
Summary This paper reviews the development of the sto-
chastic interception model from the original, single-layer,
drop-size-dependent model to the two-layer model that recog-
nizes that vegetation canopies are wetted through both the
primary impact of raindrops to the top layer of the canopy and
secondary impacts from drops falling from the vegetation to
lower layers of the canopy.

It is shown that drop volumes of primary raindrops can be
calculated from the Marshall-Palmer distribution and drop
volumes of secondary drops can be estimated from disdrome-
ter measurements of the characteristic volume appropriate to
the particular vegetation species. It is recognized that, in addi-
tion to the volume-dependent stochastic wetting effect, there is
also another drop-size-dependent wetting effect that is related
to the kinetic energy of the raindrops, which reduces the
maximum storage that can be achieved on the canopy.

The predicted wetting functions for canopies of different
density are described and compared with observations made
with the use of a rainfall simulator. It is also shown that the
species-dependent model parameters can be determined from
measurements made with the rainfall simulator. The improved
performance of the model compared with conventional inter-
ception models is demonstrated for a tropical forest in Sri
Lanka. Application of the two-layer model may explain why
interception losses from coniferous, fine-leaved forests in the
temperate, low-intensity rainfall climate of the uplands of the
U.K. are among the highest in the world, whereas interception
losses from tropical broad leaved forest in high-intensity rain-
fall climates of the tropics are among the lowest.

Keywords: canopy wetting, drop volume, kinetic energy, Mar-
shall-Palmer distribution, rainfall simulator.

Introduction

Arguably, the processes controlling the retention and sub-
sequent evaporation of water droplets on vegetation, com-
monly known as interception, are among the most extensively
studied, but most poorly understood, in hydrology. An under-
standing of the processes controlling interception is of consid-
erable interest to hydrologists because, in wet climates, this

component of the total evaporation can be the dominant term
and can explain why evaporative losses from forests can
greatly exceed those from grassland (Calder 1990). An under-
standing of the processes that determine interception is also
relevant to studies of splash-induced erosion (Morgan 1985).

The single-layer stochastic interception model

The importance of drop size in determining interception losses
from canopies was first established through experimental stud-
ies of the rainfall interception process in the tropical climates
of Indonesia and India (Calder et al. 1986, Hall et al. 1992) and
by theoretical development of the stochastic interception
model (Calder 1986). This model used Poisson probability
statistics to describe the manner in which elemental areas of
vegetation are wetted by raindrop strikes of different drop size.
The model predicts that for storms with the same total rainfall,
interception losses will be greater for those with smaller drop
sizes (Calder 1986, Calder 1990, Hall et al. 1992). A brief
description of this model is given below.

It was proposed that the manner in which vegetation sur-
faces are wetted by raindrops is a random process governed by
Poisson statistics. If the surface of vegetation is considered to
be composed of elemental areas, each of which has the same
probability of being struck by raindrops it can be shown that
the mean number of drops retained per elemental area of the
canopy, n, can be calculated from the mean number of drop
strikes per element, m, and a parameter q, defined as the
maximum number of drops that could be retained per elemen-
tal area of the canopy.

The basic equation of the model gives the mean number of
drops retained per element as:

n = q(1 − e−m) + e−m∑ 

i = 1

r

(i − q)mi

i!
, (1)

where r is the truncated value of q.
The depth of canopy storage per unit ground area, C (mm),

and the depth of rainfall striking the canopy per unit ground
area (excluding the free throughfall component), P (mm), are
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related to the model parameters (Table 1) through the relation-
ships:

C = nvL, (2)

and

P = mvL , (3)

where v (mm3) is the volume of the raindrops and L is the
number of elemental surfaces per unit ground area (mm−2).
The maximum storage capacity can then be defined as:

Cmax  = qvL. (4)

If Cmax  is invariant and independent of v, which is not a
prerequisite of the stochastic hypothesis, then the drop reten-
tion number, q, has a simple inverse relationship with v, i.e.:

q = Cmax /vL. (5)

Thus, for small drops the drop retention number, q, becomes
large and, in the limit, as drop size decreases, q approaches
infinity; for this special case the wetting function predicted by

the stochastic model is identical with that implicit in the Rutter
interception model (Rutter et al. 1971).

The normalized wetting functions, expressed in terms of the
normalized canopy storage, C/Cmax , and normalized rainfall,
P/Cmax , for different values of drop retention number q, pre-
dicted by the stochastic model, are shown in Figure 1.

