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ABSTRACT

The estimate of rainfall using data from an operational dual-polarized C-band radar in convective storms

in southeast United Kingdom is compared against a network of gauges. Four different rainfall estimators

are considered: reflectivity–rain-rate (Z–R) relation, with and without correcting for rain attenuation; a

composite estimator, based on (i) Z–R, (ii) R(Z, Zdr), and (iii) R(Kdp); and exclusively R(Kdp). The various

radar rain-rate estimators are developed using Joss disdrometer data from Chilbolton, United Kingdom.

Hourly accumulations over radar pixels centered on the gauge locations are compared, with approximately

2500 samples available for gauge hourly accumulations . 0.2 mm. Overall, the composite estimator per-

formed the ‘‘best’’ based on robust statistical measures such as mean absolute error, the Nash–Sutcliffe co-

efficient, and mean bias, at all rainfall thresholds (.0.2, 1, 3, or 6 mm) with improving measures at the higher

thresholds of .3 and .6 mm (higher rain rates). Error variance separation is carried out by estimating the

gauge representativeness error using 4 yr of gauge data from the Hydrological Radar Experiment. The

proportion of variance of the radar-to-gauge differences that could be explained by the gauge representa-

tiveness errors ranged from 20% to 55% (for the composite rain-rate estimator). The radar error is found to

decrease from approximately 70% at the lower rain rates to 20% at the higher rain rates. The composite rain-

rate estimator performed as well as can be expected from error variance analysis, at mean hourly rain rates of

about 5 mm h21 or larger with mean bias of ;10% (underestimate).

1. Introduction

The operational use of dual-polarized C-band radars

by national weather agencies has gained rapid mo-

mentum in the last several years, especially in Europe.

This impetus has been largely based on, for example,

identifying precipitation echoes from echoes of non-

meteorological origin, stable correction of attenuation

due to rain, and improvement in the accuracy of rain-

fall estimation. Substantial work has been done and is

still ongoing regarding methodologies for realizing these

improvements, and the literature is too large to summa-

rize here (e.g., prior to 2001, see Bringi andChandrasekar

2001, and references therein; Ryzhkov et al. 2005b;

Gourley et al. 2006, 2007).

One key application of dual-polarized radars at

the operational frequency bands (S, C, and X) is the

radar-based rainfall input to hydrological models (e.g.,

Krajewski and Smith 2002, and references therein; Smith

et al. 2007). It is well known that the accuracy of dual-

polarized radar rainfall products improves with in-

creasing rain intensity because the signatures of Zdr and

differential propagation phaseFdp are very pronounced

enabling self-adjustment of the rain-rate algorithms due

to drop size distribution (DSD) variability to capture

a variety of storm types and extreme events (Bringi and

Chandrasekar 2001). At C andX bands, rain attenuation
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becomes increasingly a complicating factor with

increasing rain intensity, and dual polarization offers

stable attenuation correction procedures. Such procedures

are currently being tested for operational systems (see,

e.g., Vulpiani et al. 2008; Diss et al. 2009; Moreau et al.

2009, hereafter MTL).

A variety of C-band rain-rate algorithms have been

proposed in the literature, depending on the application

and/or based on measurement and parameterization

error considerations. Most emphasize the fact that, in

convective rain, the measured Zh and Zdr have to be

corrected for attenuation before estimating the rain rate

(e.g., Testud et al. 2000; Gorgucci et al. 1996; Bringi et al.

2009; Gu et al. 2011). Although there is as yet no con-

sensus on an estimation scheme, the proposed rain-rate

algorithms fall broadly under three categories, viz., those

that use, (i) the attenuation-corrected Z in ‘‘tuned’’ or

gauge-adjusted Z–R relations; (ii) Zh, Zdr, and/or Kdp in

a composite (synthetic) manner; and (iii) those that use

the C-band-derived specific attenuation along with esti-

mate of the normalized intercept parameter N0* (or Nw)

along the beam (Le Bouar et al. 2001; Ryzhkov et al.

2005a; Silvestro et al. 2009). In nearly all cases, the esti-

mators are parametric in nature and often use power-law

relations, where the coefficients/exponents are derived

from scattering simulations using disdrometer mea-

surements of the DSD (Bringi and Chandrasekar 2001,

chapter 8). These parametric algorithms also depend on

the statistics of the median volume or mass-weighted

mean diameter (D0 orDm) or of the normalized intercept

parameter N0* (or Nw). Generally, the scattering simula-

tions assume (i) a mean axis ratio versus D relation

(Keenan et al. 2001; Brandes et al. 2003; Thurai et al. 2007)

and (ii) Gaussian canting angle distribution (mean5 0;

s 5 58–108) (Huang et al. 2008). An optimal estimation

scheme was proposed by Hogan (2007) at S band, which

continuously adjusts the coefficient of an a priori Z–R

relation to estimate R by minimizing a cost function that

forces the forward-calculatedZdr andFdp to ‘‘agree’’ in a

mean-square sense with the measurements. This scheme

is currently being evaluated using an operational C-band

radar (Figueras i Ventura et al. 2010).

Rain-rate algorithms based on disdrometer DSDs

are derived from ‘‘point’’ measurements and are subject

to representativeness errors when applied to the vastly

larger radar resolution volume. In a research and semi-

operational environment with some ‘‘tuning’’ based on

local rain climatology (e.g., tropical versus midlatitudes),

the potential for improving rainfall measurements when

compared against gauges has been demonstrated (e.g.,

Ryzhkov et al. 2005a; Bringi et al. 2009; Matrosov 2010).

When such comparisons are done, it is usually assumed

that gauges are the ground ‘‘truth,’’ although the issue of

gauge representativeness errors (i.e., how well the point

gauge measurement can represent the areal or more pre-

cisely the resolution volume–averaged rainfall that is

measured by radar) is an important consideration so

that all the errors are not allocated to the radar-only

estimates (Kitchen and Blackall 1992). The hydrology

community has been active in this area, more so than

the dual-polarized radar community, in placing the re-

lated ‘‘error variance separation’’ on a firm footing (Ciach

and Krajewski 1999; Habib and Krajewski 2002). One

reason is that in the past only a few sites existed that had

a high-quality dual-polarized radar as well as a dense

gauge network within the radar coverage with long time

records available to do a thorough error variance sepa-

ration. To the best of our knowledge, the only C-band

polarimetric radar (CPOL) with both D-scale (;2 km)

and C-scale (;20 km) quality-controlled gauge networks

and long time record of observations (at least a decade)

is the Darwin site in northern Australia managed by the

then Bureau of Meteorology Research Centre (Keenan

et al. 1998; May et al. 1999), mainly as a Tropical Rainfall

Measuring Mission (TRMM) ground validation site. A

number of studies have used data from CPOL and the

Darwin gauge network to test different rain-rate and

attenuation correction algorithms, which will be reviewed

later in section 4.

In this work, an operational C-band dual-polarized

radar located in Thurnham, Kent, United Kingdom, is

used to estimate rainfall and to compare it with a gauge

network for summertime (mostly) convective rain. Four

different rain-rate algorithms are evaluated: based on

fixedZh–R relations (i) with and (ii) without attenuation

correction, (iii) a composite estimator using Zh, Zdr, and

Kdp; and (iv) an estimator based on Kdp alone. The al-

gorithms were derived using a Joss disdrometer (RD-80;

Joss and Waldvogel 1967) located in Chilbolton in south-

ern England (and operated by the Rutherford Appleton

Laboratory), along with the latest experimental infor-

mation available on drop axis ratio and canting angle

distributions (Thurai and Bringi 2005; Thurai et al. 2007;

Huang et al. 2008; Beard et al. 2010). The disdrometer

data usedwere from three summermonths (June–August

2007) and the DSDs were assumed to be also represen-

tative of rainfall in the radar coverage area (Kent, United

Kingdom). The parameterization errors for the various

rain-rate algorithms are calculated. The gauge represen-

tativeness errors are also calculated using four years of

gauge data from the Hydrological Radar Experiment

(HYREX; Moore et al. 2000). Additionally, the spatial

correlation function was estimated from the gauge data.

