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Abstract 
Changes in rainfall amounts and patterns have been observed and are expected to continue in the near future 

with potentially significant ecological and societal consequences. Modelling vegetation responses to changes in 

rainfall is thus crucial to project water and carbon cycles in the future. In this study, we present the results of a 

new model-data intercomparison project, where we tested the ability of 10 terrestrial biosphere models to 

reproduce the observed sensitivity of ecosystem productivity to rainfall changes at 10 sites across the globe, in 

nine of which, rainfall exclusion and/or irrigation experiments had been performed. The key results are as 

follows: (a) Inter-model variation is generally large and model agreement varies with timescales. In severely 

water-limited sites, models only agree on the interannual variability of evapotranspiration and to a smaller 

extent on gross primary productivity. In more mesic sites, model agreement for both water and carbon fluxes is 

typically higher on fine (daily–monthly) timescales and reduces on longer (seasonal–annual) scales. (b) Models 

on average overestimate the relationship between ecosystem productivity and mean rainfall amounts across 

sites (in space) and have a low capacity in reproducing the temporal (interannual) sensitivity of vegetation 

productivity to annual rainfall at a given site, even though observation uncertainty is comparable to inter-model 

variability. (c) Most models reproduced the sign of the observed patterns in productivity changes in rainfall 

manipulation experiments but had a low capacity in reproducing the observed magnitude of productivity 

changes. Models better reproduced the observed productivity responses due to rainfall exclusion than addition. 

(d) All models attribute ecosystem productivity changes to the intensity of vegetation stress and peak leaf area, 

whereas the impact of the change in growing season length is negligible. The relative contribution of the peak 

leaf area and vegetation stress intensity was highly variable among models. 

1 INTRODUCTION 
Understanding the impact of rainfall changes on ecosystem functioning and vegetation dynamics is crucial for 

accurately predicting the responses of vegetation structure, composition and dynamics under present or future 

conditions. Changes in both rainfall intensity and variability have been measured in the last decades (IPCC, 2013; 

Trenberth, 2011). Changes in precipitation extremes have also been observed (Alexander et al., 2006) and 

according to climate model projections, such changes will intensify as we progress through the 21st century 

(IPCC, 2012; Knutti & Sedláček, 2013). 

Changes in rainfall can affect energy and carbon fluxes at the land surface (Green et al., 2017). Rainfall changes 

modify soil water dynamics, alter plant water status and consequently the terrestrial biogeochemical cycles 

(Allan et al., 2014; Heisler-White, Knapp, & Kelly, 2008) through changes in plant productivity or plant mortality 

(Allen, Breshears, & McDowell, 2015). The importance of plant water limitation has been highlighted by the fact 

that semi-arid regions, which typically experience drought, control part of the global interannual variability of 

the terrestrial carbon sink (Ahlström et al., 2015), with an increasing sensitivity during the last decades (Poulter 

et al., 2014). The importance of water limitation on carbon fluxes will likely increase soon, since terrestrial 



vegetation is thought to operate close to its critical hydraulic thresholds across a wide range of ecosystems 

(Choat et al., 2012), even though the full implications of this result are still debated (Klein, Yakir, Buchmann, & 

Grünzweig, 2014; Körner, 2019). As a direct consequence, minor changes in plant water availability worldwide 

can lead to significant impacts on the terrestrial carbon sink (Allen et al., 2010; Frank et al., 2015; Green et 

al., 2019; Humphrey et al., 2018; Reichstein et al., 2013; Zhao & Running, 2010). 

To understand the ecosystem responses to changes in rainfall amounts and patterns at the local scale, rainfall 

manipulation experiments have been conducted. Typically, such experiments change the overall rainfall amount 

by exclusion (Estiarte et al., 2016; Limousin et al., 2009; Martin-Stpaul et al., 2013) or irrigation (Collins et 

al., 2012) and responses are commonly quantified by the changes in aboveground net primary production 

(ANPP). In some experiments such as the Amazon rainfall exclusion experiment (Nepstad, Tohver, Ray, 

Moutinho, & Cardinot, 2007), additional detailed data quantifying the changes in forest structure and 

composition have been obtained. There are a small number of experiments where the structure of rainfall 

pulses is modified (e.g. Fay, Kaufman, Nippert, Carlisle, & Harper, 2008; Heisler-White et al., 2008; Vicca et 

al., 2014). Rainfall manipulation experiments have been conducted in a range of ecosystems, spanning from 

semi-arid shrublands (Báez, Collins, Pockman, Johnson, & Small, 2013), to temperate (Hanson & 

Wullschleger, 2003) and tropical forests (Fisher et al., 2007; Nepstad et al., 2007), even though most of the 

experiments have focused on grasslands or low-stature vegetation due to the difficulties in setting up 

experiments. Those experiments have identified a strong correlation between rainfall changes and vegetation 

productivity (e.g. Heisler-White, Blair, Kelly, Harmoney, & Knapp, 2009; Stuart-Haëntjens et al., 2018), 

phenology (e.g. Peñuelas et al., 2004), plant community structure (e.g. Miranda, Armas, Padilla, & 

Pugnaire, 2011; Zhang et al., 2019) and belowground carbon dynamics (e.g. Hagedorn et al., 2016; Hasibeder, 

Fuchslueger, Richter, & Bahn, 2014; Vicca et al., 2014). Despite the important findings derived from these field 

experiments, these studies have strong spatial and temporal limitations; they reported only few variables and it 

is challenging to extrapolate information beyond the specific design of the experiment. Extrapolation and 

mechanistic understanding related to vegetation responses to changes in precipitation can be better achieved 

by combining model and data-driven approaches (e.g. Kayler et al., 2015). 

Modelling vegetation responses to changes in water availability is a challenging task (Xu, McDowell, Sevanto, & 

Fisher, 2013). Despite strong evidence that modelling responses to drought is a significant factor affecting 

terrestrial carbon dynamics (Trugman, Medvigy, Mankin, & Anderegg, 2018), a commonly accepted 

parameterization of water limitation does not exist (Egea, Verhoef, & Vidale, 2011; Fatichi, Pappas, & 

Ivanov, 2016; Hu et al., 2018; Medlyn, Kauwe, & Duursma, 2016; Zhou, Duursma, Medlyn, Kelly, & 

Prentice, 2013). Plant water stress simulated in terrestrial biosphere models can affect various processes but is 

commonly a function of either volumetric soil water content (e.g. Clark et al., 2011) or soil water potential (e.g. 

Fatichi, Ivanov, & Caporali, 2012; Lawrence et al., 2019; Manzoni, Vico, Porporato, & Katul, 2013), integrated 

over the root zone. Examples of how water limitation affects plant functions include a decline in stomatal 

conductance affecting photosynthesis (De Kauwe, Kala, et al., 2015; De Kauwe, Zhou, et al., 2015; Egea et 

al., 2011; Fatichi et al., 2012), changes in the photosynthetic parameters Vcmax and Jmax (e.g. Krinner et al., 2005) 

and/or accelerated senescence of plant tissues, especially leaves (Thurner et al., 2017) leading to drought-

induced deciduousness. Recently, significant efforts have been made to include more detailed plant hydraulics, 

to better describe water flow within the soil-plant-water continuum (Bonan, Williams, Fisher, & Oleson, 2014; 

Eller et al., 2018; Kennedy et al., 2019; Lawrence et al., 2019; Mirfenderesgi et al., 2016) and to include 

dynamics of non-structural carbohydrates to simulate consequences of water stress for carbon allocation and 

carbon starvation (reviewed in Fatichi, Pappas, Zscheischler, & Leuzinger, 2019). 

A large discrepancy of predicted model responses has direct consequences for the uncertainties related to the 

fate of terrestrial carbon under a changing climate (Ahlström et al., 2015; Humphrey et al., 2018; Zscheischler, 



Michalak, et al., 2014). This is the case because the terrestrial vegetation and thus the terrestrial land carbon 

sink introduce the largest uncertainties of the global carbon cycle (Le Quéré et al., 2018). In this context, large 

epistemic model uncertainties can have considerable impacts on our ability to forecast the growth rate of 

atmospheric CO2. Additionally, vegetation responses to water stress can influence land–atmosphere coupling 

(Gentine et al., 2019; Koster, 2004; Lemordant, Gentine, Stéfanon, Drobinski, & Fatichi, 2016; Seneviratne et 

al., 2013), since vegetation cover and canopy conductance affect land surface energy balance. This will have a 

large impact on our skill to model the coupled hydrological, plant physiological and meteorological processes 

and thus robustly projecting climate change (Miralles, Gentine, Seneviratne, & Teuling, 2018). 

