can handle multi-dimensional inputs more

efficiently and easily than ANN.

SINGULAR SPECTRUM ANALYSIS

SSA, commonly known as Karhunen–Loeve expansion, is

widely used in digital signal processing. Its utility in time

series analysis and prediction is attributed to the data

144 C. Sivapragasam et al. | Rainfall and runoff forecasting with SSA–SVM approach Journal of Hydroinformatics | 03.3 | 2001

Downloaded from http://iwaponline.com/jh/article-pdf/3/3/141/392255/141.pdf
by guest
on 16 August 2022



adaptive nature of the basis functions (eigenelements)

on which it is based. In contradistinction from classical

spectral analysis, where the basis functions are prescribed

sines and cosines, SSA determines the shape of the

oscillations adaptively from the data (Vautard et al., 1992).

SSA extracts as much reliable information as possible

from short and noisy time series without using prior

knowledge about the underlying physics or biology of the

system (Vautard et al., 1992). It is based on principal

component analysis (PCA) in the time domain of a uni-

variate time series. The first step in SSA is to construct the

so-called ‘trajectory matrix’. The dynamics of the under-

lying system is generally described by a continuous vari-

able and its derivatives. Alternatively, it can also be

described as a discrete time series xi together with its

successive shifts by a lag parameter t. For SSA, this

method is the procedure that takes a univariate time

record and makes it a multivariate set of observations

(Elsner & Tsonis, 1997). Thus, the ‘trajectory matrix’ gives

the vector space of delay coordinates for a time series

denoted by:

wherem is the embedding dimension (described under the

heading ‘Selection of embedding dimension’) and t is

the delay time ( also called time lag, described under the

heading ‘Selection of time delay’). The individual series

in the trajectory matrix is reduced to a length,

N′ = N − (m − 1)t. In the next step, Singular Value

Decomposition (SVD) is applied to the lagged-covariance

matrix, Z = XTX. It can be shown that X is decomposed

into X = LDRT, where L(N′ ×m) and R(m × m) are the

left and right eigenvectors and D[diag(m × m)] is the cor-

responding singular values (l1, l2, . . ., lm). The Principal

Components (PCs) are the projection of the trajectory

onto the columns in R, called the ‘empirical orthogonal

functions’ (EOFs), i.e. the columns of the matrix P = XR

are the PCs. The elements of P are given as:

The singular values are ordered as l1≥l2≥ . . . ≥lm≥0. Each
l2i explains the variance of the ith PC.

As mentioned above, the eigenvectors can be used to

compute the principal components of the time record. In

turn, by choosing a small number of principal com-

ponents, ‘p’ (p≤m) and their associated eigenvectors, the

original record can be filtered through a convolution in

order to reflect oscillatory modes of interest (Elsner &

Tsonis, 1997). This is the principle behind using SSA as a

noise-reduction algorithm. In the present study, however,

all the components are used simultaneously to form input

vectors for training. In other words, the ‘m’ PCs from SSA

is used to form the ‘m’ dimensional input vector. The fact

that each individual PC is of length N′ instead of N means

they cannot be used for prediction directly. A series

of length N, called Reconstructed Components (RCs),

corresponding to a given set of eigenelements, is extracted

as suggested by Vautard et al. (1992). The main advantage

of using RCs instead of PCs is the recovery of the epochs.

Selection of embedding dimension (m)

It has been suggested, for example, by Penland et al. (1991)

that the results are not greatly sensitive to ‘m’ as long as

‘m’ is considerably smaller than N. In fact, variations of

the window length (embedding dimension) about a suf-

ficiently large ‘m’ only stretch or compress the spectrum of

the eigenvalues, leaving the relative magnitudes of the

eigenvalues unchanged (Elsner & Tsonis, 1997).