Following Habib and Krajewski (2002), an error variance

separation analysis is used to explain the proportion of

variance of the radar–gauge differences that could be
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attributed to the point-to-area variance of the gauges.

The ‘‘radar error,’’ as defined by Habib and Krajewski

(2002), is also calculated along with estimates of the

parameterization and measurement errors to see how

much of the radar error can be explained by the afore-

mentioned errors. This is followed by a discussion sec-

tion that places our results in context with some past

studies, which is further followed by a summary and

conclusions.

2. Data sources and processing

a. C-band radar

The radar data used here are from an operational dual-

polarized C-band radar located in Thurnham, Kent,

United Kingdom (see Figs. 1a,b). The radar is oper-

ated by the Met Office and is part of their weather

radar network. The radar was installed with the intent

of providing improved rainfall estimates for hydro-

logical applications that were supported by the U.K.

Environmental Agency (Harrison et al. 2009). Table 1

lists the key system characteristics. Note that dual-

polarization capability is based on simultaneous trans-

mission of horizontal (H) and vertical (V) polarizations

with equal power and simultaneous reception of the

H and V components of the backscattered signal via

two matched receivers.

The nominal system parameters used are pulse width

of 2 ms, pulse repetition frequency (PRF) of 300 Hz,

gate spacing of 250 m, and a total of 1020 gates per

beam. A number of plan position indicator (PPI) sweeps

at a predetermined set of elevation angles (0.28, 0.78,

1.28, 2.08, 2.98, 4.98, and 908) are performed at a rotation

rate of 138 s21 and a beam spacing of 18: this set of PPI

sweeps take 5 min to complete. Here we use data from

the second sweep at elevation angle of 0.78. The number

of samples available for integration at each resolution

volume is 23 because of the low PRF used.

Early on after installation in 2005, it was found that

the copolar correlation coefficient rco between the H and

V polarized signals was somewhat lower than expected

(mean ’ 0.94) in rain for the simultaneous transmit and

receive mode of operation (e.g., the expected values are

closer to 0.99 or higher in rain: e.g., as reported by

Gourley et al. 2006). This led to quite high measurement

error in Zdr because the variance of Zdr is proportional

to (1 2 rco
2 ) (see Bringi and Chandrasekar 2001, chapter

7). It is not entirely clear why, on average, the rco is so

low in rain for the Thurnham radar.

Ensuring high quality of the dual-polarized radar data

is important for the retrieval of rain rates. The pro-

cessing steps used here closely follow those described in

detail by Bringi et al. (2006, 2009) and hence are only

summarized herein:

(i) For each range profile (or beam), a data mask was

generated to separate precipitation (‘‘meteo’’) from

nonprecipitation (‘‘non meteo’’) echoes using the

standard deviation of Fdp over a 10-gate moving

window. The classification was based on using a

threshold of 128 for the Thurnham radar, which is

consistent with Rico-Ramirez and Cluckie (2008,

their Fig. 2).

FIG. 1. (a) Location of the Met Office C-band operational radar

at Thurnham (black dot) superimposed on the digital terrain ele-

vation map. The circled white dots show locations of the tipping-

bucket gauges in the south area, Kent region, operated by the U.K.

Environmental Agency. The irregular marked contour centered

at [550, 140 km] is the Upper Medway basin. The range ring is at

50 km. (b) Locations of Chilbolton (where disdrometer data were

taken from) and the Brue catchment area (where the dense gauge

measurements were made during HYREX).
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(ii) The system gain was determined from solar cali-

brations performed regularly by the Met Office,

and the radar constant was not adjusted. It was

independently verified that no adjustment was

needed based on Kdp versus attenuation-corrected

Zh scatterplots (quantified in terms of contoured

2D frequency of occurrence plots) in rain against

scattering simulations using drop size distribu-

tions measured by the Chilbolton disdrometer

(the latter is described in the next section). For an

example, see Fig. 10 of Bringi et al. (2006).

(iii) The measured Zh was corrected for rain attenua-

tion using the iterative ZPHImethod first described

in Bringi et al. (2001b). The same algorithm was

subsequently used by Bringi et al. (2006, 2009). The

standard ZPHI algorithm is described in Testud

et al. (2000).

(iv) To derive Kdp, we first use the iterative range filter

methodology applied to each range profile of Fdp.

The finite impulse response (FIR) range filter is,

in essence, a weighted moving average filter where

the weights are determined by the desired magni-

tude response of the filter transfer function (or

spectrum). Here, the FIR filter coefficients are

based on 300-m gate spacing [an example of the

filter transfer function for 150-m gate spacing can

be found in Hubbert and Bringi (1995)]. The itera-

tive nature of the algorithm described in Hubbert

and Bringi (1995) is designed to remove local

perturbations in the Fdp data (e.g., due to back-

scatter differential phase) while still preserving the

propagation phase data. A ‘‘telescoping’’ method

is used to compute the Kdp from the iteratively

filtered Fdp profile: that is, a variable number of

gates are used, depending on the Zh value, to de-

termine the slope of a linear least squares fit (10

gates ifZh. 45 dBZ; 20 gates if 35,Zh, 45 dBZ;

and 30 gates if Zh , 30 dBZ). The telescoping

method is as such ad hoc but generally corresponds

to the ‘‘light’’ (9 gates) and ‘‘heavy’’ (25 gates)

filtering for computingKdpbyRyzhkov et al. (2005a):

their gate spacing of 267 m is comparable to the

Thurnham radar. The standard deviation of the

estimate ofKdp in rain was determined from the pro-

cessing described above to be ’ 0.38 km21 for the

Thurnham radar.

(v) The measured Zdr was corrected for rain attenua-

tion using themethod of Tan et al. (1995). The latter

is a gate-by-gate correction method based on the

nonlinear relation between differential attenuation

andKdp atC band of the formAdp5aKdp
b (Jameson

1992). In the next section, we show that a 5 0.0107

and b 5 1.35 from disdrometer simulations.

(vi) The Zdr system bias was determined by examining

scatterplots (again quantified in terms of contoured,

2D frequency of occurrence plots) of corrected Zdr

versus corrected Zh in rain and noting how closely

the mean value of Zdr with Zh corresponds with

scattering simulations from measured DSDs. An

offset was applied to the Zdr data to force the mean

Zdr versus Zh variation to closely follow the scat-

tering simulations [the method and example are

given in Fig. 10 of Bringi et al. (2006)]. The Zdr

offsets determined in this manner were not found

to always be in agreement with the vertical point-

ing data (when it was raining at the radar site) but

were usually within 0.5 dB. Because we used the

0.78 elevation angle scans in the rain retrievals, it

was judged that the Zdr offsets based on the low-

elevation scan data in rain would be more appro-

priate. One caveat is that the radome does affect

the measured Zdr more or less periodically with

azimuth angle by about 60.2 dB (because of the

periodicity of the panel seams with eight panels,

for the low-elevation angles; Sugier and Tabary

2006). However, the system bias for the events

analyzed in this paper was quite stable at 21 dB

from 28 June through 24 July 2007.

(vii) The attenuation-corrected and bias-adjusted Zdr

was filtered in range using the same FIR filter de-

scribed earlier. This reduced the large gate-to-gate

TABLE 1. Some key technical specifications of the Met Office’s

Thurnham radar.

Aerial system

Antenna diameter 4.27 m

Beamwidth at half power 0.958

Polarization Linear H/V: simultaneous

transmission

Scanning rate Up to 6 RPM (typical 2–3 RPM)

Radome type Orange peel

Transmitter

Radar frequency 5300–5700 MHz

Wavelength 5.5 cm (C band)

Peak power 54 dBW (250 kW)

Pulse widths 0.4, 0.8, and 2 ms

PRF 250–1300 Hz

Radar data

Zh, Zdr, Fdp, rco, First and second moments

of the Doppler spectrum

Linear depolarization ratio

(LDR)

Available in bypass mode

(estimated system limit

233 to 234 dB)

Location (Thurnham, Kent,

United Kingdom)

Lat 51.29428

Lon 0.60598

Alt 219 m MSL

938 JOURNAL OF HYDROMETEOROLOGY VOLUME 12

Unauthenticated | Downloaded 08/25/22 01:03 PM UTC



fluctuations alluded to earlier to a more reasonable

standard deviation estimate of ;0.5 dB.