To reduce this source of epistemic uncertainty and understand the reasons for model disagreement, a detailed 

comparison between the responses of different modelling schemes with respect to plant water availability is 

essential. Rainfall manipulation experiments assessing vegetation responses to water limitation are particularly 

useful in this regard. Arguably, this is an extremely important test to evaluate the structure and parameter 

values of a model and its capability to reproduce responses to environmental changes. A model should be able 

to reproduce the observed dynamics under control and manipulated conditions in order to be considered 

robust, especially for climate change simulations (Medlyn et al., 2015). Despite the importance of this 

comparison, there are only few examples that have compared terrestrial biosphere models and global change 

manipulation experiments (De Kauwe et al., 2013, 2017; Fatichi & Leuzinger, 2013; Medlyn et al., 2015; Powell 

et al., 2013; Zaehle et al., 2014). Recently, Wu et al. (2018) compared 14 models under different idealized 

rainfall scenarios for three grassland experiments sites and showed a fair reproduction of spatial sensitivities of 

ANPP to rainfall but large differences in the modelled asymmetric response of ANPP to interannual, that is 

temporal rainfall variability at a given site. Wu et al. (2018) were not able to evaluate the modelled responses 

with respect to actual experiments because they used idealized rainfall changes that did not exactly mimic the 

site treatments. In this study we perform such an evaluation. We make use of 10 sites with diverse climates and 

biomes, where multiyear rainfall manipulation experiments took place to evaluate 10 terrestrial biosphere 

models, representing an unprecedented data-model intercomparison effort focused on ecosystem responses to 

water limitation. This data-model intercomparison will address the following questions: (a) Can models 

reproduce the observed responses to precipitation variability at rainfall manipulation sites? (b) Do models 

accurately reproduce the spatial (across-sites) and temporal (within-site) dependence of vegetation productivity 

to precipitation? (c) Which are the underlying reasons for model disagreement? Answering those questions will 

provide insights on the robustness of Earth System model projections with respect to the global carbon cycle. 

2 DATA AND METHODS 

2.1 Sites 
Ten different sites with contrasted climates and biomes and sufficiently long records were considered here. For 

all analyses presented in this study, the sites are termed: Lahav, Matta, SGS, Prades, Garraf, Konza (AmeriFlux 

ID: US-Kon), Puèchabon (FluxNet ID: FR-Pue), Brandbjerg, Walker Branch (Walker Branch; AmeriFlux ID: US-

WBW) and Stubai (Table 1). The sites are in ascending order in terms of wetness index (WI) defined as the 

average ratio of annual precipitation to annual potential evapotranspiration (ET) during the study period. For 

our analysis the sites are split in three wetness categories (WI < 0.4 [Lahav, Matta, SGS]; 0.4 ≤ WI < 1 [Prades, 

Garraf, Konza, Puèchabon]; and WI ≥ 1 [Brandbjerg, Walker Branch, Stubai]). 



Table 1. Site description 

Site Lon/Lat Annual T (°C) Annual P (mm) WI Altitude 

(m) 

Species Soil type Drought 

treatment 

Irrigation 

treatment 

Years Key references 

Lahav 34.9/31.38 19.1 253 0.19 590 Annual grasses and shrubs, 

mostly Sarcopoterium spinosum 

22.6% 

Sand, 

39.7% silt 

and 37.7% 

clay 

−30% rainfall for 

the entire year 

+30% rainfall for 

the entire year 

2002–

2014 

Tielbörger et al. 

(2014) 

Matta 35.07/31.71 17.94 498 0.33 620 Similar to Lahav 19% Sand, 

29.2% silt 

and 51.8% 

clay 

−30% rainfall for 

the entire year 

+30% rainfall for 

the entire year 

2002–

2014 

Tielbörger et al. 

(2014) 

SGS −104.75/40.81 8.4 304 0.35 1,650 C4 grasses, primarily (Bouteloua gracilis H.B.K.) 

Lag. Ex Steud., Buchloe dactyloides (Nutt) 

Engelm., mixed with varying amounts of C3 

grasses, cactus, shrubs and forb. 

14% Sand, 

58% silt 

and 28% 

clay 

None None 1986–

2009 

Heisler-White et al. 

(2009) 

Prades 0.91/41.21 11.43 522 0.4 950 Mixed composition of Quercus ilex L., Phillyrea 

latifolia L., Arbutus unedo L., Erica 

arborea L., Juniperus oxycedrus L., Cistus 

albidus L. Sorbus torminalis (L.) Crantz and Acer 

monspessulanum L. 

48% Sand, 

32% silt 

and 20% 

clay 

−20% rainfall for 

the entire year 

None 1999–

2012 

Ogaya and Peñuelas 

(2007) 

Garraf 1.82/41.3 15.04 580 0.48 210 Erica multiflora, Globularia alypum 41% Sand, 

39% silt 

and 18% 

clay 

−50% in spring 

and fall 

None 2000–

2004 

Beier et al. (2009) 

Konza −96.6/39.1 12.8 830 0.7 342 Mixed C3 (Solidago canadensis, Aster 

ericoides, Salix missouriensis) C4 (Andropogon 

gerardii, Sorghastrum nutans, Panicum 

virgatum) Grassland 

10% Sand 

and 35% 

clay 

None Irrigation +20% 

was provided at 

two sites termed 

lowland and 

upland 

1982–

2013 

Collins et al. (2012) 

Puèchabon 43.74/3.6 13.8 969 0.87 270 Overstory (Q. ilex); Understory (Buxus 

sempervirens, P. latifolia, Pistacia 

terebinthus and J. oxycedrus) 

26% Sand, 

35% silt 

and 39% 

clay 

−30% throughfall 

exclusion for the 

entire year 

None 2004–

2013 

Limousin et al. 

(2009) 

Brandbjerg 11.97/55.89 9.59 757 1.1 39 70% grasses (mostly Deschampsia flexuosa); 

30% dwarf shrubs (Calluna vulgaris) 

88%–95% 

Sand, 2%–

9% silt, 

and 1%–

2% clay 

Rainfall exclusion 

for 4–6 weeks 

during spring 

and summer 

None 2007–

2012 

Kongstad et al. 

(2012) 



WB −84.29/35.96 14.7 1,440 1.1 343 Mixed composition of Quercus spp; Quercus 

prinus L., Quercus alba L., Quercus 

rubra L., Acer rubrum L., Acer 

saccharum, Liriodendron tulipifera L., Nyssa 

sylvatica Marsh. and Oxydendrum 

arboretum (L.) 

28% Sand, 

60% silt 

and 12% 

clay 

−30% throughfall 

exclusion for the 

entire year 

+33% rainfall for 

the entire year 

1995–

2005 

Hanson et al. (2004) 

Stubai 11.32/47.12 6.8 1,382 1.7 970 C3 Grassland (Agrostis capillaris, Festuca 

rubra, Ranunculus montanus, Trifolium 

pratense, Trifolium repens) 

42.2% 

Sand, 47% 

silt and 

10.8% clay 

Rainfall exclusion 

for 8 weeks of 

summer rainfall 

None 2009–

2013 

Fuchslueger, Bahn, 

Fritz, Hasibeder, and 

Richter (2014), 

Hasibeder et al. 

(2014) 

Abbreviation: WI, wetness index. 



The sites are in the United States (Konza, SGS, Walker Branch), Israel (Lahav, Matta), Spain (Garraf), France 

(Prades, Puèchabon), Austria (Stubai) and Denmark (Brandbjerg) and span a precipitation gradient from 253 to 

1,440 mm/year and include grasslands shrublands and forested ecosystems (Table 1). In eight for the sites 

rainfall exclusion experiments were carried out, and in four of the sites, irrigation experiments were carried out. 

The experiment duration considered in this study was from 5 up to 32 years. The average experiment duration 

was 13.3 years. 