Table 1. Summary of stochastic model parameters, input data and state variables. For the two-layer model the same names apply but a subscript 1
or 2 is used to denote the top or bottom layers for the parameters and state variables Cmax , Cm , C, q, L, L∗

p, m, n, v and P.

VEGETATION PARAMETERS
Primary parameters
Cmax Maximum canopy storage for zero kinetic energy drops, = qv0L, (mm)
ve0 Elemental volume for zero kinetic energy drops, (mm3)
vc Characteristic volume of drops falling from vegetation, (mm3)
L∗

p Projected leaf area index (dimensionless), = rL∗, where r is related to leaf angle and L∗ = leaf area index
ka, kb, kc Parameters governing the kinetic energy dependence of Cm /Cmax  as a function of v

Derived parameters
L∗

p,1 Projected leaf area index (dimensionless) of top layer, Lp,1 = 1 − exp(−L∗
p)

L∗
p,2 Projected leaf area index (dimensionless) of bottom layer, L∗

p,2 = L∗
p − L∗

p,1

Cmx Maximum canopy storage achievable for the two-layer formulation with zero kinetic energy drops incident on the top layer,
Cmx  = Cmax (L∗

p,1/L∗
p) + Cmax (L∗

p,2/L∗
p)(ka + kb exp(−kcvc))

Cm Maximum canopy storage achievable for the two-layer formulation with non-zero kinetic energy drops incident on the top layer,
Cm = Cmax (L∗

p,1 /L∗
p)(ka + kb exp(−kcv) + Cmax(L∗

p,2/L∗
p)(ka + kb exp(kcvc)

ve Elemental volume for non-zero kinetic energy drops, ve = (Cm /Cmax)ve0, (mm3)
q Mean maximum drop retention number per element for non-zero kinetic energy drops, q = ve/v
L Number of elements per unit ground area, L = Cmax/ve0 for the two-layer formulation, L1 = (L∗

p,1/L∗
p)(Cmax/ve0) 

and L2 = (Lp,2 /L∗
p)(Cmax/ve0) 

f1 Fraction of rain striking the top layer = L∗
p,1

f2 Fraction of the shed rain from the top layer striking the bottom layer of the canopy = 1 − exp(−L∗
p,2)

INPUT DATA
P Depth of precipitation, (mm); R, Precipitation intensity, (mm h−1)
EW

PM Evaporation rate estimated from the Penman-Monteith equation for a wet surface (mm)

STATE VARIABLES
v Median volume of drops, (mm3)
m Mean number of raindrop strikes per element
n Mean number of drops retained per element
C Canopy storage = nvL, (mm)
S Shed rainfall (mm)

Figure 1. Normalized wetting functions showing C/Cmax  against nor-
malized rainfall P/Cmax , for different values of drop retention number
q, predicted by the original stochastic model.
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Evaporation can be incorporated explicitly into the model by
redefining m as the effective mean number of raindrop strikes
per element. Thus, m has the same effect on canopy storage as
the combined effect of the actual number, due to rainfall, and
evaporation. The evaporation increment is normally calculated
from the Penman-Monteith equation with the surface resis-
tance term equated to zero to represent wet canopy surface
conditions.

Development of the two-layer stochastic interception
model

The two-layer stochastic model (Calder 1995) considers the
canopy to be composed of two layers, the top layer receiving
primary raindrops and the bottom layer receiving secondary
drops falling from the top layer. A brief description of this
model is given below.

Dependence of q on drop volume and kinetic energy

Previous applications of the single-layer stochastic model con-
sidered q to be fixed for a particular vegetation type and rainfall
regime. The two-layer model (Calder 1995) takes into account
the dependence of q on three factors: (1) the variation of
raindrop volume with rainfall intensity; (2) the dependence of
the drop retention number q not only on drop volume but also
on drop kinetic energy; and (3) the volumes of drops falling off
higher levels of the canopy.

To incorporate the dependence of q on both drop volume and
drop kinetic energy within the stochastic interception model, a
new model parameter was introduced, specific to the particular
vegetation type, termed the maximum elemental volume, ve.
For drops impacting the surface with zero kinetic energy, the
maximum elemental volume was defined as:

ve0 = qv0, (6)

where subscript 0 denotes zero kinetic energy.
The term Cmax can then be redefined as the maximum stor-

age capacity that is obtained when the canopy is wetted with
drops of zero kinetic energy, i.e.:

Cmax  = ve0L   = qv0L. (7)

Further, a new model parameter, Cm, can be defined as the
maximum storage capacity obtained with non-zero kinetic
energy drops:

Cm = ve L. (8)