To illustrate the radar data processing steps listed above,

Fig. 2 shows a PPI scan data of measuredZh followed by

six panels of range profiles in Figs. 3a–f along the azi-

muth marked in by a red arrow in Fig. 2. These data are

from 1043 UTC 20 July 2007 [see also Thompson et al.

(2008), who analyzed this particular event]. The rainfall

was intense from this squall line and produced local

flooding in several areas.

Figure 3a shows the range profile of measured Zh

along with the Zh corrected for attenuation using the

iterative ZPHI method referred to above in the third

item. At 120 km, the path attenuation is about 25 dB

and the differential propagation phase Fdp is 2208 (see

Fig. 3d). Figure 3b shows the measured and attenuation-

corrected Zdr (the fifth item): the path differential at-

tenuation is nearly 7 dB for corresponding Fdp increase

of 2208. Figure 3c shows the FIR-filtered Zdr (the sev-

enth item), which removes the very rapid gate-to-gate

fluctuations while still retaining the physical variability.

Figure 3d shows the measured Fdp along with the iter-

atively filtered Fdp. Figure 3e shows the Kdp calculated

from the filtered Fdp as described above in the fourth

item. The peak Kdp along this beam reaches 5.58 km21.

In this same panel, the data mask referred to in the first

item above is also shown (meteo 5 1 and non-meteo 5

0). Finally, in Fig. 3f, the rain rate estimated from what

is later termed the composite algorithm is shown (see

section 2b and the appendix for details). The peak rain

rate reaches 100 mm h21 along this beam: later it will be

shown that the total rain accumulation from this storm

reached up to 80 mm in some areas.

b. Drop size distribution measurements

The attenuation correction algorithms as well as the

various rain retrieval algorithms were developed on

the basis of DSD measurements from an impact-type

disdrometer (RD-80; Joss and Waldvogel 1967) located

in southern England, more precisely in Chilbolton,

Hampshire (Fig. 1b). The assumption here is that the char-

acteristics derived from these DSD measurements are

equally representative of rainfall within the Thurnham

radar coverage in southeast England. The accuracy of the

Joss disdrometer DSDmeasurements has been evaluated,

for example, by Sheppard and Joe (1994) and Williams

et al. (2000).

Three months of disdrometer data during the summer

season of 2007 were used for the present study. A total

of 8816 of 1-min-averaged DSDs were fitted to a normal-

ized gamma distribution with parameters Nw, D0, and m,

using the procedure given in Bringi et al. (2003). The

range andmode of the parameter values wereNw [1000–

10 000] with mode at 6300 mm21 m23,D0 [0.6–2.0] with

mode at 1.3 mm, and m [22 to 6] with mode at 0. The

output of the fitting procedure was then used as input to

T-matrix scattering calculations to determine the vari-

ous relationships required for the C-band algorithms.

The scattering calculations were performed with the

following assumptions: (i) drop shapes based on the

most recent 80-m fall bridge experiments [Eq. (1) of

Thurai et al. (2007) for D . 1.5 mm and the Beard

and Kubesh (1991) fit for 0.7 , D , 1.5 mm, as given

in Eq. (3) of Thurai et al. (2007)]; (ii) Gaussian canting

angle distribution with mean of 08 and standard deviation

of 7.58, again based on the 80-m fall bridge experiment

(Huang et al. 2008); (iii) upper integration diameter of

3.0D0 or 8 mm, whichever is less; and (iv) temperature

of 208C and elevation angle of 08. (The elevation angle

dependence between 08 and 0.78 is negligible, with the

latter being the elevation angle of the Thurnham radar

observations used herein for gauge comparisons.) The

T-matrix scattering program outputs, for each fitted

DSD (with parameters Nw, D0, and m), the values of

Zh, Zdr, Kdp, specific attenuation Ah, and specific dif-

ferential attenuation Adp.

For attenuation correction of the measured Zh, we

need the relation between Ah and Kdp. This is shown in

Fig. 4a based on scattering simulations described above.

The best-fit power law is also shown. The linearity is

excellent and the multiplicative coefficient lies in the

range quoted in the literature as summarized by Carey

et al. (2000). The linearity also justifies the use of the

iterative ZPHI method (Bringi et al. 2001b), which

FIG. 2. PPI scan of reflectivity data, taken at 1043 UTC 20 Jul

2007. The red arrow shows the azimuth along which the range

profiles given in Fig. 3 were taken.
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enables the adjustment of the coefficient on a beam-by-

beam basis, with the default value being 0.069 dB per

degree.

For attenuation correction of the measured Zdr, the

Adp–Kdp relation is derived using a nonlinear least

squares fit to arrive at Adp 5 0.0107 Kdp
1.35. Figure 4b

shows the scatterplot of Adp–Kdp determined from the

1-min DSD data for the three summer months. Although

there is considerable scatter in the calculations due to

DSD variation, the fitted line seems a good representa-

tion of the mean variation. A simple gate-to-gate cor-

rection scheme was used to determine the corrected

Zdr range profiles following the procedure in Tan et al.

(1995).

For rain-rate estimation, three different estimators

have been used to evaluate the most suitable algorithm.

The estimators, all based on the scattering calculations

using the 1-min DSD data, are as follows: (i) the best-

fitted Zh–R, (ii) the best-fitted R–Kdp, and (iii) combi-

nation of (i) and (ii) as well as the best-fitted R(Zh, Zdr).

Henceforth, for notational simplicity, the subscript hwill

be dropped (i.e., Zh [ Z).

The first two algorithms are relatively straightforward.

Figures 5a,b show their scatterplots: namely, R versus Z

and R versus Kdp, respectively. In each case, the best-

fitted equation is also given. For the former, the re-

lationship Z5 244R1.59 is obtained, which is close to the

Marshall–Palmer DSD-based relationship given by Z5

200R1.6. When inverted, the disdrometer-based Z–R re-

lationship, gives rise to

R(Z)5 0:0317Z0:628
linear. (1)

For the second estimator, the best-fitted equation

R(Kdp)5 24:68K0:81
dp (2)

is used, which is not too different from the corresponding

relationship derived byBringi et al. (2006) using 2Dvideo

disdrometer measurements from Okinawa, Japan, given

byR5 28:8 K0:85
dp . Note that the multiplicative coefficient

can be sensitive to the D0 distribution of the local DSD

climatology. Similar to Ryzhkov et al. (2005a), Eq. (2) is

FIG. 3. Range profiles along the red arrow in Fig. 2 of (a) measured and attenuation-corrected reflectivity, (b)

measured and attenuation-corrected differential reflectivity, (c) attenuation-corrected and the filtered/smoothed

differential reflectivity, (d) measured and the FIR-filtered differential phase, (e) specific differential phase with the

data mask, and (f) the estimated rainfall rate using the composite algorithm RC. The radar beam azimuth is 2878.
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modified by sgn(Kdp) to obtain an unbiased estimate of

rainfall amounts when Kdp ’ 0 and noisy.

The third rain-rate estimator is based on a variant of

the approach described by Ryzhkov et al. (2005a) but

adapted for C band and using the scattering simulations

alluded to earlier. The synthetic or the composite algo-

rithm uses R(Z), R(Kdp), or R(Z, Zdr), depending on

various threshold conditions, given in the flowchart in

Fig. 2 of Bringi et al. (2009) (also summarized in the

appendix of this paper). TheR(Z,Zdr) component of the

composite algorithm is given by (again determined from

the same disdrometer dataset)

R(Z, Zdr)5 0:0121Z0:822
(linear)Z

21:7486
dr(ratio). (3)

The flowchart in the appendix summarizes the threshold

conditions where each of the rain-rate equations [Eqs.