For all sites, ANPP estimates were recorded for most of the experimental years derived by either biomass 

harvesting (grasslands) or biomass increase estimates derived from allometric relations and simultaneous 

observations of stem diameter, leaf area changes, plus litterfall (e.g. shrublands and forests). Leaf area index 

(LAI) was quantified using the MODIS (MCD15A2H v006) estimate of the pixel containing each site. MODIS data 

were interpreted with caution as they are an indirect measurement, valid at typically larger scales, and prone to 

large uncertainties. For three sites, Konza, Puèchabon and WB, ET and gross primary productivity (GPP) were 

obtained at the half hourly scale by the Fluxnet2015 database and aggregated to the daily scale. 

2.2 Participating models and simulation protocol 
For all sites, we conducted simulations using 10 terrestrial biosphere models: CABLE r54482.0 (Wang et 

al., 2011), DLEM v2.0 (Tian et al., 2010), JULES v5.2 (Clark et al., 2011), JSBACH v3.2 (Kaminski et al., 2013; 

Mauritsen et al., 2019), LPX v1.4 (Lienert & Joos, 2018), ORCHIDEE rev5150 (Krinner et al., 2005), ORCHIDEE 

MICT rev5308 (Guimberteau et al., 2018), ORCHIDEE CNP rev4520 (Goll et al., 2017), T&C v1.0 (Fatichi et 

al., 2012; Paschalis, Katul, Fatichi, Palmroth, & Way, 2017) and TECO v2.0 (Huang et al., 2017). All models include 

a land surface scheme, a hydrological component and a dynamic vegetation module. Soil moisture dynamics are 

simulated in multiple vertical layers by either solving the 1D Richards equation or simplified hydrological 

‘bucket-type’ models. Some models can simulate vegetation succession; however, this feature was disabled in 

the current study. Five models included nutrient dynamics. CABLE, DLEM, JSBACH and LPX simulated nitrogen 

and ORCHIDEE CNP nitrogen/phosphorus cycles. Hydrological and biogeochemical processes are simulated with 

a variable degree of complexity (for a detailed model description see the supplementary material of Wu et 

al., 2018). As there is no commonly accepted way to simulate water limitation, each model has adopted 

significantly different approaches (Medlyn, De Kauwe, Zaehle, et al., 2016). Water stress in all models but T&C is 

a function of an average root zone soil moisture; and in T&C, water stress is a function of the integrated root 

zone soil water potential. Specifically, models alter either photosynthetic rates (T&C, JULES, TECO), the 

maximum rate of carboxylation Vcmax (ORCHIDEE, ORC MICT, ORC CNP), stomatal conductance (JSBACH, DLEM) 

or a combination of all such parameters (CABLE), based on plant water availability. LPX uses a supply and 

demand-driven approach to water limitation. If water demand exceeds supply, photosynthesis is downregulated 

until they match. None of the models simulates plant hydraulics and thus xylem cavitation in response to water 

stress. 

For each site, we conducted a control simulation corresponding to the observed climate without manipulation, 

and simulations representative of each rainfall manipulation experiment (rainfall exclusion and/or irrigation) 

with the same timing and magnitude of water input as in the real experiment. For all experiments the common 

data distributed to all modelling groups included hourly values of incoming shortwave and longwave radiation, 

vapour pressure deficit, air temperature, wind speed, atmospheric pressure and ambient CO2 concentration. 

Model set-up was performed by each modelling group separately based on common information for each site 

that included, apart from the meteorological input, species composition, vegetation cover, soil and root depth, 

and soil textural properties. Each modelling group translated independently this information into model-specific 

parameters. Dependent on the model, species composition and vegetation cover were used to either choose 

between prescribed plant functional types (PFTs) or plant-specific model parameters. Soil and root depth were 

used by all modelling groups to set-up the simulation domain, and the vertical discretization of the simulation 



was decided by each modelling group independently. Soil textural properties were used to select soil hydraulic 

properties. All information concerning the simulation set-up of each model and the common site properties 

provided to all modelling groups can be found at a free access data repository (see Data Availability Statement). 

Reported model outputs included GPP, NPP and ANPP, ET and its partition in evaporation (soil evaporation plus 

evaporation from interception) and transpiration, respectively, soil moisture, LAI and biomass carbon pool 

(below and aboveground) dynamics. Some models additionally reported the water stress factor (β) used in the 

model. β is a model parameter that quantifies the effects of plant physiological stress due to limitations in soil 

water availability. β is not identical between models and the description of the β for each model can be found at 

the supplementary material of Wu et al. (2018). Initial conditions for all simulations were obtained after a spin-

up period long enough to equilibrate the biogeochemical cycles. 

2.3 Statistical analyses 

2.3.1 Data‐model comparison 

First, we compare the models' ability to accurately reproduce the relationship between ANPP and precipitation 

(P) across sites (i.e. spatial dependence) and within each site (i.e. temporal dependence) at the annual scale. At 

all sites, observations of ANPP were based on biomass estimates (e.g. using aboveground biomass harvesting for 

grasslands and a carbon budget approach for forested sites combining litterfall observations with allometric 

equation for aboveground biomass growth) rather than carbon fluxes, therefore discrepancy between observed 

and modelled ANPP is expected (detailed bias quantification are reported in the Supporting Information). 

Model skill in reproducing the spatial dependence of ANPP to P was quantified as the root mean squared error 

(RMSE) and the coefficient of determination (R2) between the modelled and observed annual ANPP, averaged 

over the entire period, across sites for the control case. Model performance in capturing the magnitude of 

interannual variability of ANPP was assessed by comparing the standard deviation (σ) of annual ANPP between 

models and observations for all sites. Model skill with respect to single-site interannual dependence of ANPP 

to P was quantified using an estimate of the sensitivity of annual ANPP to annual P. Specifically, we fitted a 

linear model ANPP = a0 + a1P + a2T, where P is annual precipitation and T is annual temperature. To increase the 

sample size and robustness of the fit, precipitation from both the control and the rainfall manipulation 

experiments were used. Additional covariates such as vapour pressure deficit and radiation could not be added 

due to the small sample size, making the linear fit over constrained. Preliminary analyses (not reported here) 

showed that P and T were the most important covariates. Model skill was evaluated by estimating the 

differences between observed and simulated sensitivities of ANPP with respect to P (i.e. 𝛼𝛼1 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕P   ). Observation 

uncertainty of the sensitivity metric was quantified as the 90% confidence interval of the linear model fit. 

For the control simulations, modelled ET and GPP were compared with eddy covariance high-frequency 

observations from Walker Branch, Puèchabon and Konza. In these three locations, flux-tower data were 

available in the proximity and with the same vegetation cover as the rainfall exclusion/addition experiment. 

Comparison at the daily scale was performed by means of Taylor diagrams (Taylor, 2001). The magnitude and 

seasonal pattern of the fluxes were also analysed (Figures S2–S4). 

Responses due to rainfall manipulation were quantified at the annual scale using the response ratio for a 

variable X (e.g. ANPP) defined as the ratio 𝑅𝑅𝑅𝑅 = 𝑋𝑋𝑀𝑀(𝑦𝑦)
/𝑋𝑋𝐶𝐶(𝑦𝑦)

  , where the subscript M denotes 

manipulation, C denotes the control scenario and (y) indicates the annual scale. In this study, we focused on the 

simulated RRs of ANPP and ecosystem water use efficiency (WUE) calculated at the annual scale as the ratio of 

annual GPP to annual actual ET. To quantify whether the simulated response ratios have a statistically significant 

different mean value from the observations, a two-sample t test was performed for every model and the 

respective observed responses. For the two-sample t test, the sample size for each site is equal to the number of 



years in the observations and simulations. Response ratios were assumed normally distributed and independent 

at the annual scale. The test's null hypothesis was that modelled and observed response ratios have the same 

mean. The analysis was also performed using the commonly used logarithm of RR yielding identical results, and 

thus not further shown here. 

2.3.2 Model agreement 

Model agreement across timescales was quantified by estimating the Pearson correlation coefficient (ρ) 

between all pairs of models for ET and GPP at the daily, monthly and annual scale. In Figure S7, the analysis is 

expanded for a wider range of scales by estimating the wavelet coherence between all pairs of models for ET 

and GPP. 

To quantify agreement with respect to modelled changes in ANPP and WUE due to rainfall alterations, a two-

sample t test for the response ratios of both ANPP for all model pairs was performed and presented in 

Tables S2 and S3. 