For drops of non-zero kinetic energy, the maximum elemental
volume is given by:

ve = (Cm /Cmax)Ve0. (9)

The maximum drop retention number for drops of non-zero
kinetic energy, q, can be calculated from

q = ve /v, (10)

that is

q = (Cm /Cmax)ve0 /v. (11)

To operate the model for a particular vegetation type requires
values for two vegetation specific parameters Cmax  (which
defines L), and ve0. Also required is the functional relationship
between Cm /Cmax  and v. Preliminary measurements with a
rainfall simulator (Calder et al. 1995), suggest the empirical
exponential relationship:

Cm /Cmax  = 1                                       for v < 0.065

Cm /Cmax  = 0.5 + 0.73exp(−5.5v)        for v  ≥ 0.065. (12)

Estimation of drop volume

Primary drops Marshall-Palmer (1948) established an em-
pirical relationship between the volume of raindrops and rain-
fall intensity. Following on from this work, Torres and
colleagues (Torres et al. 1994) have provided a general formula
for raindrop size distribution. With this general formula, and
from field observations, they have shown that the median-vol-
ume diameter, D0 (cm), of raindrops is related to rainfall
intensity, R (mm h−1), by the equation:

D0 = 0.087R0.0228 . (13)

Secondary drops Hall and Calder (1993), from measure-
ments made with an optical disdrometer, showed that that the
size spectrum of drops falling from tree canopies is charac-
teristic of the particular tree species (Figure 2). Secondary
drops, falling from the top layer, are therefore considered to be
of the characteristic volume vc.

Figure 2. Cumulative frequency distribution of throughfall drop spec-
tra for three tree species subject to spray with median volume drop
diameter of 3.2 mm. Median volume drop diameter (the characteristic
volume) was 2.3 mm for Pinus caribaea Morelet., 2.8 mm for Euca-
lyptus camaldulensis Dehnh. and 4.2 mm for Tectona grandis L. f.
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Layer partition

Partitioning of the number of elemental areas between layers
can be achieved from a knowledge of the projected leaf area
index of the canopy, L∗

p. Assuming that leaves are distributed
randomly within the canopy space, the projected leaf area
index of the top layer of the canopy, L∗

p,1, which receives
incident, vertically falling, primary raindrops is given by
Beer’s Law as:

L∗
p,1 = 1 − exp(−L∗

p), (14)

The projected leaf area index of the bottom layer of the canopy,
 L∗

p,2, which receives secondary drops, is given by:

L∗
p,2 = L∗

p − L∗
p,1. (15)

Note that, with the above definitions, as the projected leaf
area of the canopy increases, the projected leaf area index of
the top layer approaches unity, implying that no primary drops
fall through the canopy without a strike; the projected leaf area
of the bottom layer then approaches that of the total projected
leaf area index of the canopy less one. Partitioning of the
number of elemental areas per unit ground is assumed to be
proportional to these projected leaf area index values.

Rain and shed-rain strike fractions Partitioning of rainfall
between the top layer of the canopy and the ground, and
partitioning of shed-rain from the top layer, between the bottom
layer and the ground, can also be achieved from a knowledge
of the projected leaf area index of the two canopy layers, i.e.,
rainfall striking the top layer of the canopy, P1, is expressed as
a proportion of total rainfall, P:

P1 = f1P = L∗
p,1P. (16)

The input to the bottom layer of the canopy, P2, resulting from
a depth of water, S, shed from the top layer is given by:

P2 = f2S = (1 − exp(−L∗
p,2))S. (17)

Operation of the two-layer stochastic model

The steps in the operation of the model are essentially the same
as those described for the original stochastic model (Calder
1986) except that raindrop volume, v, is now calculated from
rainfall intensity, and q for the top layer is calculated from the
elemental volume, ve, divided by v. For the bottom layer, q is
calculated from ve divided by vc. In the two-layer model,
evaporation is considered to occur only from the top layer
while it retains water. When the top layer is completely dry,
evaporation is considered to deplete the bottom layer. Further
details of the operation of the model are given in Calder 1996.

Predicted wetting functions

The manner in which the incorporation of the two-layer formu-
lation alters the predicted wetting functions can best be under-
stood by comparing wetting functions obtained with varying

values of projected leaf area index, L∗
p, while holding the other

canopy parameters constant.
The wetting functions obtained with the two layer stochastic

model with a projected leaf area index, L∗
p = 0.45, an elemental

volume, ve, of 4 mm3, a characteristic volume, vc, of 11.5 mm3

and incorporating the q dependence on kinetic energy speci-
fied by ka = 0.5, kb = 0.73, kc = 5.5, are shown in Figure 3 for
different values of rainfall intensity, (based on the Torres rela-
tionship between drop size and rainfall intensity).