(1)–(3)] are used. The thresholds for Kdp and Zdr were

based on considering the standard deviations of these

measureables by using FIR range-filtered data in ho-

mogeneous (uniform reflectivity) regions of rain.

Figures 6a–c show the scatterplots of the retrieved R

using the three estimators versus the disdrometer-measured

R. The figures are given in order to illustrate the perfor-

mance of the algorithms under ideal conditions with the

scatter about the 1:1 line reflecting the parameterization

(or algorithm) error.

The scatterplots given in Figs. 6a–c enable us to

quantify the errors arising from the application of the

various algorithms. Such an ‘‘algorithm error’’ is a mea-

sure of the variability of the individual DSD-based cal-

culations from the mean fits given in Eqs. (1)–(3). In the

following, we will denote

FIG. 4. Scatterplot of (a) Ah vs Kdp and (b) Adp vs Kdp derived

from the C-band scattering simulations using the disdrometer da-

taset for June, July, and August 2007, taken in southern England.

FIG. 5. Scatterplot of (a) R vs Zh and (b)R vsKdp, both based on

scattering simulations using same disdrometer dataset as used in

Fig. 4.
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(i) algorithm R1 from Z 5 200R1.6;

(ii) algorithm RK given by Eq. (2);

(iii) the composite algorithm RC given by the flowchart

in the appendix; and

(iv) an additional algorithm R2 from Z 5 200R1.6, but

without the radar measured Z being corrected for

attenuation.

Table 2 gives the fractional standard error (FSE; in %)

of the three algorithms for four cases: namely, when the

rain-rate threshold (determined from disdrometer data)

exceeds (i) 0.2, (ii) 1, (iii) 3, and (iv) 6 mm h21. The FSE

is defined as

FSE5
s
d

hRdisdroi
, (4)

where d 5 Rest. 2 Rdisdro, s is the standard deviation of

d, and h�i denotes the samplemean. The termRest. can be

any one of the four algorithms listed above, andRdisdro is

the true rain rate as measured by the disdrometer. In

Table 2, the FSE for R2 will be the same as those for R1.

Note that the FSE for RC is based on only R(Z, Zdr)

(i.e., without compositing). Included in the table are the

sd values in mm h21 for the various thresholds and al-

gorithms.

In general, it is seen that higher thresholds result in

lower FSE. Additionally, we note that RC has the lowest

FSE for all four cases of rain-rate thresholds. The values

given in the table, in particular the values corresponding

to RC, will be used later in section 3c on error analysis.

For the higher thresholds, the FSE of RK is close to that

of RC. The RK estimator has the practical advantages

of not requiring absolute calibration of the radar and

being immune to signal attenuation.

FIG. 6. Scatterplot of R retrieved from (a) Zh [using Eq. (1)]; (b)

Kdp [using Eq. (2)]; and (c) Zh, Zdr, and Kdp [using Eq. (3)] vs the

direct R from the disdrometer for the same disdrometer dataset as

used in Fig. 4. The calculations use the disdrometer DSDs and drop

shape assumption and canting angle distribution as described in the

text.

TABLE 2. The FSE for the different rain-rate estimators based on

disdrometer data. The thresholds are R . 0.2, 1, 3, and 6 mm h21.

Rain-rate threshold

(mm h21) Algorithm sd (mm h21) FSE (%)

0.2

R1 1.3 52.8

RC 0.93 33

RK 1.0 35.9

1

R1 1.72 42

RC 1.25 26.3

RK 1.36 28.6

3

R1 3.7 34

RC 1.72 21.5

RK 1.9 23.8

6

R1 5.3 27.6

RC 2.35 17.4

RK 2.7 20.0
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c. Point-to-area variance

It has been recognized that, when comparing radar

rainfall estimates with rain gauge measurements, part of

the differences should be attributed to the fact that rain

gauges provide point measurements, whereas radar rain-

fall estimates represent a larger volume in space. As a

result, representativeness errors arise because of the dif-

ferences between the two very different sample volumes

(Kitchen and Blackall 1992). Ciach and Krajewski (1999)

proposed a methodology to estimate the variance of the

differences between radar (Rr) and rain gauge (Rg) as

follows:

var(Rr 2Rg)5 var[(Rr 2Ra)2 (Rg 2Ra)] and

var(Rr 2Rg)5 var(Rr 2Ra)2 2cov(Rr 2Ra,Rg 2Ra)

1 var(Rg2Ra), (5)

where var(�) and cov(�) represent the variance and co-

variance of random variables, respectively, and Ra rep-

resents the true area-averaged rainfall. Assuming that

the differences between radar and the true rainfall and

that the differences between a rain gauge and the true

rainfall are uncorrelated, the covariance term can be

neglected. Therefore, the variance between the radar

and the true area-averaged rainfall becomes

var(Rr 2Ra)5 var(Rr 2Rg)2 var(Rg 2Ra). (6)

The last term of Eq. (6) is known as the point-to-area

variance, and it is attributed to the gauge representa-

tiveness error (GRE). This can be expressed as

var(Rg2Ra)5 var(Rg)2 2cov(Rg,Ra)1 var(Ra), (7)

which in turn can be rewritten as (see Ciach and

Krajewski 1999)

var(R
g
2R

a
)5 var(R

g
)

�

12
2

A

ð

A

r(x
g
, x) dx2

1
1

A2

ð

A

ð

A

r(x, y) dx2 dy2
�

, (8)

where var(Rg) is the variance of the point gauge mea-

surement, A is the areal domain of the radar pixel with

x–y coordinates, r(�,�) is the spatial correlation, and xg is

the location of the gauge within the radar pixel. Equa-

tion (8) can be used to define the variance reduction

factor (VRF) given by (Habib and Krajewski 2002)

VRF5

var(Rg 2Ra)

var(R
g
)

5 12
2

A

ð

A

r(xg, x) dx
2
1

1

A2

ð

A

ð

A

r(x, y) dx2 dy2.

(9)

There are two ways to calculate VRF: (i) by having a

superdense cluster of gauges inside a typical radar pixel

and estimating directly var(Rg 2 Ra) as in Wood et al.

(2000) and (ii) by using the spatial correlation function

in Eq. (9). Most prior work (e.g., Habib and Krajewski

2002, and references therein) has used Eq. (9) to com-

pute VRF because, for example, it allows for application

to various sized radar pixels. Moreover, it can be gen-

eralized to includemultiple gauges within different sized

pixels (e.g., Moore et al. 2000).

In this paper, the VRF will be calculated using both

methods. To achieve this, a unique dataset was used from

the HYREX conducted in the United Kingdom (Moore

et al. 2000), inwhich a dense network of 49 tipping-bucket

gauges (TBRs) with a resolution of 0.2 mm was located

within the Brue catchment (135 km2) area in the south-

west of England (shown in Fig. 1b). The gauge network

was arranged in such a way that it included two super-

dense clusters with 8 gauges each within a 4 km2 area,

representing a typical radar pixel (see Fig. 7). This dataset

covers the months from October 1993 to October 1997.

The quality control of gauge data is of primary im-

portance for this type of analysis. Typical errors include

gauge malfunctioning, blockages, and timing errors. To

identify problematic gauges and periods, the 49 gauges

within the Brue catchment were accumulated over 24-h

FIG. 7. Map of the rain gauge network and the Brue catchment

during HYREX.
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periods. The 24-h gauge accumulations were compared

against each other and those accumulations lying out-

side the 10% and 90% quantiles were discarded from

the analysis.

The correlation function was calculated using the

Pearson correlation coefficient, and it was also assumed

that the spatial correlation is isotropic. For the represen-

tation of the spatial correlation function, a three-parameter

exponential model is used (Habib and Krajewski 2002),

r(d)5 r0 exp[2(d/R0)
F ], (10)

where d represents the separation distance, R0 is the

correlation radius, F is the shape parameter, and r0 is

the nugget parameter. An accurate estimation of r0 will

require collocated gauges, which were not available in

this dataset. According to Krajewski et al. (2003), r0 rep-

resents the decorrelation due to microscale variability or

random instrumental errors (and also rainfall climate

regime dependent), and it is in the range of 0.95–0.97.

