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Abstract—The term nowcast in hydrometeorology reflects the
need for timely and accurate predictions of risky environmen-
tal situations, which are related to the development of severe
meteorological events at short time scales. The objective of this
paper is to apply a fully neural-network approach to the rain-
fall field nowcasting from infrared (IR) and microwave (MW)
passive-sensor imagery aboard, respectively, geostationary Earth
orbit (GEO) and low Earth orbit (LEO) satellites. The multi-
satellite space-time prediction procedure, which is named Neural
Combined Algorithm for Storm Tracking (NeuCAST), consists
of two consecutive steps. First, the IR radiance field measured
from a geostationary satellite radiometer (e.g., Meteosat) is pro-
jected ahead in time (e.g., 30 min); second, the projected radi-
ance field is used in estimating the rainfall field by means of an
MW–IR combined rain retrieval algorithm exploiting GEO–LEO
observations. The NeuCAST methodology is extensively illus-
trated and discussed in this paper. Its accuracy is quantified
by means of quantitative error indexes, which are evaluated on
selected case studies of rainfall events in Southern Europe in 2003
and 2005.

Index Terms—Neural network (NN), nowcasting methods, pas-
sive sensors, precipitation retrieval, satellite remote sensing.

I. INTRODUCTION

NOWCASTING of rainfall from remote sensing imagery

is becoming an important issue for several applications,

which are mainly related to civil protection alarming and also

to hydrometeorological applications [1]–[4]. Multiple scales

of space and time can be taken into account, as well as dif-

ferent data sources and objectives. The term nowcast should

be intended, in this context, as the ability to predict, at very
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short-term time scales, the evolution of the geophysical field

of interest from remote sensing imagery. The satellite measure-

ments used here implicitly define the time and space sampling

imposed by the involved platform and sensor features [5]–[7].

For a rapidly varying field, such as rainfall, high temporal repe-

tition of the observation, like that available from geostationary

satellites, is essential [8]. On the other hand, the accuracy of the

nowcasted fields is strictly related to the physical correlation

of the measured remotely sensed data with the field of interest

[9]–[11]. The rainfall nowcast problem from the satellite remote

passive sensors can be conveniently split into two basic com-

ponents as follows: 1) instantaneous retrieval; and 2) temporal

prediction.

Several rain retrieval techniques have been proposed on

the basis of multisatellite imagery, exploiting passive sensor

measurements acquired by geostationary Earth orbit (GEO) and

low Earth orbit (LEO) platforms [8]–[14]. These approaches

tend to overcome some inherent limitations due to the use of

satellite infrared (IR) radiances, which are poorly correlated

with rainfall [6]. In this respect, microwave (MW) radiometric

data available from LEO platforms can provide more accurate

rain estimates [15]. From a microphysical point of view, visible

(VIS) and IR radiometers can give information on cloud top

layers since precipitating clouds are almost completely opaque

are in the IR. On the other hand, MW radiometers can detect

cloud structure and, to some extent, near-surface rainfall. In

fact, MW brightness temperatures are fairly sensitive to liquid

and ice hydrometeors since rain clouds are not optically opaque

at MW frequencies [16]. From a system point of view, GEO

satellites can ensure an Earth coverage with a high temporal

sampling, whereas LEO satellites have the advantage to enable

the use of MW sensors but with the drawback of low temporal

sampling. Therefore, LEO-MW and GEO-IR radiometries are

clearly complementary in monitoring the Earth’s atmosphere

and a highly variable phenomenon such as precipitation. The

IR radiances from geostationary images can be properly cal-

ibrated using the MW-based combined algorithms (e.g., [5]

and [13]–[16]). Microwave data can be extracted from the

MW imager sensors, but any rain estimation source may

be used [9].