The wetting functions obtained with similar canopy parame-
ter values but with drop volumes appropriate to those used with
a rainfall simulator on studies of Eucalyptus camaldulensis are
shown in Figure 4. The matching of predicted wetting func-

Figure 4. Normalized wetting functions, determined on September 27
and October 30, 1993, for Eucalyptus camaldulensis, showing C/Cmx
against normalized depth of water applied P1/Cmx, for different sizes
of drops obtained with a fine spray (Fs), coarse spray (Cs), and the
dripper system (D) with median volumes of 0.065, 0.27 and 73 mm3,
respectively. Also shown, as solid lines, are the wetting functions
predicted by the stochastic model for these drop sizes with elemental
volume, ve = 4 mm3, vc = 11.5 mm3, and L∗

p = 0.598.

Figure 3. Normalized wetting functions showing C/Cmx against nor-
malized rainfall P1/Cmx, predicted by the two-layer stochastic model
for different rainfall intensities with L∗

p = 0.45, depicting a sparse
canopy, vc = 11.5 mm3, ve  = 4 mm3, ka = 0.5, kb = 0.73, and kc = 5.5.
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tions with those observed with the rainfall simulator provides
a means of determining the elemental volume appropriate to a
particular species.

For forests with even greater L∗
p, the dependence of the

wetting function on the size of raindrops will be further re-
duced. The wetting response will be determined principally by
the volume and kinetic energy of the ‘‘characteristic’’ drops.
Figure 5 shows the type of wetting response that might be
expected for a forest with a dense canopy, such as a humid
tropical rainforest with an L∗

p = 2.7. For dense canopies, the
wetting response converges to that expected with a single-layer
formulation with a drop retention number equal to the ratio of
the elemental to the characteristic volume, i.e., q = ve/vc. It is
interesting to note that the q value obtained for tropical rain-
forest in Indonesia (Calder et al. 1986) by means of the single-
layer formulation of the stochastic model indicated a ve/vc ratio
that was less than unity.

Implementation and assessment of the two-layer model

The two-layer stochastic model has been implemented and run
with climate and interception data collected in Sri Lanka for
tropical forest (Hall and Calder 1995). Comparison of the
performance of the two-layer stochastic model with that of the
Rutter model is demonstrated by Figure 6. Although both
models relied on parameter optimization, the Rutter model is
clearly unable to reproduce the onset of net rainfall at the
beginning of the storm.

Discussion and conclusions

The two-layer stochastic model allows predictions, based on
Poisson probability statistics, of the rate at which vegetation
canopies are wetted in relation to drop size. Studies carried out
with the rainfall simulator have verified the predictions made

by the stochastic wetting hypothesis with respect to the rate at
which canopies wet in relation to drop size. These studies have
also established that the maximum storage value is not a
constant, as has been assumed in previous interception studies,
but that it is strongly dependent on drop size through an
assumed kinetic energy dependence.

Application of the model to a real situation, using intercep-
tion data collected from a site in Sri Lanka, has shown that the
model is better able to describe the initial wetting-up phase of
the storm than conventional interception models that do not
incorporate a drop size dependence. The two-layer stochastic
model may provide insights into some of the reasons why
forest interception varies so much worldwide, and may help to
explain why interception losses from coniferous temperate
forests are so much higher than those from tropical forests.

The model shows that canopy wetting will be achieved most
rapidly and maximum canopy storage will be highest, leading
to high interception losses overall, when both raindrop volume
is small and the characteristic volume of drops draining from
the canopy is also small. These conditions apply for coniferous
forests in the low-intensity, small rain drop size climate of the
uplands of the U.K. By contrast, when both rain drop volumes
and characteristic volumes are large, canopy wetting will be
achieved much more slowly and interception losses are likely

Figure 5. Normalized wetting functions showing C/Cmx against nor-
malized rainfall P1/Cmx, predicted by the two-layer stochastic model
for different rainfall intensities with L∗

p = 2.7, depicting a dense
canopy, vc = 11.5 mm3, ve  = 4 mm3, ka = 0.5, kb = 0.73, and kc= 5.5.

Figure 6. A comparison of the gross (bottom) and net rainfall observed
and predicted by the Rutter model (middle) and two-layer stochastic
model (top) for a storm recorded on May 28, 1993 at Dodongolla, Sri
Lanka.
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to be much reduced. This situation is typified by tropical
rainforest experiencing high intensity convective storms of
large drop size.
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