Villarini et al. (2008) analyzed the time dependency of the

nugget parameter and showed that the value of r0 is 0.96

for the 5-min scales and tends to be within 0.95–0.99 for

larger time scales.

To avoid any problem with the fitting of the nugget

parameter, we have used a default value of 0.97 in all

our calculations, which is the same as that used by

MTL. A nonlinear least squares algorithm was applied

to fit the spatially correlated data to Eq. (10) for dif-

ferent rainfall thresholds assuming 60-min accumula-

tions. The results are shown in Figs. 8a–c. It is clear

from these results that there is more scatter for higher

rainfall thresholds. The correlation radiusR0 also tends

to decrease with rainfall threshold. It is also interesting

to see that the shape parameter F is around 0.65 for all

rain thresholds but tends to increase to about 0.85 for

thresholds larger than 3 mm (with R0 5 2.79 km; not

shown). Villarini et al. (2008) carried out a similar

analysis with the HYREX dataset and showed that the

spatial correlation increases with accumulation time,

and they found that the parameters [r0, R0, F] of the

spatial correlation function were [0.98, 37.3, 0.91] for

60-min accumulations, which is in close agreement with

the results shown in Fig. 8a.

Figure 9a shows the 60-min accumulation scatterplot

between the point rainfall from each gauge within the

superdense cluster and the true area-averaged rainfall.

The two superdense gauge clusters used herein were

shown earlier in Fig. 7 with an area of 4 km2 each. To

calculate the true area-averaged rainfall, at least six

valid gauges were available for a particular time period;

otherwise, that record was removed from the analysis.

Although there were some 60-min gauge accumulations

with rainfall above 20 mm, most of the rainfall was be-

low 10 mm. As shown, even within such a small area,

there is a lot of scatter between the true rain and the

point rainfall.

Figure 9b shows the point-to-area variance var(Rg2Ra)

as a function of the true area-averaged rainfall Ra. As

shown, the point-to-area variance tends to increase

with the true area-averaged rainfall. Wood et al. (2000)

carried out an analysis using the HYREX dataset and

found that the point-to-area variance for 15-min rain-

fall thresholds of 1 and 8 mm were approximately 0.16

and 4 mm2, respectively. The variances shown in Fig. 9

are much smaller than Wood et al.’s results because we

are using longer accumulation periods (60 min).

Figure 10a shows the point-to-area variance against

rainfall threshold, whereas Fig. 10b shows the VRF

against rainfall threshold. Again, these are for 60-min

FIG. 8. Spatial correlation functions for different rainfall thresholds using 60-min accumulations.
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accumulations. These results represent the gauge rep-

resentativeness errors that will be used in section 3c to

explain part of the errors when comparing radar rainfall

estimates with gauge measurements. The VRF is 13%,

20%, 29%, and 43% for rain thresholds of 0.2, 1, 3, and

6 mm, respectively, and the corresponding variances

from Fig. 10a are 0.16, 0.41, 1.6, and 5.1 mm2.

An independent way to verify these results was per-

formed using the spatial correlation functions shown in

Fig. 8 in Eq. (9). The pixel was assumed to be 4 km2, and

the gauge was located at the center and at the corner of

that pixel to show the VRF extremes. The results are

also shown as crosses in Fig. 10b, which bound the VRF

curve obtained using the direct method based on the

data from the superdense gauge clusters. The excellent

agreement between the two methods gives confidence

when we apply it to the error variance separation in

section 3c.

3. Radar–gauge comparisons

a. Summary of events and gauge data

The precipitation events selected for our analysis

cover two periods, period 1 from 28 June to 4 July 2007

and period 2 from 19 to 24 July 2007. During both pe-

riods the precipitation was mostly convective, typical of

summertime rainfall in southeast England. However,

the 20 July 2007 event during period 2 was particularly

intense, causing local flooding in London and several

other areas in the United Kingdom. This event was an-

alyzed from the viewpoint of attenuation correction of

FIG. 9. (a) Scatterplot between the true area-averaged rainfall Ra vs point gaugeRg rainfall from each gauge in the

superdense cluster and (b) gauge representativeness error var(Rg2Ra) vs mean areal rainfallRawithin a 4 km2 area

using 60-min accumulations.

FIG. 10. (a) Point-to-area variance and (b) VRF as a function rainfall threshold. The crosses represent the results of

using Eq. (9), with the lower crosses corresponding to the gauge location at the center of the 2 km3 2 km pixel and

the upper crosses to gauge location at the corner of the pixel.
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the measured Zh as well as comparison of rain amounts

with gauges by Thompson et al. (2008).

The 73 gauges in southeast Kent (Fig. 1) are of the

tipping-bucket type with 0.2 mm per tip. The base data

are the times of each tip, which are converted to 5-min

rain accumulations (12 h21 starting at 0000 UTC each

day) to coincide with radar sampling times, which are

every 5 min starting at 0000 UTC. The 5-min gauge

accumulations were visually examined for each of the

73 gauges for each day of the two periods, giving confi-

dence that the gauge data were quality controlled to

a high degree (as opposed to using automatic quality

control methods).

Figure 11 shows the radar-based total rainfall accu-

mulation map for period 2 along with gauge totals (in

mm) to illustrate the spatial rain patterns as well as

to give a subjective sense of the point rainfall amounts

relative to ‘‘areal’’ radar-based amounts. Note that, in

this figure, the composite RC algorithm (see section 2b)

was used for the radar-based accumulation. Data from

the second PPI sweep at elevation angle of 0.78 was

chosen for the radar estimates.

The gauge located at [240, 222 km] recorded the

maximum accumulation of 85 mm for period 2 (with most

occurring between approximately 0900 and 1100 UTC

20 July 2007). The radar-based accumulation map is

also remarkably free of artifacts arising from ground

clutter and beam blockages (see also Fig. 1 for the terrain

map near the radar site). For period 2, the maximum

gauge accumulation was 68 mm (radar-based accumula-

tion map is not shown).

b. Comparisons

For the radar–gauge comparisons, we have combined

periods 1 and 2 to compare radar-based hourly rainfall

accumulation over each of the gauge locations. Because

the radar-based rain-rate estimates are available at each

pixel (18 3 250 m) every 5 min, one would not expect

the hourly accumulation to be subject to significant tem-

poral representativeness error (Kitchen and Blackall

1992). However, for fast moving, highly convective rain

cells, Fabry et al. (1994) and Austin et al. (2010), using

high-resolution radar data to simulate the temporal

representativeness error, have shown that this error can

be as much as 20% for 5-min sampling. Other factors

such as vertical variability of rain rate may also con-

tribute to the error in the radar–gauge comparisons but

are not considered here, because past studies on the

height variation of radar reflectivity profiles (Hall and

Goddard 1978) have shown the vertical variation to be

uniform, at least on a statistical basis for ranges, 60 km.

For the spatial averaging over the location of each

gauge, a polar area of 38 3 750 m was chosen. The av-

eraging is based on rain rates at 9 pixels surrounding the

gauge, with equal weighting. Because the radar data

from the three beams (azimuthal spacing being 18) are

independent, the measurement errors of Zh, Zdr, and

Kdp will be reduced by the factor 1/
ffiffiffi

3
p

. Along the beam,

the estimates at the three consecutive gates (gate spac-

ing being 250 m) are correlated because of smoothing in

range so that a further reduction inmeasurement error is

expected to be negligible.