To attribute the variability of ANPP to its causes we proceeded similar to De Kauwe et al. (2017) who found that 

the annual ANPP could be approximated by the product. 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝑏𝑏 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶 ⋅ 𝐺𝐺𝐴𝐴𝐴𝐴𝑢𝑢 ⋅ 𝛽𝛽 ⋅ 𝐿𝐿𝐴𝐴𝐿𝐿𝑝𝑝 ⋅ 𝐿𝐿𝐴𝐴𝐿𝐿𝑟𝑟, 

where Ab is the aboveground fraction of carbon allocation, CUE is the carbon use efficiency, GPPu is the potential 

(unstressed) rate of GPP per unit of leaf area, β is the annually averaged value of the water stress factor, LAIp is 

the peak LAI during the year and LAIr is the proxy of the growing season length, defined as the integral of LAI 

during the year divided by LAIp. Considering that water stress and LAI dynamics determine most of the 

interannual variation of ANPP, assuming that Ab, CUE and GPPu vary less between treatments, then, the annual 

response ratio of ANPP can be estimated by the response ratios of β, LAIp and LAIr, 

𝑒𝑒.𝑔𝑔.
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀(𝑦𝑦)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶(𝑦𝑦)

≈ 𝛽𝛽𝑀𝑀(𝑦𝑦)𝛽𝛽𝐶𝐶(𝑦𝑦)
⋅ 𝐿𝐿𝐴𝐴𝐿𝐿𝜕𝜕𝑀𝑀(𝑦𝑦)𝐿𝐿𝐴𝐴𝐿𝐿𝜕𝜕𝐶𝐶(𝑦𝑦)

⋅ 𝐿𝐿𝐴𝐴𝐿𝐿𝑟𝑟𝑀𝑀(𝑦𝑦)𝐿𝐿𝐴𝐴𝐿𝐿𝑟𝑟𝐶𝐶(𝑦𝑦)
, 

where the subscript M denotes manipulation, C denotes the control scenario and (y) indicates the annual scale. 

If the response ratios of β, LAIp and LAIr are independent at the annual scale, then 

�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀(𝑦𝑦)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶(𝑦𝑦)
���������������� ≈ �𝛽𝛽𝑀𝑀(𝑦𝑦)𝛽𝛽𝐶𝐶(𝑦𝑦)

���������� ⋅ �𝐿𝐿𝐴𝐴𝐿𝐿𝜕𝜕𝑀𝑀(𝑦𝑦)𝐿𝐿𝐴𝐴𝐿𝐿𝜕𝜕𝐶𝐶(𝑦𝑦)
������������� ⋅ �𝐿𝐿𝐴𝐴𝐿𝐿𝑟𝑟𝑀𝑀(𝑦𝑦)𝐿𝐿𝐴𝐴𝐿𝐿𝑟𝑟𝐶𝐶(𝑦𝑦)

�������������
 

where overbars indicate average values for all years. This approximation is well-supported by the results of our 

simulations (Figure S6), even though data evidence suggests that CUE may change significantly under changes in 

water stress (Rowland et al., 2014). Using this decomposition in the model results, the average ANPP response 

ratio can be decomposed as the product of the average response ratios of β, LAIr, LAIp. Based on these 

considerations, we can attribute the changes in the modelled ANPP among models to differences in simulated 

water stress, LAI dynamics, and phenological changes. Since only six (T&C, CABLE, JULES, TECO, DLEM and 

JSBACH) of the 10 participating models reported the water stress β factor, this analysis was performed using this 

subset of models. All statistical analyses were performed in MATLAB 2019a. 

3 RESULTS 

3.1 Control scenario 
Models captured the increasing trend of observed average ANPP to average P across sites (Figure 1a). The RMSE 

between simulated and observed ANPP was in the range 23–354 g C m−2 year−1. Normalized RMSE of ANPP was 



weakly but positively correlated (R2 = .36; p = .067) with the RMSE of normalized LAI (i.e. LAI divided by its 

maximum value). All models were positively biased. Positive biases can be partially attributed to model 

shortcomings but can be also explained by experimental underestimations in ANPP measurements (see 

Figure S1). Relative absolute biases, i.e.|𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟| =
|𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑀𝑀𝑀𝑀𝑀𝑀−𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑀𝑀𝑜𝑜𝑜𝑜|𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑀𝑀𝑜𝑜𝑜𝑜  , are typically larger at the driest 

sites:
𝜕𝜕|𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|𝜕𝜕P = −6.3 × 10−4𝑚𝑚𝑚𝑚−1  (estimated using ordinary least squares method; Table 2). 

 
Figure 1 (a) Dependence of mean annual aboveground net primary production (ANPP) to average annual 

precipitation during the study period. Letters indicate observed values (L: Lahav; M: Matta; S: SGS; P: Prades; G: 

Garraf; K: Konza; Pb: Puèchabon; B: Brandbjerg; W: WB; Sb: Stubai). Lines indicate, for each model, a least 

square fit of a linear relationship: ANPP(P) = αP between the modelled mean annual ANPP and mean annual 

precipitation for all sites. (b) Standard deviation of modelled annual ANPP (circles) and observed annual ANPP 

(crosses) for all sites and models. Each model has a unique colour indicated in the legend [Colour figure can be 

viewed at wileyonlinelibrary.com] 

 

https://onlinelibrary.wiley.com/cms/asset/0947eaeb-6225-4b70-8f2d-4247e776b62f/gcb15024-fig-0001-m.jpg


Table 2. Model skill across sites in terms of root mean square error (RMSE) for annual ANPP, normalized root mean square error (NRMSE) for annual 

ANPP, coefficient of determination for annual ANPP, average bias of ANPP, average bias of the standard deviation of annual ANPP, RMSE for daily LAI 

and RMSE for daily normalized LAI, i.e. 
𝐿𝐿𝜕𝜕𝐿𝐿𝑚𝑚𝑟𝑟𝑚𝑚(𝐿𝐿𝜕𝜕𝐿𝐿)  

Model ANPP − RMSE 

(g C m−2 year−1) 

ANPP − normalized 

RMSE (−) 
ANPP − R2 (−) ANPP − bias 

(g C m−2 year−1) 

σ (ANPP) − bias 

(g C m−2 year−1) 

LAI − RMSE 

(m2 m2) 

LAI normalized 

RMSE (−) 
TC 76.318 0.368 0.8295 30.7907 −13.5738 1.2399 0.2956 

JSBACH 233.0982 1.1239 0.2379 79.3713 −19.6096 1.2972 0.4276 

DLEM 202.8963 0.9783 0.7732 96.935 −23.7873 1.2038 0.356 

ORC MICT 121.7962 0.5872 0.6131 51.5792 −5.7495 1.1895 0.3966 

ORC CNP 210.5444 1.0151 0.041 15.0756 −1.0366 1.1451 0.4198 

ORCHIDEE 113.8664 0.549 0.6489 44.8288 9.3944 1.2675 0.3505 

CABLE 215.6812 1.0399 0.4728 115.9473 −5.1951 2.147 0.3437 

JULES 354.0429 1.707 0.4399 278.4353 39.4962 1.4164 0.449 

TECO 23.3013 0.1123 0.982 5.3858 −9.3174 1.1347 0.3462 

LPX 113.6602 0.548 0.5956 36.4618 33.2501 1.3886 0.4317 

Abbreviations: ANPP, aboveground net primary production; LAI, leaf area index. 



Both models and observations support a larger sensitivity of annual ANPP to interannual variation in 

precipitation at sites with intermediate wetness conditions (e.g. Garraf, Prades, Puèchabon, Konza; Figure 2). 