In the present study, the embedding dimension is

calculated, as adopted by Lisi et al. (1995), from Takens’

theorem. According to the embedding theorem of Takens

(1981) to characterize a dynamic system with an attractor

(dissipative dynamical systems are characterized by the

attraction of all trajectories toward a geometric object

called an attractor) dimension c (correlation dimension),

an m (m = 2c + 1) dimensional phase space is adequate.
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‘c’ is found using the Grassberger–Procaccia correlation

dimension algorithm (e.g. Grassberger and Procaccia,

1983a, b; Theiler, 1987).

Selection of time delay (τ)

SSA is based on the autocorrelation structure in the data.

The autocorrelation function method is applied to deter-

mine the value of t. The value of time lag corresponds to

the value when the autocorrelation function first crosses

the zero line of the lag series.

Nonlinear Prediction Method (NLP)

In the Nonlinear Prediction Method (NLP) the basic idea

is to set a functional relationship between the current state

Xt and future state Xt + T, Xt + T = fT(Xt) from the attractor

in a phase space of an univariate time series. At time t for

an observation value xt the current state of the system is

Xt, where Xt = [xt,xt − t, . . . xt − (m − 1)t] and the future state

at time t + T is Xt + T, where Xt + T = [xt + T, xt + T − t . . .

xt + T − (m − 1)t], where T is the lead time. For a chaotic

system the predictor Ft, which approximates fT, is necess-

arily nonlinear. There are two approaches to find fT: one is

a global approximation and the other is a local approxi-

mation. According to Farmer & Sidorowich (1987), only

states near (Euclidean near) the current state are used for

prediction. To find the k nearest neighbors of current state

Xt a Euclidean metric is imposed on phase space so that

one can construct a local predictor by projecting the

nearest state Xt′ to a state Xt′ + T, for example through

averaging where x̂t + T is the predicted

value.

SINGAPORE RAINFALL PREDICTION

The proposed SSA–SVM approach is first applied to a

single lead day prediction of Singapore rainfall data. The

island of Singapore lies only 1°20′ north of the equator.

The average annual rainfall over the island is 2700 mm, a

large share of which is caused by the northeast monsoon.

There are a total of 64 rainfall stations located on the main

island of Singapore. The collection device used is the

tipping bucket with drum autorecorder. Daily rainfall data

from Station 23 is considered for this study. Figure 2

shows the variation of daily rainfall depth for Station 23.

Of the total available data, 3000 data are used for

training while 100 data are used for validation. The pre-

diction performance is evaluated using two goodness-

of-fit measures, the correlation coefficient (CC) and the

root-mean-square-error (RMSE) as defined below:

where the subscripts m and s represent the measured and

simulated values, the subscript ‘avg’ represents the aver-

age value of the associated variable and n is the total

number of events considered.

The study is carried out in two stages. In the first stage,

raw data are used for training and prediction but the

results are far from satisfactory. In the second stage,

the SSA pre-processed data are used. This results in the

decomposition of the original time series into a set of high

and low frequency components with the disappearance of

the discontinuity characterized by many ‘zeros’ (dry

periods) existed in the original rainfall time series. The

efficiency of any prediction method is greatly affected, as

is widely known, by the existence of discontinuities in the

Figure 2 | Variation of Singapore daily rainfall at station 23 (December, 1965–September,

1966).
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time series. The decomposition results in a significant

improvement in the prediction accuracy.

In this study an optimal set of m = 4 (using m = 2c + 1

for the next higher integer value of c = 1.1) and t = 7

(autocorrelation function first approaches zero at 7 of the

lag series) are obtained. These values are then used in the

SSA decomposition. The original time series is centered by

subtracting its mean before computing the covariance

matrix. The resulting RCs are shown in Figure 3 (sample

plot of 200 vectors). The first two components in Figure 3

are low frequency components as compared to the

remaining two. SVM is now implemented as defined in

Equation (6), with a spread s. The best performance on

training data is obtained for C = 15 and s = 25.