Figure 12 shows the scatterplot of hourly rainfall

amounts from the radar-based estimators versus the

gauge amounts in two panels. The top panel compares

[RC, R1] against gauges, and the bottom panel com-

pares [R2, RK]. The minimum hourly amount from

gauges is 0.2 mm corresponding to 1 tip in 1 h, and this

threshold has been used in the scatterplots. Visual in-

spection of these plots illustrates the following:

d The RC estimates, for hourly amounts . 5 mm, show

higher correlation and very little bias compared with

R1 and R2 estimators (i.e., the best accuracy overall).
d The RK estimates, as expected, show very large scatter

at low rainfall (,5 mm), whereas at higher thresholds

the correlation and bias improve considerably.
d The R1 estimator (based on Z 5 200R1.6) with Z

corrected for attenuation performs quite well at lower

rainfall (,5 mm). The performance is acceptable at

higher amounts, especially considering that an a priori

fixed (i.e., not tuned) Z–R relation is used.
d The R2 estimator, which is the R1 estimator without

attenuation correction, is seriously biased (underes-

timate) for rainfall .5 mm, again as expected, and

FIG. 11. Total rain accumulation for the 19–24 Jul 2007 event,

determined from the RC algorithm using Thurnham radar data,

together with the rain accumulations from the rain gauges located

in southern region, Kent area, United Kingdom.
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pointing to the importance of attenuation correction

of the measured Z in convective rain at C band.

Table 3 shows some key statistics of the radar–gauge

comparisons for four thresholds (i.e., gauge hourly

amounts . 0.2, 1, 3, and 6 mm), along with the number

of samples used in computing the statistics. Because the

number of samples is not sufficiently large, we are un-

able to show the statistics conditioned by intervals of

rainfall amounts. The table shows the values for the

Pearson correlation coefficient r, the Nash and Sutcliffe

(1970) model efficiency coefficient (Nash), the mean

absolute error (MAE), and the fractional bias (bias).

These parameters are defined as follows (R is the

radar-based hourly accumulation1 and G is the gauge

hourly accumulation):

Nash5 12
sum(R 2 G)2

sum(G 2 G)2
(11)

where ‘‘sum’’ means �(�) and G is the mean gauge

value. The Nash coefficient is usually used to assess the

performance of hydrological models, but in our case it

applies to the radar-based rain-ratemodel (see section 2b).

It is also a measure of scatter of data about the 1:1 line in

Fig. 12,

Fractional bias5mean(R2G)4 mean(G). (12)

Let D 5 R 2 G. The MAE is defined as

MAE5mean(jDj)4 mean(G). (13)

The notation ‘‘mean’’ above implies the usual average

over the N samples: that is, (1/N)S(�).
Note the Nash coefficient and the MAE may be con-

sidered to be the robust statistical parameters as compared

FIG. 12. Estimates of hourly accumulations from the radar data

using (top) R1 and RC algorithms and (bottom) RK and R2 al-

gorithms, both compared with the hourly accumulation from

gauges.

TABLE 3. Key statistics of the radar–gauge comparisons for four

thresholds, along with the number of samples used in computing

the statistics.

Gauge

hourly . 0.2 mm Algorithm r Nash

MAE

(%)

Bias

(%)

No. of samples 5 2856

R2 0.87 0.68 43.4 226.3

R1 0.91 0.82 39 213.8

RC 0.93 0.85 38.3 212.4

RK 0.75 0.21 114.2 250.2

Threshold of 1 mm

No. of samples 5 1138

R2 0.85 0.59 40.2 230.8

R1 0.9 0.79 33.9 217.7

RC 0.92 0.83 32.9 213.3

RK 0.86 0.47 65.3 241.8

Threshold of 3 mm

No. of samples 5 303

R2 0.84 0.45 42.2 238.4

R1 0.91 0.76 31.8 222.7

RC 0.93 0.82 28.1 214

RK 0.92 0.65 42.5 226.2

Threshold of 6 mm

No. of samples 5 76

R2 0.84 0.15 45.7 244.8

R1 0.91 0.69 29 222.7

RC 0.93 0.8 23.7 210.1

RK 0.92 0.68 30.4 28.3

1 The term R can be R1, R2, RC, or RK and is the same as Rr in

section 2c, and G is the same as Rg.
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to the Pearson correlation coefficient or the root-mean-

square, because the former measures are less susceptible

to outliers. From Table 3, the Nash coefficient and MAE

for the composite RC estimator consistently outperform

the other estimators at any threshold. Recall that the

composite RC is based on using Z–R, (Z, Zdr), or (Kdp),

as described in section 2b.

The second best estimator is R1, which shows the

importance of correcting for rain attenuation before

applying the Z–R relation, especially for the stronger

convective rainfall. Here, a fixed Z5 200R1.6 relation is

used following the Met Office (Harrison et al. 2000,

2009), but without any gauge adjustment. It is rather

surprising that a fixed Z–R relation performs so well in

the two periods considered here (dominated by con-

vective rainfall). The RK estimator shows the lowest

bias for the threshold . 6 mm, which again is not an

unexpected result considering that estimation of Kdp is

more accurate at higher rain rates.

The R2 estimator shows considerable bias (underes-

timation) for hourly thresholds . 1 mm. Again, this is

an expected result, because attenuation correction is not

performed prior to applying the Z 5 200R1.6 relation.

c. Error variance separation

The concept of gauge representativeness error was

brought out by Kitchen and Blackall (1992) and further

developed in a formal manner by Ciach and Krajewski

(1999). There are numerous references to the application

of their methodology (e.g., Gebremichael and Krajewski

2004, and references therein).Within the context of dual-

polarized radar rain estimators and gauge comparisons,

the work of MTL is most relevant to our analysis.

As elaborated in section 2c, it is of importance to con-

sider how much of the variance between radar and gauge

is due to the point-to-area variance and how much is due

to other radar-related errors such as the parameterization

(or algorithm error), measurement error, etc. The vari-

ance values for the algorithm and point-to-area were

evaluated previously in sections 2b and 2c for the hourly

rainfall thresholds used herein (gauge hourly amounts .

0.2, 1, 3, and 6 mm). Note that the point-to-area variance

values from section 2c were obtained from the HYREX

dataset, which covered period October 1993 through

October 1997. Our hypothesis is that the climatology of

summertime convective rain in the southern United

Kingdom is not expected to change the point-to-area

variance estimates from year to year. It would seem rea-

sonable to apply these results to the radar–gauge com-

parisons performed in the two periods (June–July 2007)

mentioned in section 3a and as given above in section 3b.

First, consider the point-to-area variance [hereafter

abbreviated as var(p-to-a)] relative to the variance of

(Rr 2 Rg). Following Habib and Krajewski (2002),

var(Rr 2 Rg) can be expressed as [see also Eq. (6)]

var(Rr 2Rg)5 var(Rr 2Ra)1 var(p-to-a), (14)

where Ra is the unknown true areal mean rainfall over

the radar pixel and Rr is the radar-based estimator (ei-

ther R1, R2, RC, or RK): for example, the composite

estimator referred to as RC. Note that one can resolve

var(Rr – Ra) as

var(Rr 2 Ra)5 var(«p)1 var(«m)1 var(«), (15)

where «p is the parameterization (or algorithm) error,

«m is the radarmeasurement error, and « is the (residual)

random error. All three errors are assumed to have zero

mean, and further all three are assumed to be uncor-

related. Note that the underlying errormodel in Eq. (15)

is an additive one as compared to Ciach et al. (2007),

who use a multiplicative error model. Note that var(«p)

and var(«m) have been dealt with in detail in Bringi and

Chandrasekar (2001, chapter 8). Hereafter, var(Rr2Ra)

will be simply referred to as radar error.

Figure 13 shows the ratio of var(p-to-a) to var(RC2Rg).

It follows that the point-to-area variance is a significant

component of the var(RC 2 Rg) varying from 20% at

hourly threshold of 0.2 mm to nearly 55% at threshold

of 6 mm.

Figure 14 shows var(Rr 2 Rg) for all four radar-based

estimators versus hourly rainfall threshold; in addition,

var(p-to-a) is also depicted as a bar graph (which is

identical to Fig. 10a). Figure 14 clearly shows that, at low

FIG. 13. Ratio of point-to-area variance to variance of (RC2 Rg),

where Rg [ G, shown for various hourly thresholds of rainfall

(greater than value along the abscissa).
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thresholds (i.e., likely dominated by low and thus more

uniform rain rates), the proportion of var(Rr 2 Rg) that

can be explained by var(p-to-a) is significantly less than

when the threshold is high (6 mm), with the latter

threshold implying more variable intense convective

rainfall. Interestingly enough, the radar-based estimators

RC and R1 are quite similar in terms of the proportion

of variance that can be explained by var(p-to-a). For

RK, the proportion is much less (e.g., only 30% at

threshold of 6 mm).