Specifically, in sites with a WI < 0.4 models(observations) have mean sensitivity 𝛼𝛼1��� =

0.058(0.076)𝑔𝑔 𝐶𝐶 𝑚𝑚−2𝑚𝑚𝑚𝑚−1, in sites with 0.4 ≤ WI < 1 have 𝛼𝛼1��� = 0.22(0.18)𝑔𝑔 𝐶𝐶 𝑚𝑚−2𝑚𝑚𝑚𝑚−1 and in sites with 

WI > 1 have  𝛼𝛼1��� = 0.13(0.013)𝑔𝑔 𝐶𝐶 𝑚𝑚−2𝑚𝑚𝑚𝑚−1. At the most arid sites, annual precipitation explains a large 

fraction of the observed and modelled variability of annual ANPP, but the sites are not highly productive (i.e. 

absolute productivity values are low; Figure 1), yielding a low average sensitivity a1. At the opposite end, mesic 

sites have higher productivity, but they are not water-limited during the observation period, resulting also in a 

low modelled sensitivity 𝛼𝛼1��� . Modelled sensitivity uncertainty was largest for intermediate precipitation regimes 

due to a larger model disagreement for those sites. For sites with a WI < 0.4, the average uncertainty, quantified 

here as the standard deviation between models of modelled a1 was 𝜎𝜎𝛼𝛼1|𝑑𝑑𝑟𝑟𝑦𝑦 = 0.08 𝑔𝑔 𝐶𝐶 𝑚𝑚−2𝑚𝑚𝑚𝑚−1  , for 

intermediate sites 𝜎𝜎𝛼𝛼1|𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 = 0.24 𝑔𝑔 𝐶𝐶 𝑚𝑚−2𝑚𝑚𝑚𝑚−1  and for wet sites 𝜎𝜎𝛼𝛼1|𝑤𝑤𝑟𝑟𝑖𝑖 = 0.14 𝑔𝑔 𝐶𝐶 𝑚𝑚−2𝑚𝑚𝑚𝑚−1. 

 
Figure 2 Simulated and observed sensitivity of annual aboveground net primary production (ANPP) to annual 

precipitation (α1 = ∂ANPP/∂P). For each site, boxplots indicate the distribution of the simulated sensitivity of 

ANPP to precipitation by all models. Error bars show the sensitivity of observed ANPP to precipitation (blue 

squares) and the corresponding 90% confidence intervals (bar length) of the fit of the linear model. Crosses 

indicate the sites for which the mean value of the distribution of simulated sensitivities is not statistically 

different from the observed with 90% confidence. Sites are ranked from left to right in order of ascending 

wetness [Colour figure can be viewed at wileyonlinelibrary.com] 

 

On average, the modelled sensitivity of ANPP to precipitation within sites was lower (~0.15 g C m−2 mm−1) than 

(~0.37 g C m−2 mm−1; estimated as the average slope of the linear models reported in Figure 1a) between sites. 

However, the uncertainty of the estimated temporal sensitivity from observations, as quantified by the 90% 

confidence limits of the linear model, is very high in most sites (0.29 g C m−2 mm−1, averaged across all sites) and 

comparable to the uncertainty between models (𝜎𝜎𝛼𝛼1���� =  𝜎𝜎𝛼𝛼1′ = 0.4𝑔𝑔𝐶𝐶𝑚𝑚−2𝑚𝑚𝑚𝑚−1 , averaged across all sites). A 

large uncertainty is related to either a small sample size, or low skill of the linear model. As a result, it is not 

possible to robustly quantify whether the modelled temporal sensitivities are statistically different from the 

observed ones, but overall only six of the 10 sites had mean modelled that were not non-statistically 

scientifically different than the one observed (Figure 2). 

Simulated daily ET for the control simulations was substantially different regarding its day-to-day variability from 

measured ET at all three eddy sites (Konza, Puèchabon and WB). Correlation coefficients were in the range 0.27–

0.78 with an average value between all models and sites of ~0.60 ± 0.13 (mean ± SD; Figure 3). Simulated 

variability of ET, expressed in terms of standard deviation at the daily scale, deviated substantially from the 

measured variability of ET. In particular, simulated variability from most models was lower than observed at 

Konza (observed σET = 1.76 mm/day, modelled σET = 1.40 ± 0.3 mm/day), and higher than observed at 

Puèchabon (observed σET = 0.61 mm/day, modelled σET = 1.86 ± 0.50 mm/day). For WB, the modelled ET 

variability was higher than observed, and inter-model agreement was low (observed σET = 1.39 mm/day, 

https://onlinelibrary.wiley.com/cms/asset/56187b5f-99bc-4443-91cb-88c2debd9122/gcb15024-fig-0002-m.jpg


modelled σET = 1.51 ± 0.45 mm/day). Seasonality of ET was well-reproduced by all models (Figure S2), partially 

explaining the high correlation coefficients (Figure 3). One pronounced exception is in Puèchabon, where the 

observed late summer reduction of ET and increase in early fall was reproduced only by a small subset of models 

(Figure S2). 

 
Figure 3 Taylor diagrams for daily evapotranspiration (ET) and gross primary productivity (GPP) for all models 

and all sites with available flux tower data. Models are indicated with different colours according to the legend. 

Each site has a different marker (diamond for Konza, circle for WB and square for Puèchabon). The ideal model 

(i.e. reproducing precisely the data) would lie on the black markers, each corresponding to different sites [Colour 

figure can be viewed at wileyonlinelibrary.com] 

 

Simulated daily GPP had a correlation (~0.59 ± 0.17) with observed daily GPP for all models (Figure 3). A large 

fraction of the GPP correlation can be attributed to seasonality. However, the modelled variability was 

significantly different from the observed for all sites. Most models underestimated the daily variation of GPP at 

Konza (observed σGPP = 4.04 g C m−2 day−1, modelled σGPP = 2.87 ± 1.88 g C m−2 day−1) and WB 

(observed σGPP = 4.53 g C m−2 day−1, modelled σGPP = 4.01 ± 1.26 g C m−2 day−1) and overestimated the variability 

of daily GPP at Puèchabon (observed σGPP = 1.68 g C m−2 day−1, modelled σGPP = 2.67 ± 1.01 g C m−2 day−1; 

Figure 3). Large model differences between observed and simulated GPP can be partially attributed to an 

incorrect representation of the magnitude of LAI. There is, indeed, a large disagreement between the modelled 

LAI across models (Figure 4). Modelled LAI is also significantly different than observed, even though LAI derived 

via remote sensing is also uncertain (Fang et al., 2013). 

 
Figure 4 Simulated average monthly leaf area index (LAI) by all models for all sites for the control case 

simulation. Dots indicate the long-term monthly LAI averages of the nearest MODIS pixel in the area [Colour 

figure can be viewed at wileyonlinelibrary.com] 

 

Model agreement in terms of ET and GPP varies also with timescale (Figure 5). In the driest sites (e.g. Lahav, 

Matta, SGS; WI < 0.4), models agree mostly with each other on the interannual variability of ET (average corr. 

coef. ρ for ET at the annual (y) scale 𝜌𝜌𝐸𝐸𝐸𝐸|𝑑𝑑𝑟𝑟𝑦𝑦𝑦𝑦′
= 0.75; for  𝜌𝜌𝐺𝐺𝜕𝜕𝜕𝜕|𝑑𝑑𝑟𝑟𝑦𝑦𝑦𝑦′

= 0.35). This is expected since at those sites 

annual ET almost equals the total amount of rainfall. However, a significant model disagreement occurs at the 

daily (d) scale (𝜌𝜌𝐸𝐸𝐸𝐸|𝑑𝑑𝑟𝑟𝑦𝑦𝑑𝑑′ = 0.58,𝜌𝜌𝐺𝐺𝜕𝜕𝜕𝜕|𝑑𝑑𝑟𝑟𝑦𝑦𝑑𝑑′ = 0.30). The opposite picture occurs in mesic sites (WI > 1), where 

models agree better at the daily timescale for ET (𝜌𝜌𝐸𝐸𝐸𝐸|𝑤𝑤𝑟𝑟𝑖𝑖d′ = 0.79), but their agreement is significantly lower at 

https://onlinelibrary.wiley.com/cms/asset/ed548923-5b47-4c5c-b8ce-9eb91cc61beb/gcb15024-fig-0003-m.jpg
https://onlinelibrary.wiley.com/cms/asset/1f687c3e-502e-4415-81bf-26a71c9d1eb9/gcb15024-fig-0004-m.jpg


the annual scale (𝜌𝜌𝐸𝐸𝐸𝐸|𝑤𝑤𝑟𝑟𝑖𝑖𝑦𝑦′
= 0.61). A similar pattern is also valid for GPP ( 𝜌𝜌𝐺𝐺𝜕𝜕𝜕𝜕|𝑤𝑤𝑟𝑟𝑖𝑖𝑑𝑑′ = 0.77,𝜌𝜌𝐺𝐺𝜕𝜕𝜕𝜕|𝑤𝑤𝑟𝑟𝑖𝑖𝑦𝑦′

= 0.60; 

Figure 5). 