Rainfall nowcasting by active and passive remote sensing

imagery has been attempted by numerous techniques in the

last decade [3], [4], [17], [18]. Some of the proposed nowcast

methods may be classified as standard, which are, hereafter,
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also called “conventional,” such as the temporal image per-

sistence (TIP), steady-state displacement (SSD), and linear

temporal extrapolation (LTE) methods (e.g., [17]). Each of

these conventional nowcasting methods shows a performance

that depends on the weather conditions in the considered re-

gion. Neural networks (NNs) may present several advantages

with respect to conventional techniques [19]. Their main fea-

ture is the ability to map input–output data to any degree

of nonlinearity [20]. It is well known that the NNs exhibit

the capability to learn and to represent highly nonlinear func-

tional and to be quite robust to noise [21]. Moreover, if prop-

erly designed, an NN can be suitable to represent dynamical

random processes such as the temporal evolution of a rain

field [22].

The basic aim of this paper is to exploit the potential of

an NN methodology to both predict and retrieve the rainfall

pattern, having at disposal both GEO-IR and LEO-MW passive

sensor data. Special attention has been placed to select the

input space-time features and the network topology in order to

optimize the rainfall nowcasting performance from the satellite

imagery temporal sequences with respect to the conventional

approaches. The focus of the proposed technique is on the

design of an NN robust approach that is able to generalize the

training data in an effective and efficient way. It is worth an-

ticipating that a systematic validation of the Neural Combined

Algorithm for Storm Tracking (NeuCAST) technique is beyond

the scope of this paper.

This paper is organized as follows. In Section II, the overall

rainfall nowcast procedure is introduced together with the main

data sources. In Section III, a case study of an orographic

rain event in Southern Europe is illustrated, and a temporal

autocorrelation analysis of the IR radiance field is presented.

Section IV is devoted to the design of the adopted NN topol-

ogy, training algorithm, and input features. Sections V and VI

show the results, in terms of error statistics, obtained for the

nowcasting of the IR radiance field and for the rain retrieval,

respectively, derived by applying a multisatellite radiometric

NN-based algorithm to selected case studies. Conclusions are

finally drawn in Section VII.

II. SATELLITE NOWCAST OF RAINFALL FIELDS

After describing the overall rainfall nowcast approach, three

conventional forecast methods will be considered for compari-

son and will be briefly described.

A. Overview of the Rainfall Nowcasting Approach

Rainfall is a highly variable field with a fairly rapid and

detailed space-time scale of evolution, mainly depending on its

stratiform or convective features (e.g., [23] and [24]). These

field characteristics raise a question about the approach to

the nowcast problem; that is, whether to predict either the

radiance or rain-rate field. After various attempts, we have

finally decided to opt for the prediction of the IR brightness

temperature (Tb) fields followed by the rainfall retrieval stage.

This approach has several advantages with respect to the reverse

Fig. 1. Overall approach, which is named NeuCAST, to IR Tb nowcasting
and rainfall retrieval from the multisatellite passive-sensor imagery.

approach (i.e., first, estimate the rain map and, then, predict it

from the rain map itself).

1) It avoids the prediction errors connected to the delineation

of the rainfall areas by a masking procedure.

2) It is not strictly connected to rain areas, thus smoothing

the problem of predicting raincells from zero-rainfall

pixels.

3) It allows the generation of other meteorological subprod-

ucts, starting from the predicted Tb field.

The proposed satellite-based nowcasting approach, which is

named NeuCAST, can be schematically visualized in Fig. 1.

As a source of GEO satellite imagery, the Meteosat-7

VIS–IR Imager (VIRI) has been considered here, selecting

areas of interest in Southern Europe (e.g., [9]). The se-

lected IR Meteosat-7 image frames are composed of 547 ×
298 pixels, corresponding roughly to east longitude ranging

from 0◦ to 22◦ and north latitude ranging from 36◦ to 48◦

(see small panels in Fig. 1). Each VIRI pixel can be approxi-

mated by a square of 5 × 5 km2 at midlatitudes. The Special

Sensor Microwave/Imager (SSM/I), e.g., [25], [26], has been

selected as the data source from the LEO satellites. The SSM/I

MW radiometer operates on Defense Meteorological Special

Program (DMSP) satellites and has four frequencies at 19.3,

22.2, 37.0, and 85.5 GHz. All channels are dual-polarized,

except the 22.2-GHz feed that works at vertical polarization

only. The SSM/I radiometer has a conical scan and a swath of

1400 km. For each scan, it takes 128 uniformly spaced samples

at 85-GHz frequency with a spatial sampling of 12.5 km. At

the other frequencies, data are sampled with a double spatial

sampling, i.e., 25 km.