The result is then compared to the best prediction

from NLP method with m = 4, t = 7 and the number of

nearest neighbors, k =m + 1 = 5 [as suggested by Farmer

and Sidorowich (1987) and Cao and Soofi (1999)]. Table 1

compares the prediction accuracy resulting from NLP and

SVM (raw data only, and pre-processed data with SSA) for

a single lead day forecasting. It can be seen that the

pre-processing with SSA drastically improves the predic-

tion result over forecasting with raw data. The disconti-

nuity in the rainfall series (raw data) characterized by

multiple dry periods (‘zeros’) causes SVM to yield a very

poor prediction (correlation coefficient CC = 0.10).

Applying SVM on the preprocessed data, however, gives a

CC of 0.70 while NLP yields a CC of 0.51 for the verifi-

cation set. The RMSE for SVM with the preprocessed data

is 6.11 as opposed to 8.50 obtained by NLP. It should

noted that, although the number of training data used for

SVM is considerably less than that for NLP (700 against

3000), the generalization error is still good in spite of

the fact that the univariate input vectors become four-

dimensional after SSA pre-processing. Computational

Figure 3 | Reconstructed components of the original rainfall series (sample plot).

Table 1 | Prediction accuracy of various techniques (Singapore rainfall data)

Items NLP

SVM

Raw data
Preprocessed
data with SSA

Number of training samples 3000 700 700

Number of verification samples 100 100 100

Correlation coefficient

Training 0.57 0.18 0.80

Verification 0.51 0.10 0.70

RMSE

Training 14.57 22.9 9.35

Verification 8.50 20.12 6.11
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efficiency also remains unaffected. This is because SVM

derives its desirable property of better generalization from

the SRM principle, as explained earlier. Figure 4(a–c)

show the scatter plots for 3 cases, viz. NLP prediction,

SVM prediction with raw data and SVM prediction with

pre-processed data, respectively.

TRYGGEVÆLDE CATCHMENT RUNOFF
PREDICTION

The proposed SSA–SVM method is now applied to fore-

cast the runoff from Tryggevælde catchment similar to the

previous section. The Tryggevælde catchment (with an

area of 130.5 square km) is situated in the eastern part of

Sealand, north of the village Karise. The soils in the

catchment are predominated by clay, implying a very

flashy flow regime. Daily data of meteorological input

(precipitation, potential evapotranspiration and mean

temperature) and observed runoff data are available for

the period 1 Jan 1975 to 31 Dec 1993.

In this study m = 4 (m = 2c + 1 where c = 1.4 for this

time series) and t = 9 are used in the SSA decomposition.

It is noted that runoff at time t, Qt, closely depends on the

difference, Qt − Qt − 1. This deviation term is included with

respect to the first RC as one of the inputs along with the

other 4 RCs. This results in a five-dimensional input

vector. Figure 5 shows the 4 RCs as obtained by SSA

decomposition. It can be seen that the first RC accounts

Figure 4 | Scatter plots for (a) SVM with raw input, (b) SSA–SVM and (c) NLP.
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for the maximum variance. SVM is now applied with the

proposed new kernel, as defined in Equation (6). The best

performance on training data is obtained for C = 25 and

s = 3. The study carried out in Islam et al. (2000) using

NLP is used for comparison with the results of the present

study.

Table 2 compares the prediction performance of the

single lead day forecasting on training and verification

data resulting from NLP and SVM methods. It can be seen

that data pre-processing with SSA coupled with SVM

improves the prediction result significantly. While the

RMSE as obtained by NLP is 0.736, SSA–SVM yields a

RMSE of 0.304, resulting in an improvement of 58.75% in

the verification data. The correlation coefficient also

shows a significant improvement from 0.919 for NLP to

0.983 for SSA–SVM. It should be noted that the total

number of training patterns used in SVM is significantly

lower than that in NLP. Figures 6 and 7 show the

comparison of measured and predicted flows for the veri-

fication data resulting from NLP and SSA–SVM methods.