 
Figure 5 Boxplots of Pearson correlation coefficients between simulated evapotranspiration (ET) and gross 

primary productivity (GPP) for all pairs of models for three timescales (daily, monthly and annual) for all 10 sites. 

Scales are indicated with different colours according to the legend [Colour figure can be viewed 

at wileyonlinelibrary.com] 

 

Model agreement with regard to the dependence of the water stress factor β on root averaged soil 

moisture θ(Zr) is also low (Figure 6). On average, model agreement was highest for sites with a large percentage 

of sand (Brandbjerg 88%–95% sand, Prades 48% sand) and lowest in sites with soils rich in more fine material 

(e.g. Lahav 22% sand, Matta 19% sand, SGS 14% sand, Konza 10% sand). 

 
Figure 6 Average simulated water stress factor β as a function of root zone averaged soil moisture. For all sites 

and models �̅�𝛽 corresponds to the simulated average value of β at the daily scale for overlapping bins with soil 

moisture width 0.05 [Colour figure can be viewed at wileyonlinelibrary.com] 

 

3.2 Manipulation experiments 
Models were tested for their skill at reproducing changes in ANPP due to rainfall manipulations (Figure 6). Most 

models (75% for model-site-treatment combinations) correctly predicted the sign of the change in ANPP. 

However only 54% of the models for the drought treatment (10 models × 8 sites) and 43% for the irrigation 

treatment (10 models × 4 sites) have a mean response that is statistically similar in magnitude with the 

observed, highlighting a better model performance for rainfall exclusion than addition. The worst performance 

of the models was obtained for both the drought and irrigation experiments in Lahav and in the irrigation 

experiment in Konza where almost no model was able to capture the correct magnitude of the response ratio. 

https://onlinelibrary.wiley.com/cms/asset/e6e5af77-e007-42c3-8d82-bfc0dc1cbaa9/gcb15024-fig-0005-m.jpg
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Even though observed ANPP estimated from biomass should be close to modelled ANPP (Figure S1), several 

uncertainties related to observations, such as the choice of biomass harvest date, the use of specific allometric 

equations and specific local conditions, could affect our results. For instance, the observed response to irrigation 

in Lahav and Matta is considerably different despite the two sites having similar vegetation and climate. Those 

differences are either due to measurement uncertainties, or due the large effect of some local properties (e.g. 

soil composition, nutrient availability; Golodets et al., 2013, 2015) causing significant changes in the ecosystem 

dynamics. Overall, the magnitude of responses is similar among models except CABLE, JULES and TECO, which 

show a larger sensitivity of ANPP to rainfall manipulation. Modelled interannual variability of the responses was 

in most cases similar in magnitude to the observed for the rainfall exclusion experiments, and lower for the 

irrigation experiments (for the drought experiments, average modelled standard deviation of the response 

ratios was𝜎𝜎𝑅𝑅𝐷𝐷′𝑚𝑚 = 0.18; and observed 𝜎𝜎𝑅𝑅𝐷𝐷′𝑜𝑜 = 0.178. For irrigation experiments modelled standard deviation was 𝜎𝜎𝑅𝑅𝐼𝐼′𝑚𝑚 = 0.25; and observed 𝜎𝜎𝑅𝑅𝐼𝐼′𝑜𝑜 = 0.42). Outliers with regard to both the magnitude and the interannual 

variability of response ratios occurred for the most water-limited sites (Figure 7). 

 
Figure 7 Simulated and observed response ratios of annual aboveground net primary production (ANPP) due to 

rainfall exclusion (rows 1 and 2) and addition (irrigation; row 3). Different models are presented with different 

colours according to the legend. Error bars represent the standard deviation for all years of treatment. Red error 

bars represent measured response ratios. Black crosses indicate models where the null hypothesis of the same 

mean between simulated and observed response ratios is not rejected based on a two sample t test. Missing 

bars relate to spurious model output due to loss of vegetation survival [Colour figure can be viewed 

at wileyonlinelibrary.com] 

 

Besides carbon assimilation, changes in rainfall can simultaneously modify ET and thus the land surface energy 

balance. The coupling between ET and GPP depends heavily on the parametrizations of water stress and how 

this affects stomatal conductance and the reduction of photosynthesis. It further depends on vegetation 

dynamics such as a shift of carbon allocation from leaves to roots or leaf shedding due to water stress. To 

quantify the responses of the ET and GPP coupling, we compute the relative changes of WUE for the various 

cases (Figure 8). Most models predict relatively small changes in WUE (i.e. R~1) for both drought (𝑅𝑅𝐷𝐷′𝑚𝑚 = 0.98) 

and irrigation (𝑅𝑅𝐿𝐿′𝑚𝑚 = 1.08) treatments, indicating a change of comparable magnitudes for both ET and GPP. 

CABLE, JULES and TECO occasionally simulate larger changes, in both positive and negative directions, in WUE 

for the most water-limited sites. This larger change can be attributed to a more sensitive response of GPP to 

water stress than ET. 

https://onlinelibrary.wiley.com/cms/asset/bcbe371f-b58e-41a9-a6db-4237b4fc8653/gcb15024-fig-0007-m.jpg


 
Figure 8 Simulated response ratios of water use efficiency during treatment period per year due to rainfall 

exclusion (rows 1 and 2) and addition (irrigation; row 3). Different models are presented with different colours 

according to the legend. Error bars represent the standard deviation for all years of treatment [Colour figure can 

be viewed at wileyonlinelibrary.com] 

 

3.3 Response attribution 
We partitioned the total response ratio of ANPP into relative changes of (a) the β stress factor; (b) peak LAI 

(LAIp); and (c) the length of the growing season approximated by LAIr (Figure 9). Changes in simulated ANPP 

following rainfall manipulation can be almost exclusively attributed to changes in β and LAIp. The response ratio 

of LAIr was always close to unity (𝑅𝑅𝐿𝐿𝜕𝜕𝐿𝐿𝑟𝑟 = 0.98 ± 0.058; mean ± SD) for the drought treatment and 𝑅𝑅𝐿𝐿𝜕𝜕𝐿𝐿𝑟𝑟 =

1.01 ± 0.029 for the irrigation treatment contributing insignificantly to the response ratio of ANPP. Thus, no 

model predicted substantial changes in the length of the growing season. A reduction or enhancement of β for 

the drought and irrigation experiments explained the largest fraction of ANPP responses at wet sites, but the 

uncertainty of the relative strengths of changes in β and LAIp was high (drought treatment for sites with 

WI > 1, Rβ = 0.95 ± 0.08, 𝑅𝑅𝐿𝐿𝜕𝜕𝐿𝐿𝑝𝑝 = 0.91 ± 0.18; irrigation treatment for sites with WI > 1, Rβ = 1.05 ± 0.06, 𝑅𝑅𝐿𝐿𝜕𝜕𝐿𝐿𝑝𝑝 =

1.02 ± 0.02). For the driest sites both LAIp and β explained a large fraction of the total response for the drought 

treatment, whereas LAIp was the dominant and simultaneously the most uncertain factor for the irrigation 

treatment (drought treatment for sites with WI < 0.4, Rβ = 0.87 ± 0.10, 𝑅𝑅𝐿𝐿𝜕𝜕𝐿𝐿𝑝𝑝 = 0.77 ± 0.24; irrigation treatment 

for dry sites with WI < 0.4, Rβ = 1.06 ± 0.10, 𝑅𝑅𝐿𝐿𝜕𝜕𝐿𝐿𝑝𝑝 = 1.49 ± 0.86). Differences in the simulated responses of 

both β and LAIp among models were high as indicated by the standard deviations above. At the sites where 

rainfall exclusion was applied only in part of the year (Garraf, Brandbjerg), the response ratio of LAIp was larger 

than the reduction of β (Rβ = 0.93 ± 0.09, 𝑅𝑅𝐿𝐿𝜕𝜕𝐿𝐿𝑝𝑝 = 0.78 ± 0.27), but given the large variability among models, it 

is not possible to conclude if this is a true signal. The variability was higher for the most water-stressed sites, 

primarily because for those sites model disagreement on the estimated response ratio of ANPP was also the 

highest. 
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Figure 9 Boxplots of the response ratios of the change of β, LAIp and LAIr as simulated by (T&C, JSBACH, DLEM, 

CABLE, JULES and TECO) for the drought experiments (a) and the irrigation experiments (b) [Colour figure can be 

viewed at wileyonlinelibrary.com] 

4 DISCUSSION 

4.1 Multisite and local sensitivities to rainfall and the role of temporal scales 
Most models overestimated the relationship between mean annual precipitation and average annual ANPP 

observed across sites, but managed to capture well the overall trend, despite large site differences in terms of 

vegetation coverage and overall climatic regime (Figure 1). This result confirms that terrestrial biosphere models 

can capture spatial gradients of vegetation productivity relatively well (e.g. Wu et al., 2018). Reproducing local 

(single-site) response of ANPP to interannual precipitation variability has been generally found to be more 

challenging (Fatichi & Ivanov, 2014). In fact, previous intercomparison studies have found that models have 

significant biases at various timescales, from subdaily (Matheny et al., 2014) to decadal (Dietze et al., 2011). 