Other combinations of available sensors can be, of course,

considered such as the Spinning-Enhanced VIRI Aboard

Meteosat Second Generation (MSG), the Advanced Microwave

Scanning Radiometer Extended (AMSR-E) aboard the Aqua

satellite, and the SSM Imager Sounder (SSMI/S) aboard the

DMSP satellite. The generalization of the proposed approach

to a larger combination of sensors and satellites is, however, not

the aim of this paper, whose goal is to explore the feasibility of a
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new neural nowcasting technique. Nevertheless, this extension

is methodologically quite straightforward.

B. Conventional Nowcasting Methods

Three nowcasting techniques, which are called “conven-

tional,” have been considered as benchmarks, following [17].

1) The first technique is the TIP method. This method as-

sumes that the same value of the previous image can be

associated to each pixel in the forecasted satellite image

[17]. This means that, if the latest available (or current)

image is the frame at the time step tk, the forecasted

satellite image, or frame, at the time step tk+1 is assumed

to be equal to the frame at tk.

2) The second technique is the SSD method. It assumes that

the patterns in the satellite frame at tk are transported

(displaced) with unchanged size and intensity [17]. The

frame at the time step tk+1 (or nowcasted image) is

assumed to be equal to the last available satellite image,

which is translated by a suitable motion vector. This

displacement vector is found by calculating the temporal

cross-correlational index between the frames at the time

steps tk and tk−1 for all the possible shifts between

the two images within a range of ±Ns pixels (with Ns

maximum here equal to eight and typically between zero

and three).

3) The third technique is the LTE method. This method

consists of linearly extrapolating in time the future pixel

value [17]. The IR temperature associated with each pixel

in the frame at the time step tk+1 is linearly derived

from the values associated to the same pixel in the last

two available images (i.e., frames at the time steps tk
and tk−1).

III. CASE STUDIES OF RAINFALL EVENTS

In the following paragraphs, we will briefly describe the case

studies used in testing our nowcasting technique and, then,

briefly present a statistical analysis of the temporal autocorrela-

tion of the measured IR radiance field.

A. Selected Precipitation Events Over Southern Europe

On January 23, 2003, in the Gulf of Genoa, a cyclogenesis

was associated with a secondary minimum, which is located

on the medium Adriatic Sea [18], [26]. At the upper levels, an

intrusion of cold air from north to east, which is associated with

a trough extending from Scandinavia to the southern Mediter-

ranean region, was present. The low-level advection of warm

and humid air from south to east into the Adriatic region caused

the generation of diffuse convective precipitation. The follow-

ing 24 h was characterized by the deepening of the surface pres-

sure minimum, which is located in the south-central Tyrrhenian

Sea. At the upper levels, a cutoff low was developing associated

with a cold-air intrusion. Electrical activity was still detected

during the night in the central and southern Adriatic Sea,

suggesting that the convective activity was still underway over

central Italy. An example of the Meteosat-7 IR radiance image

Fig. 2. Radiance field, which is represented in terms of the IR brightness
temperature, measured from Meteosat on January 24, 2003, at 15:00 GMT
(frame 30).

on January 24, 2003, at 15:00 Greenwich Mean Time (GMT)

is shown in Fig. 2, where the high-cloud cyclonic structure in

the Tyrrhenian Sea is clearly captured from the geostationary

satellite.