The peak flow prediction is significantly improved

with the proposed technique. The low flows are also

better predicted by the SSA–SVM approach by NLP.

Figure 5 | Reconstructed components of the original runoff series (sample plot).

Table 2 | Prediction accuracy of various techniques (Tryggevælde runoff data)

Items NLP

SVM

Raw data
Preprocessed
data with SSA

Number of training samples 3288 700 700

Number of verification samples 365 365 365

RMSE

Training 0.428 0.398 0.152

Verification 0.737 0.726 0.304

Correlation coefficient

Training 0.891 0.940 0.992

Verification 0.919 0.924 0.983

Figure 6 | Comparison between measured and the predicted flows with NLP:

verification.
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Figure 8(a, b) show the scatter plots for the verification

data with NLP and SSA–SVM, respectively.

CONCLUSIONS

In this study, it has been demonstrated that the proposed

approach, SSA–SVM, could yield significantly higher

prediction accuracy of hydrologic variables than that of

the non-linear prediction (NLP) method. SSA–SVM

results in a significant improvement in the case study on

Singapore rainfall prediction with a correlation coefficient

of 0.70 as opposed to 0.51 obtained by NLP. Similarly,

SSA–SVM yields 58.75% improvement (in terms of

RMSE) over NLP in the runoff prediction for Tryggevælde

catchment.

Moreover, the predictions from SVM offer special

advantages as compared to other machine learning tech-

niques like ANN. Unlike ANN, SVM does not require the

architecture to be defined a priori. The structural risk

minimization principle gives SVM the desirable property

to generalize well in the unseen data. The dual represen-

tation offers the unique advantage of ease in dealing with

the high-dimensional input vectors without loss of both

generalization accuracy and computational efficiency.

The optimization problem formulated for SVM is always

uniquely solvable and, thus, does not suffer from the

limitation of ways of regularization as in ANN, which may

lead them to local minima.
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NOTATION

The following symbols are used in this paper:

R(b) = actual risk

Remp(b) = empirical risk

V = confidence interval

h = VC dimension

x = input data

Figure 7 | Comparison between measured and the predicted flows with SSA–SVM:

verification.

Figure 8 | Scatter plots of verification data for (a) NLP and (b) SSA–SVM.

150 C. Sivapragasam et al. | Rainfall and runoff forecasting with SSA–SVM approach Journal of Hydroinformatics | 03.3 | 2001

Downloaded from http://iwaponline.com/jh/article-pdf/3/3/141/392255/141.pdf
by guest
on 16 August 2022



f = the non-linear mapping function

f = the linear function in feature space

a and b = coefficients to be estimated

d = measured targets

x and x* = slack variables

e = insensitive loss function

a and a* = Lagrange multipliers

C = user specified constant,

N = the number of training samples

l = the number of support vectors

K = the kernel function

Knew = proposed kernel function

[K1] = matrix obtained using kernel K1

[K2] = matrix obtained using kernel K2

s = width of the RBFs

n = total number of events considered for prediction

j = any vector∈Rn

m = embedding dimension

t = time delay

X′ = trajectory matrix

N′ = reduced training set after forming trajectory matrix

L, R = left and right eigenvector matrix

P = matrix of principal components

p = individual principal component

c = correlation dimension

l = square root of variance

CC = correlation coefficient

RMSE = root mean square error.

Subscripts

i, j, k = positive integer index

m = measured

s = simulated.

ABBREVATIONS

The following abbreviations are used in this paper:

ANN = Artificial Neural Network

NLP = Non-Linear Prediction

PCA = Principal Component analysis

PC = Principal Components

RC = Reconstructed Components

RBF = Radial Basis Function

SOI = Southern Oscillation Index

SRM = Structural Risk Minimization

SSA = Singular Spectrum Analysis

SVD = singular Value Decomposition

SVM = Support Vector Machine.
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