Dietze et al. (2011) found model errors to be largest at the annual scale. In agreement with such a result in our 

experiment, models differed greatly in their simulated sensitivity of local-scale productivity to annual 

precipitation but were able to reproduce the previously reported stronger spatial than temporal sensitivity of 

productivity to rainfall. A large model disagreement with regard to the magnitude of the interannual variability 

of ANPP also confirms the previously found difficulties of models to properly capture carbon dynamics at the 

annual scale (e.g. Dietze et al., 2011; Paschalis, Fatichi, Katul, & Ivanov, 2015). Despite large model disagreement 

we found that the within-site sensitivity of ANPP to precipitation is lower than across-site sensitivity of ANPP to 

average precipitation, in agreement with a number of previous observational (Goward & Prince, 1995; Huxman 

et al., 2004; Knapp & Smith, 2001) and modelling results (Fatichi & Ivanov, 2014; Wu et al., 2018). 

One of the main reasons for model disagreement originates from the differences in parametrization in schemes 

representing water limitation effects on water and carbon fluxes (e.g. Trugman et al., 2018), summarized here 

by the water stress parameter β (Figure 6). Those parametrizations influence ecosystem dynamics at a wide 

range of temporal scales, complicating assessment of their skill. For instance, at shorter timescales (e.g. daily), in 

ecosystems with no water limitation, where temperature and radiation are the dominant controls for ET and 

GPP (Paschalis et al., 2015), models had a high agreement (Figure 5), in terms of correlation. This highlights that 

parametrizations that impact the temporal changes of ET and GPP should be relatively consistent among 

models, at least during wet conditions (Ukkola et al., 2016). Even though correlation between models was high, 

large variability between models with regard to the actual magnitude of the fluxes was pronounced (Figures S2–

S4), primarily for carbon fluxes (e.g. GPP). This indicates that a ‘scaling’ factor affecting GPP is significantly 

different among models. For our experiments, LAI could be this explanatory ‘scaling’ factor (Figure 4), as models 

greatly differed regarding the seasonality and magnitude of LAI. 

Significant changes emerge under drought, when water stress parametrizations influence the simulation of 

water and carbon fluxes. Different water stress parametrizations alter the water/carbon dynamics at different 

scales. In severely water-limited systems (WI < 0.4), model results diverge in terms of GPP and ET at short 

temporal scales (e.g. daily; Figure 5). Thus, parametrizations of how water stress impacts processes operating at 

daily and subdaily timescales are crucial, and highly diverging among models. Such parametrizations include 

stomatal regulations and downregulation of photosynthesis during drought. In general, plant hydraulic dynamics 

will also operate at these temporal scales, but none of the participating models simulated such processes in 

detail. In severely water-limited ecosystems, the amount of annual precipitation imposes a strong constraint on 

ET (i.e. ET ≅ P), leading to overall good agreement between models for annual ET. However, this agreement is 

not true for transpiration alone (Figure S8), highlighting the major importance of how stomatal limitations are 



implemented in models. Physical constraints for productivity are not as strong, and thus models have large 

disagreement with respect to GPP even at annual scales. 

In intermediate wetness sites (0.4 ≤ WI < 1), in our simulations, models disagree at intermediate scales (weeks–

months) in terms of GPP (consistent with the wavelet coherence analysis presented at Figure S7). As mentioned 

before, at short (daily) temporal scales, temperature and radiation mostly determine water and carbon fluxes, 

when water is not a strong limiting factor, and due to the similar parametrizations among models (Wu et 

al., 2018), we detect a substantial convergence in GPP. However, since such controls ‘fade’ with increasing 

temporal scales, the effects of features linked to soil moisture dynamics, such as the soil moisture retention 

after a rainfall event, can manifest at longer temporal scales (Paschalis et al., 2015). Those dynamics can be 

influenced by factors including both biotic and abiotic factors such as the parametrizations of soil properties that 

determine the temporal dynamics of soil moisture and the vertical distribution of root biomass, affecting how 

plants withdraw water from the soil. In fact, models were found to strongly disagree on how plants are affected 

by soil moisture (biotic factor—Figure 6) and on the soils' water holding capacity, as indicated by the range of 

accessible values of soil moisture (abiotic factor—Figure 6). 

At the wettest sites (WI > 1), strong model disagreement in terms of both water and carbon fluxes occurs at 

annual scales. A key factor for model disagreement for those sites is LAI (Figure 4). Model disagreement in LAI is 

a composite effect of the water stress impacts to LAI development and the overall model disagreement in leaf 

phonology and carbon allocation rules (Figure 4; Richardson et al., 2012). 

All those behaviours highlight further the need to correctly capture water/carbon dynamics at multiple 

timescales, from the scale of the individual rain pulse (Huxman et al., 2004) up to interannual scales where 

drought legacies can have an important effect (Anderegg et al., 2015). The need to understand in detail 

multiscale dynamics linked to water stress and soil moisture dynamics is also exacerbated by the fact that model 

disagreement in terms of the sensitivity of ANPP to annual rainfall is highest for sites with intermediate wetness 

(0.4 ≤ WI < 1). Those regions experience moderate water limitations, and the impact of water limitation to fast-

acting processes (changes in e.g. stomatal conductance, photosynthesis) can accumulate and impact longer 

timescales through slow-acting processes (e.g. changes in LAI). Additionally, areas with intermediate wetness 

are expected to operate close to soil moisture thresholds inducing plant water stress. Sensitivity of the 

responses of ANPP to precipitation in those sites is concurrently the highest and most uncertain (Figure 2). This 

can have a large impact on our ability to model the fate of terrestrial CO2, given that those areas are among the 

largest contributors to the interannual dynamics of the growth rate of CO2 (Ahlström et al., 2015; Poulter et 

al., 2014). Understanding such dynamics across scales requires high quality and high frequency long-term 

measurements, not only for CO2 and water fluxes but also for soil moisture dynamics (Vicca et al., 2012). Annual 

ANPP values alone are limiting our inference capabilities and even 10–20 years of annual ANPP data were not 

long enough to obtain a precise estimate of the sensitivity of ANPP to precipitation. 

Uncertainties arise from the relatively short span of the record, but also due to the lack of data describing short-

scale dynamics of carbon assimilation and growth in manipulation experiments. Annual precipitation has been 

found to be a relatively weak descriptor of the interannual variability of water and carbon fluxes in many 

locations worldwide (Fatichi & Ivanov, 2014). A better descriptor would be the time duration during a year when 

favourable meteorological conditions for photosynthesis occur under well-watered conditions (Fatichi & 

Ivanov, 2014; Zscheischler et al., 2016). As a result, a few bursts of positive extremes in terms of productivity can 

strongly modify the annual budget and long-term dynamics (Zscheischler, Mahecha, et al., 2014). Therefore, to 

quantify the interannual dynamics of vegetation productivity, detailed knowledge of water/carbon fluxes, 

meteorology, soil moisture and plant water status at fine-temporal scales would be essential. In fact, previous 

research at the PHACE experiment, one of the few facilities that combined such high frequency measurement 

clearly identified the problems models have in reproducing sub-annual dynamics (De Kauwe et al., 2017). Given 



the present limited availability of such data, new ways of combining existing data (e.g. combining different data-

streams representing short and long-term-dynamics in multiple locations, such as Fluxnet sites for water and 

carbon fluxes at high frequencies, sites equipped with phonecams for high-frequency phenology monitoring, soil 

moisture networks (e.g. COSMOS, the International Soil Moisture Network, the Long Term Ecological Research 

Network, etc.), open access data archiving with common data formats to facilitate data exchange between 

research groups and the use of proxy data to extend the length of the time series (e.g., tree rings) are necessary 

to better inform models (Babst et al., 2018; Pappas, Mahecha, Frank, Babst, & Koutsoyiannis, 2017). 