On January 25, 2003, the upper level cutoff low was

completely in phase with the surface low and located over

Sicily. Low-level advection of warm and humid air over south-

ern Italy produced convection with intense electrical activ-

ity. During the following 24 h, the cyclonic system moved

toward the east. Data recorded by surface sensors clearly

showed rainfall that persisted over central Italy during the

whole period. The maximum rainfall rate, which is measured

by most available rain-gauge stations (hourly sampling tip-

ping buckets) in central Italy, did not exceed 20 mm/h, even

though, over the Adriatic regions, rain-gauge values exceeding

45 mm/h were recorded both at the beginning and at the

end of the event. The spatial and temporal distributions of

rainfall during the event suggest the formation of so-called oro-

graphic precipitation with an embedded localized convective

rainfall.

An additional comparison of the performances of the

considered nowcasting techniques has also been performed

on a sequence of satellite images from a case study on

November 25–26, 2005. This event is a typical mid-Atlantic

frontal system which caused several localized thunderstorms

embedded in widespread rain along the Apennine range. This

further example is considered in assessing the generalization

capability of the considered prediction methods.

B. Statistical Analysis of Observed Radiance Field

A radiance field nowcast approach should try to exploit both

the spatial texture and temporal memory of the observed events.

It is worth investigating whether or not the knowledge of the

dynamic structure of the radiance field can provide measurable

added value to the nowcasting capability. Let us consider the

IR brightness temperature field Tb(x, y, t) in a given position
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Fig. 3. Normalized autocorrelation of IR Tb related to fair weather condition
pixels, extracted from the 48 Meteosat frames on January 23, 2003. Mean and
median values of normalized autocorrelation are also plotted.

(x, y) of the satellite image as a function of time t. The temporal

autocorrelation function CT of such process is

CT(x, y, τ) =

+∞
∫

−∞

Tb(x, y, t)Tb(x, y, t + τ)dt (1)

where τ is the time delay. Let us consider a finite temporal

series of N radiance field images, sampled every ∆τ = 30 min
at a given discrete pixel (xi, yj). Furthermore, let us take the

function describing the discrete process as an anomaly around

its mean

T ′
b(xi, yj , tk) = Tb(xi, yj , tk) − 〈Tb(xi, yj)〉 (2)

where 〈Tb(xi, yj)〉 is the mean IR brightness temperature over

the considered time interval. We can estimate the normalized

temporal autocorrelation of this process at each time lag τl =
l∆τ , with l < N , as

CnT(xi, yj , τl) =

N−l
∑

k=1

T ′
b(xi, yj , tk)T ′

b(xi, yj , tk + τl)

N
∑

k=1

[T ′
b(xi, yj , tk)]2

(3)

for τl ≥ 0, and CnT(xi, yj , τl) = CnT(xi, yi,−τl) for τl < 0.

Considering a small area of 21 × 21 pixels (i.e., about 105 ×
105 km2) within the available series of Meteosat images, the

autocorrelation CnT of the IR brightness temperature time

series, which is associated to each pixel (xi, yj) belonging to

a subdomain centered at (42◦ N, 14.5◦ E) within the central

Adriatic region, has been estimated for two different meteoro-

logical conditions. In Fig. 3, CnT for fair weather conditions is

represented for each selected pixel. The mean and the median

of these estimates are also shown for each time lag. This time

series comprises the 48 satellite images series of January 23,

Fig. 4. Same as in Fig. 3 but for severe weather conditions, extracted from the
48 Meteosat frames on January 24, 2003.

2003. In the considered subdomain, there are no particularly

rapid variations in the IR Tb field during this period. The

result is a slowly decreasing autocorrelation sequence with a

relatively small spread around the mean value. The mean of

CnT decreases to 0.5 after about 5 h.