Finally, we calculate the standard deviation of the

radar error s5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varfR
r
2R

a
g

p

from Eq. (14) as

var(RC2R
a
)5 var(RC2R

g
)2 var(p-to-a). (16)

Figure 15 shows the FSE (5s/hRCi) of the radar error

(using the RC estimator) as a dashed line versus the

hourly rainfall threshold from the gauges. The plot

shows a decreasing trend with increasing rainfall thresh-

old. If the hourly rainfall threshold can be used as a

proxy for rain rate, then the FSE decreases with in-

creasing rain rates (i.e., from more stratiform-like to

more convective).

The bar graph in Fig. 15 shows our estimate of the FSE9

of the sum of the algorithm and measurement errors,

FSE95

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

3
var(«

m
)1

1

3
var(«

p
)

r

RC
. (17)

To calculate the FSE9, we have used the measurement

error in Zh and Zdr as 0.8 and 0.5 dB, respectively. The

var(«m) is calculated as in Bringi and Chandrasekar (2001,

chapter 8), whereas var(«p) is obtained from Table 2.

Note that the factor of 3 in Eq. (17) comes from the fact

that the rain-rate estimate (RC) is an average over 38 3

750 m, but only the pixels from three adjacent beams are

considered to be independent (see second paragraph of

section 3b).

For the hourly thresholds of 0.2 and 1 mm, we have

used the var(«m) and var(«p) applicable to the Z–R

relation because the RC estimator would tend to use

the fixed Z–R relation for light rainfall in any case. At

high rainfall thresholds (likely to be convective rain)

FSE9 is ’20%, which is dominated by var(«m) [i.e.,

var(«m)/var(«p 1 «m) is in the range 60%–70%], whereas,

at low thresholds of 0.2 and 1 mm, the FSE9 is dominated

by var(«p). At the highest threshold used here (6 mm),

FSE9 accounts for nearly all of the FSE of the radar error

and systematically less so as the threshold decreases.

One caveat is that FSE9 does not include measure-

ment errors due to attenuation correction. Recall that

Zh is corrected using an iterative ZPHImethod, whereas

Zdr is corrected using a power law of Kdp. The propa-

gation of these errors into FSE9 depends on the products

(Ah3 r) and (Adp3 r) andKdp along the path. The term

Ah (Adp) is the specific attenuation (specific differential

attenuation), and r is the pathlength. Following Testud

et al. (2000) and Anagnostou et al. (2004), one can es-

timate var(«m) for two extreme cases where it is as-

sumed thatAh3 r5 5 dB (i) over a path of 10 km (e.g.,

see Fig. 3a at ranges between 50 and 60 km) and (ii) over

a path of 100 km. The estimate of FSE9 as inEq. (17) only

FIG. 14. The variance of (Rr 2 Rg) [ var(R 2 G) for the four

algorithms used in the radar-based estimates, shown for various

hourly thresholds of rainfall. The bar graph shows the point-to-area

variance estimated from the HYREX data. Note that R[ R2, R1,

RC, or RK.

FIG. 15. Estimate of the FSE for the radar error for the RC es-

timator, shown (as dashed line) for various hourly thresholds of

rainfall. The bar graph is FSE9 from Eq. (17).
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due to var(«m)/3 for the first case would be 0.21 (or 21%).

For the second case, var(«m)/3 would be 0.55. These

values will more than compensate for the remaining dif-

ferences shown in Fig. 15 (difference between the bar

graph and the dotted line).

4. Discussion of results and comparison with

related work

One of the earliest C-band polarimetric radar-based

rainfall comparisons that have been made involved the

CPOL radar located in Darwin, Australia (Keenan et al.

1998). TheDarwin site is well instrumentedwith aD-scale

gauge network (21 gauges in;10 km3 10 km area). For

example, gauge comparisons have been made by May

et al. (1999) using R(Kdp) and Z–R estimators, the latter

with and without attenuation correction, which in our

notation is analogous to RK, R1, and R2. Although they

did not specifically address the point-to-area variance,

they concluded that ‘‘ . . . overall excellent agreement

has been shown . . . ’’ when usingR(Kdp) estimator. They

also showed the importance of correcting for attenuation

as well as beam blockage prior to using Z–R relations.

Their dataset included very intense tropical rain and is

consistent with the excellent comparisons obtained here

using RK: for example, in Fig. 12 (bottom) for mean

hourly rain rates . 8 mm h21. May et al. (1999), using

disdrometer simulations from Darwin, obtained R 5

34.6Kdp
0.83, with the larger coefficient being due to two

factors: (i) use of a more spherical axis ratio versus D

relation and (ii) the statistics of the D0 distribution in

tropical rain. Their relation, if used in the U.K. sum-

mertime convection, will overestimate the R for a given

Kdp [cf. Eq. (2)] by about 40%.

In a subsequent study using the CPOL radar and the

D-scale gauge network, Bringi et al. (2001a) used an areal

rainfall estimator based on differential propagation phase

(or areal Fdp estimator) to compare against the mean

areal gauge rainfall. They argued that, because of the high

density of the gauge network, the point-to-area variance

would be negligible. In addition, their measurement error

variance was negligible (Ryzhkov et al. 2000, appendix).

They also estimated from 10-min areal-averaged rain-

rate comparisons, that 25% of the radar error could be

attributed to the parameterization error. Bringi et al.

(2001a) also showed the importance of correcting for

attenuation before applying Z–R relations to estimate

rainfall (without correction leads to an average un-

derestimate of 50% relative to areal mean rainfall from

gauges).

Le Bouar et al. (2001) used the CPOL radar and the

C-scale gauge network in the Darwin area (25 gauges

distributed within the 150-km-radius radar umbrella as

opposed to the aforementionedD-scale gauge network).

Their work centered on evaluation of the ZPHI algo-

rithm for estimating rain rate developed by Testud et al.

(2000). The latter uses the derived specific attenuation at

each range gate along the path together with an estimate

of the generalized intercept parameter (termed N*0 by

Testud et al. 2001). Their estimate of the FSE ofR due to

«m was in the range 20%–30%. In their radar–gauge

comparisons under optimal conditions (e.g., range ,

60 km; their quality index 5 1), they found the Pearson

correlation coefficient for 30-min average R using the

ZPHI algorithm (R was averaged over an area of 2-km

radius around gauge site) versus 30-min gaugemeasured

R to be 0.92. Again, it is difficult to compare with our

data, but the Pearson correlation coefficient is similar

to the range of values for the RC estimate in Table 3.

When they used the uncorrected Z–R relation, they

found that the correlation coefficient dropped to 0.87

(generally in the same range as for our R1 estimator in

Table 3) and fractional bias of 263%, which is signifi-

cantly higher than the range found for R1. This may be

due to much higher frequency of intense convective rain

in the tropics (increased attenuation) as compared to the

midlatitudes.

Although Le Bouar et al. (2001) did not calculate the

point-to-area variance, they were certainly aware of its

importance. They refer to the results of Kitchen and

Blackall (1992) andAnagnostou et al. (1999) to estimate

the point-to-area variance in terms of var[log(R/G)]. In

logarithmic terms, they estimated that the point-to-area

variance could account for 70% of the variance of the

ZPHI estimator, for hourly accumulations and 4 km 3

4 km pixel size. Le Bouar et al. (2001) do comment that

their estimates ‘‘ . . . should be considered as a theoreti-

cal limit . . . ’’ Notwithstanding the differences between

var(R 2 G) and var[log(R/G)], compared with Fig. 13,

the proportion of 70% greatly exceeds what is estimated

here at maximum of 55% for hourly gauge accumula-

tions . 6 mm.