4.2 Response to manipulation experiments 
The modelled sensitivities of vegetation dynamics to changes in rainfall are highly uncertain. On average, most 

models captured better the observed responses of vegetation to rainfall exclusion than addition (Figure 7). That 

behaviour can be associated with low skill in reproducing the asymmetric response of productivity to 

precipitation (Wu et al., 2018), failing to capture the correct pattern of the productivity saturation effect 

associated with rainfall increase. 

Even though, multiple models generated close vegetation productivity responses in the rainfall exclusion 

experiments, the underlying reasons are very different and at the same time highly uncertain (Figure 9). In the 

more water-limited ecosystems, both changes in LAI magnitude and the level of plan water limitation determine 

productivity responses. Variability of the relative strength of β and LAIp between models is large. Variability 

concerning LAIp is larger than β, which can be explained by the fact that LAIp integrates the model differences 

related to LAI phenology, carbon allocation rules and reductions in photosynthetic rates due to soil moisture 

limitations. Pinpointing which model best captures the relative strengths of changes in β and LAIp would require 

simultaneous high-frequency data, including soil moisture, regular measurements of stomatal conductance and 

leaf water potentials, high-frequency photosynthetic rates and regular LAI estimates. At more mesic sites, 

physiological effects of water stress (through β) are the main reason for productivity responses. The reason is 

that in such sites, induced water stress is mild. Productivity will be reduced during the imposed water stress due 

to rainfall exclusion, but this small increase in water stress cannot cause large changes in vegetation structure 

(Estiarte et al., 2016), or LAI. 

Disagreement in irrigation experiments is primarily related to leaf area dynamics. The reason can be that in the 

simulations where water stress was relieved, model disagreement originates primarily from the leaf area 

dynamics simulated for the unstressed conditions. Those dynamics are related to the choice of carbon allocation 

and leaf phenology algorithms. Pronounced model differences related to those dynamics can be shown via the 

magnitude and seasonal patterns of LAI (Figure 4) as simulated by all models. Both the allocation and the 

phenology algorithms affect the dynamics of LAI. In our simulations (Figure 4) the range in modelled LAI is large 

and comparable with that reported by previous studies (De Kauwe et al., 2017; Walker et al., 2014). 

Parametrizations of carbon allocation rules are also limited by the use of generic PFTs used by most models. 

Such a choice is generally very restrictive and cannot capture the natural variability of plant traits, which is 

relevant at the local scale. 

In our analysis changes in growing season length were not evident and did not influence out results. This is not 

surprising, as all rainfall manipulation experiments decreased or increased the available water to the ecosystem, 

without altering its ‘pulse’ structure, including the frequency of rainfall occurrence, and the time of storm arrival 

(Ross et al., 2012). As vegetation phenology in water-limited ecosystem is very sensitive to the pulse structure 

dynamics of rainfall (Heisler-While et al., 2009), evaluating in future experiments, whether models can properly 

capture the responses of vegetation to rainfall pulses in terms of productivity and drought deciduousness is very 

important. Changes in rainfall pulses will also strongly impact soil respiration dynamics that will contribute 

significantly to the total carbon balance (Jarvis et al., 2007; Unger, Máguas, Pereira, David, & Werner, 2010). 



4.3 Outlook for model developments and observations 
Our results highlight the need for a coordinated effort of new model development and data collection that could 

enable validations that are much more detailed than currently achievable here. Model discrepancies in the 

present study were attributed to the β stress factor and long-term leaf area dynamics. The models used in this 

study implemented simple conceptual, yet vastly different (Wu et al., 2018) parametrizations of the effects of 

water limitation, neglecting plant hydraulics and thus impacts on the water transport system (xylem cavitation) 

that can lead to hydraulic failure and/or carbon starvation (Bonan et al., 2014; McDowell, 2011; McDowell et 

al., 2013; Xu, Medvigy, Powers, Becknell, & Guan, 2016). This could be an important limitation. However, tree 

mortality is not a prominent feature of the manipulation experiments considered here and while it has attracted 

a lot of attention, models first need to better simulate mild to severe water stress before considering vegetation 

death. For instance, differences associated with the β factor are not only related to plant physiological 

thresholds but are associated with a complex function of the assumed soil textural properties. Those properties 

are translated into soil hydraulic parameters (Van Looy et al., 2017), affecting soil moisture dynamics and ET and 

ultimately their interplay with the value of the β factor. It is currently impossible or very difficult to identify 

which model is more realistic in this respect and each model can only ‘tune’ all the above components at once. 

Specialized experiments measuring for example simultaneously high-frequency water and carbon fluxes, soil 

moisture and plant water status in controlled environments could be designed to develop more informed 

parameterizations of β, and eventually expand to more detailed mechanistic representation of ecosystem-scale 

plant hydraulics (Anderegg et al., 2016; Konings & Gentine, 2017). 

Correct modelling of leaf area dynamics is equally important as the plant physiological stress β for quantifying 

the effect of rainfall changes in ecosystem functioning (Yang, Medlyn, De Kauwe, & Duursma, 2018). Simulation 

of LAI could be constrained better than currently done with available information, considering that high-

frequency LAI measurements in an experiment could be added with a relatively low budget. Observations of LAI, 

via indirect methods, are common at large scale. Extensive ground (Iio, Hikosaka, Anten, Nakagawa, & Ito, 2014) 

and remote-sensing estimates (Zhu et al., 2013) of LAI and phenology data from low-cost cameras worldwide 

(Brown et al., 2016; Klosterman et al., 2014) can be used to further constrain phenology and carbon allocation. 

Regarding carbon allocation, belowground dynamics and their responses to water limitation should also be 

simultaneously quantified. 

From an observational perspective, in order to improve models, we need to disentangle the effects on plant 

physiological stress from those on vegetation dynamics at the local scales. Since physiological effects of water 

stress manifest earlier than changes of LAI or carbon pools, a nearly continuous monitoring of photosynthesis, 

ET, leaf and soil water potentials, sap flow and LAI would be essential to get further insights. These quantities 

are often observed (e.g. using eddy covariance systems, sap flow sensors, leaf porometers, hyperspectral 

cameras), but rarely in an integrated manner and associated with rainfall manipulation experiments. This should 

become a priority to foster model developments. 

Finally, new streams of data via remote sensing can be also used for detailed model confirmation at larger 

scales. Satellite and airborne data related to vegetation structure, spanning from leaf chemistry to delineation of 

individual trees (Andersen, Reutebuch, & McGaughey, 2006; Asner & Martin, 2009; Gougeon & Leckie, 2006; 

Vicca et al., 2016), high frequency photosynthesis through solar induced fluorescence, soil moisture (Liu et 

al., 2011), and plant hydraulic status (Konings & Gentine, 2017) currently exist. Such data can help us to identify 

the mechanistic link between plant water stress and how it affects vegetation productivity from short-term 

photosynthesis reduction to decadal scales involving plant mortality and composition shifts. Note however that 

estimates of photosynthetic activity during water stress purely based on remote sensing (light reflection signals) 

are often biased and need to be interpreted with care (De Kauwe, Keenan, Medlyn, Prentice, & Terrer, 2016; 

Stocker et al., 2019). 



In conclusion, our key finding in this study is that current generation terrestrial biosphere models have major 

uncertainties related to simulating plant water stress, and its impact on the terrestrial carbon cycling. Those 

uncertainties arise from the model formulations related to both carbon allocation patterns and phenology and 

the representation of water stress frequency and magnitude on carbon assimilation. These two effects are 

inherently coupled at a wide range of scales. To decouple the two effects and constrain mechanistic 

representations of how water stress acts on multiple processes will require the close collaboration between 

experimentalists and modellers, for planning and implementing new ‘high frequency’ experiments (Rineau et 

al., 2019). These experiments should observe across a range of temporal scales from hourly values of 

photosynthesis and ET, to daily and weekly LAI dynamics, up to arrive to annual changes in species composition 

(Halbritter et al., 2019). 
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