Fig. 4, similarly to the previous figure, shows CnT for

the time series comprising the 48 satellite images series on

January 24, 2003, on the same subdomain previously consid-

ered. This images series contains a severe convection, lasting

several hours with an average precipitation in the range of

10 mm/h. The mean of the related autocorrelation sequence

decreases more rapidly in this case, and the spread of CnT

values at each time lag appears to be noticeably higher. The

mean of CnT decreases to 0.5 after about 1.5 h.

In order to provide the nowcasting method with information

related to the process space-time dynamics, it is also useful

to introduce spatial texture information around the considered

pixel. This means to assume that IR Tb, at a given target pixel

and time, may depend on the IR Tb within an area comprising

the same target pixel and its surroundings for some tens of

kilometers (i.e., 10 to 50 km of “influence” radius) in the

previous time steps. An effective way to deal with the space-

time image information for estimation purposes in a strongly

nonlinear and hybrid context is to resort to an NN approach, as

described in the next section.

IV. RECURRENT (RC)-NN METHODOLOGY

It is well known that artificial NNs exhibit the capability

to learn and to represent highly nonlinear relationships [20].

An NN, which is properly configured, can be regarded to as a

universal function approximator [21]. In general, NNs provide

a powerful methodology to predict temporal series associated

with random processes. The proposed field nowcasting tech-

niques are based on NN architectures, which are trained on a

proper batch of GEO satellite images. We have considered here

two major classes of NN topologies: the feedforward (FF) and

the RC-NN [20].
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Fig. 5. Example of an Elman RC-NN topology with three layers and one output neuron. V (tk) is the N0-size input vector at time tk , while V
′(tk) is the

N0 + N1-size extended input vector comprising the delayed fed-back vector from the layer 1 output at time tk−1 and the synchronous input vector V (tk).

An FF-NN computes an output pattern in response to an input

pattern (IP) [20]. Once trained and set with proper connection

weights, the output response to a given IP will be the same re-

gardless of any previous network activity. The FF-NN response

can be thought as a single instantaneous nonlinear mapping. On

the other hand, the RC-NN response to a given IP will depend

on the previous network activity, since such networks consist

of processing units with dynamic elements and operate in time-

lagged feedback mode [22].

A. RC-NN Architecture

A multilayer RC-NN is basically an extension of an FF-NN

topology, which is widely described in the literature (e.g., [20]

and [21]). A well-known topology of an RC multilayer NN

is the Elman network [22]. It is commonly a multiple-layer

network with a feedback from the last hidden layer output

to the first hidden layer input (the layers between the input and

the output layers are called hidden). The RC connections allow

the Elman network to both detect and track the time-varying

patterns. In addition to the RC connections, this type of NN is

characterized, as is the FF-NN, by the forward propagation of

the input information through the various layers. All neurons

in a layer are connected to all neurons in the adjacent layers

through synaptic weights which act as signal multipliers on the

corresponding interconnections.

A three-layer Elman network is shown in Fig. 5. The neurons

are grouped in sequentially connected layers with the layers

numbered as l = 0, l = 1, and l = 2. In addition, the output

of each neuron in the hidden layer (l = 1) is fed back, as

an additional neuron in the input layer, to the input of each

neuron of the hidden layer. The last layer (l = 2) is the output

layer. The latter has only one neuron since the objective of this

paper is to forecast the IR temperature associated to a given

pixel xi, yj .

In case of a multilayer topology, let us first consider an FF

network with n + 1 layers (with the layer index l ranging from

0 to n), each layer having Nl neurons (with the neuron index il
in the layer l ranging from 1 to Nl). Provided an input vector

V(tk) with N0 elements Vi0(tk), the output of the inth neuron

of the output layer l = n in an FF-NN is

O
(n)
in

(tk) = ψ(n)





Nn−1
∑

in−1=1

w
(n)
inin−1

ψ(n−1)

×





Nn−2
∑

in−2=1

w
(n−1)
in−1in−2

ψ(n−2) · · ·

(

N1
∑

i1=1

w
(2)
i2i1

ψ(1)

(

N0
∑

i0=1

w
(1)
i1i0

Vi0(tk)

))

· · ·
))

(4)

where Ψ(l) is the activation function, which is assumed to be a

sigmoid function, of the lth layer.