More recently, MTL compared the ZPHI method at

X band with a dense gauge network (25 gauges) at short

ranges (,25 km). Their error variance separation and

estimate of radar error were made for hourly accumula-

tions over a 1 km3 1 kmpixel over a year. The number of

samples with mean hourly gauge rain rate . 0.2 mm h21

was nearly 3500, whereas for . 1 mm h21 it was around

1000 (see Table 3, which shows comparable number of

samples for similar thresholds). Hence, some of our re-

sults can be compared with theirs (though it must be kept

in mind that their radar was operating at X band as op-

posed to C band).

From MTL, overall (i.e., for gauge hourly amounts .

0.2 mm), the ZPHI method gave a Nash coefficient of
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0.84 and 10%bias (underestimate), which is comparable

to the RC estimator values fromTable 3 at similar gauge

hourly threshold (0.2 mm): that is, a Nash coefficient

of 0.85 and bias (underestimate) of 12%. This might be

a fortuitously close agreement between two very dif-

ferent rain estimators (RC and ZPHI) operating at dif-

ferent frequency bands. However, in general, both

estimators are designed to account for drop size distri-

bution variations, though in different ways.

MTL obtained the FSE of the radar error [see Eq.

(16)] using ZPHI method to vary slowly from 25% at

their lowest hourly threshold (0.2 mm) to 20% at thresh-

old of 2 mm. By way of comparison, the FSE in Fig. 15

reduces more rapidly with corresponding values from

68% to 20%.

MTL’s estimate of gauge representativeness error,

which they define as
ffiffiffiffiffiffiffiffiffiffiffi

VRF
p

[see Eq. (9)], was close to

20%, independent of hourly rainfall threshold. To arrive

at the VRF, they first obtained their spatial correlation

function [seeEq. (10)] from theZPHImethod (i.e., radar-

derived spatial correlation function for mean hourly

rain rates of.1 and.3 mm) using 1month of data. This

function with parameters [r0, R0, F] was then used in

Eq. (9) over a 1 km 3 1 km pixel to arrive at VRF. As

a comparison, their parameter values for mean hourly

rain rate . 1 mm h21 was [1, 24.85 km, 0.63] may be

compared with the fit Fig. 8c, with the corresponding

parameters being [0.97, 10.5 km, 0.67]. Considering the

totally different methods of arriving at the spatial cor-

relation function as in MTL and from 4 yr of gauge data

fromHYREX, the parameter values, especially the shape

parameter, which governs how the function behaves

at short distances (,2 km), are remarkably close. This

behavior at very short distances, in fact, governs VRF

for small pixels (1 km 3 1 km or 2 km 3 2 km). Com-

pared with
ffiffiffiffiffiffiffiffiffiffiffi

VRF
p

in MTL of 20%, from Fig. 10b (solid

line) our
ffiffiffiffiffiffiffiffiffiffiffi

VRF
p

values increase with hourly threshold,

from 35% at .0.2 mm to 50% at .2 mm (MTL’s mean

hourly rain-rate thresholds also vary from .0.2 to .2

mm h21). MTL also estimated the ratio of the var(point-

to-area) to the var(ZPHI 2 G) in the range 30%–40%,

which may be compared with Fig. 13, where the range is

20%–55% when using the RC estimator.

An important conclusion reached by MTL is that the

ZPHI estimate of R can be used to accurately estimate

the spatial correlation function if the radar can sample

the rainfall areas with high spatial and temporal reso-

lution. Our results being somewhat comparable with

MTL, it can be argued that the comparably accurate

RC estimator (for C-band radar) can also be used for

similar application, which makes it possible to stratify

the spatial correlation function by rain type and storm

structure.

5. Summary and conclusions

The estimate of rainfall using an operational dual-

polarized C-band radar in summertime convective storms

in southeast United Kingdom (Kent) has been compared

against a network of gauges. A number of preprocessing

steps were carried out to ensure high radar data quality

(especially for Zdr data), system bias removal, classifica-

tion of precipitation versus nonprecipitation echoes, and

attenuation correction.

Four different rainfall estimators were considered:

fixed Z–R with and without correcting for rain atten-

uation; a composite estimator based on either Z–R,

R(Z, Zdr), or R(Kdp); and exclusively R(Kdp). The vari-

ous radar rain-rate estimators were developed using

Joss disdrometer data fromChilbolton,UnitedKingdom,

from June to August 2007, in essence, sampling similar

DSD characteristics as expected under the C-band ra-

dar coverage area in Kent. Scattering calculations using

gamma fits to the disdrometer DSDs along with mean

axis ratio and canting angle distributions were used to

arrive at the power-law fits R(Z), R(Z, Zdr), and R(Kdp).

The parameterization errors of the various rain-rate es-

timators were also estimated.

Hourly accumulations over radar pixels (maximum

range , 50 km) centered on the gauge locations were

compared, with about 2500 samples available for gauge

hourly accumulations of .0.2 mm. Overall, the com-

posite estimator performed the ‘‘best,’’ based on robust

statistical measures such as mean absolute error, the

Nash–Sutcliffe coefficient, and mean bias, at all rainfall

thresholds (.0.2, .1, .3, or .6 mm), with improving

measures at the higher thresholds of .3 and .6 mm

(higher rain rates). The R(Kdp) estimator also performed

nearly as well at the highest threshold (.6 mm). The

fixed Z–R relation (after attenuation correction) per-

formed nearly the same as the composite estimator at

the lower thresholds (.0.2 and .1 mm), but at higher

thresholds (.3 and .6 mm) the mean bias, mean ab-

solute error, and Nash coefficient were all degraded

relative to the composite estimator. Using a fixed Z–R

relation without attenuation correction, as expected,

performed the ‘‘worst,’’ with mean bias of 25%–45%

(underestimate) and low Nash coefficients in the range

0.15–0.6.

An error variance separation was carried out by esti-

mating the gauge representativeness error using 4 yr of

gauge data fromHYREX. The proportion of variance of

the radar-to-gauge differences that could be explained

by the gauge representativeness errors ranged from 20%

to 55% (for the composite rain-rate estimator RC). The

radar error variance [defined in Eq. (16)], or the equiv-

alent fractional standard error, was found to decrease
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from nearly 70% at the lower rain thresholds (.0.2 and

.1 mm) to 20% at the higher rain thresholds (.3 and

.6 mm). It was also estimated that the sum of the pa-

rameterization and measurement errors could account

for much of the radar error at the higher thresholds (.3

and .6 mm) and decreasingly so as the threshold de-

creased to .0.2 and .1 mm.

In conclusion, the composite rain-rate estimator, de-

rived from disdrometer DSD data and scattering sim-

ulations, performed as well as can be expected (for

maximum range, 50 km) from error variance analysis

at mean hourly rain rates of 5 mm h21 or larger with

mean bias of 10% (underestimate). At lower rain rates,

a ‘‘tuned’’ or gauge-adjusted Z–R relation with atten-

uation correction using differential propagation phase

and good data quality control in terms of preprocessing

steps as outlined here is expected to be acceptable

(though no such tuning was performed in this work).

The good accuracy of the composite rain-rate estimator

paves the way for an accurate estimation of the spatial

correlation function of rainfall using radar alone strati-

fied by storm structure and environmental factors, in

agreement with MTL.
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APPENDIX

The Flowchart of the Composite Algorithm (RC)

Figure A1 summarizes the conditions where each of

the rain-rate equations is used. Initially, the rain rate is

estimated using the Z–R relation given in Eq. (1) de-

rived from the Joss disdrometer data for the summer

season of 2007 for southern England. If this estimated

rain rate exceeds 13 mm h21, thenKdp is checked to see

if it is greater than 0.158 km21, and, if so, Eq. (2) is used

for rain-rate estimation. Similarly, other branches lead

to the other two rain-rate equations, depending on the

various conditions specified in the figure. The thresholds

forKdp andZdr in Fig. A1 were determined considering

the standard deviations of these measureables by using

FIR range-filtered data in homogeneous (uniform re-

flectivity) regions of rain.
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