When the previous FF architecture is modified to represent

the corresponding RC-NN (see Fig. 5), (4) needs to be changed

accordingly. The number of elements in the input layer is

increased due to the presence of a feedback connection from

each output of the last hidden layer. The output of the inth

neuron of the output layer l = n can be expressed as follows

for the RC-NN:

O
(n)
in

(tk) = ψ(n)





Nn−1
∑

in−1=1

w
(n)
inin−1

ψ(n−1)

×





Nn−2
∑

in−2=1

w
(n−1)
in−1in−2

ψ(n−2) · · ·





N1
∑

i1=1

w
(2)
i2i1

ψ(1)





N0+Nn−1
∑

ir=1

w
(1)
i1ir

V ′
ir

(tk)







· · ·









(5)

where V ′
ir

(tk) is an element of the extended input vector

V
′(tk), as in Fig. 5. The previous expression has the same
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structure as (4) but with a different argument of the activation

function Ψ(1) for each neuron in the first hidden layer n = 1
in order to take into account the increased number of elements

in the input layer. As a matter of fact, V ′
ir

(tk) is the irth ele-

ment of the extended input vector with N0 + Nn−1 elements,

composed by the synchronous vector V(tk) of N0 elements

and the delayed output vector O
(n−1)(tk−1) of Nn−1 ele-

ments, which are the outputs of the neurons in the last hidden

layer l = n − 1. Thus, in (5), the argument of the activation

function Ψ(1) of the i1th neuron in the first hidden layer can

be explicitly written as

N0+Nn−1
∑

ir=1

w
(1)
i1ir

V ′
ir

(tk) =

N0
∑

ir=1

w
(1)
i1ir

Vi0(tk)

+

N0+Nn−1
∑

ir=N0+1

w
(1)
i1ir

O
(n−1)
in−1

(tk−1). (6)

It is worth noting that O
(n−1)
in−1

(tk−1) does not uniquely depend

on its synchronous vector V(tk−1) but also on its delayed

vectors O
(n−1)(tk−l) with 1 < l ≤ k − 1 or, in other words,

on the ordered input sequence V(t1), . . . ,V(tk−1). This means

that, for the first time step t1, the delayed feedback vector is not

defined, so that the training of an RC-NN is forced to partially

lose the initial pattern with respect to an FF-NN. However, the

NN architectures are known to be quite robust to incomplete or

erroneous IPs [27].

As an example, the output of the neuron in the last layer of

the RC-NN in Fig. 5 can be calculated at the sequence step tk
using (5) with n = 2 and N0 = 5, N1 = 3 and N2 = 1. The

neuron index i1 ranges from 1 to 3, whereas the neuron index

i0 ranges from 1 to 5 and the neuron index ir ranges from

1 to 8. The neuron index i2 for the layer n = 2 can be omitted

since there is just one neuron in this layer.

B. NN Training Strategy

In order to determine the optimal weight vectors w in (4) and

(5), an NN is usually trained by minimizing the error function E
using the steepest descent gradient backpropagation algorithm

[20]. The weight increments ∆wij are updated during the

training in accordance with

∆wij(ts) = −α
∂E

∂wij
+ β∆wij(ts − 1) (7)

where α and β are the learning rate and the momentum parame-

ter, respectively, E is the error function, and ts is the training

step. The second term in (7) is a regularization term which

helps in improving the NN convergence rate and the stability

by damping oscillations [20].

An appropriate training strategy is needed to modify α and

β during the learning process [28]. The optimal means of mod-

ifying these training parameters has not been determined, and

therefore, a sensible but ad hoc approach is taken, in line with

the approaches used by other authors [28], [29]. Specifically,

the assumption is that the minimum of the error function in the

multidimensional parameter space is at the bottom of a wide

and deep “valley,” and therefore, the learning phase is started

with a large value of α. The learning strategy consists of two

steps. In the first step, a large starting value of the learning rate

(e.g., α = 0.2) allows the exploration of a wide domain of the

error-function space. The value of β is usually fixed at 0.8 and is

not varied during the training process. The learning rate α does

not decrease significantly until a wide and (supposedly) deep

valley in the parameter space is detected. Then, the learning

rate is gradually decreased until the incremental variation in (7)

is negligible. In this way, the search of the global minimum

is speeded up, and the probability of being trapped in a local

minimum is minimized. In other words, the hypothesis is that

the most probable absolute minimum of the error function E
in the phase space is located at the bottom of the widest hole,

since such a hole is usually the deepest one. Several trial and

error tests have shown that this adaptive approach provides a

faster training process and a better network final performance.

C. NN Training and Test Datasets

Both FF- and RC-NNs were trained to forecast the IR bright-

ness temperature value Tb(xi, yj , tk+1) associated with a given

pixel (xi, yj) of the satellite image, starting from the measured

values in a region around that pixel in the previous satellite

images at time tk and before.

Separate sequences of images for training and cross-

validation were selected from the available set of Meteosat

imagery; the remaining data were set aside for testing. A typical

strategy in optimizing the NN, known as “early stopping”

technique, has been used [21]. The reason for such a label is the

following: when training an NN, the error reaches a minimum

value on independent (cross-validation) data before it reaches

a minimum value on the (dependent) training data; hence,

training is stopped “early” relative to where would have been

stopped, if only the error on training data had been monitored.

A time series of 15 satellite images (frames 4–18) on

January 24, 2003, was used to extract Ne = 2118 540 (from

2 445 090 available pixels) input and output Tb examples,

utilized for the training (choosing 90% of pixels) and cross-

validation (choosing the remaining 10% of pixels) stages.

In order to retain the IR image texture, the input vector

V(tk) of N0 elements of IR Tb’s (see Fig. 5) was chosen

with a variable number of elements. A square area around the

given pixel (xi, yj) of 3 × 3 pixels was first selected. This

means that N0 ranged from Np = 9 pixels, corresponding to a

neighbor contour nc of order 1 (i.e., nc = (
√

Np − 1)/2 = 1),
to Np = 441 elements, corresponding to nc = 10 or a square

area of 21 × 21 pixels. The optimal match of the NN topology

and the input vector V(tk), or rather the numbers Ne, N0, Nl,

and nc, were based on the results of a sensitivity test discussed

in the next section.

The goal of the independent test stage was to predict the

entire IR image (i.e., Tb values for all pixels) at time step tk+1.

The test stage was performed on the following: 1) a sequence

of eight images (frames 3–10) available on January 24, 2003;

2) a sequence of eight images (frames 3–10) available on

January 25, 2003; and 3) a sequence of eight images
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(frames 26–33) available for a completely different case study

on November 25, 2005.

V. IR RADIANCE FIELD NOWCASTING

The performances of different NN architectures were evalu-

ated by means of statistical indexes and compared to the perfor-

mances of conventional methods. The error bias mε (in kelvin),

root-mean-square error (rmse) sε (in kelvin), and correlation

index rε are defined in (8)–(10), shown at the bottom of the

page, where T̂b(xi, yj , tk) and Tb(xi, yj , tk) are the nowcasted

and measured Tb’s in a given pixel xi, yj at a given time tk,

respectively, Nlon and Nlat are the number of pixels along the

directions x and y, and 〈T̂b(tk)〉 and 〈Tb(tk)〉 are the mean

values of the nowcasted and measured Tb’s in the satellite

image at a given time tk.

The RC-NN requires a proper training batch, structuring data

in ordered time sequences to learn the process dynamics. As has

been already said, for the NN training and validation stages, we

have extracted 2 118 540 pairs, leaving 10% of the total pixels

for the NN cross validation. The target data were organized

into 141 236 time sequences of 15 Tb(xi, yj , tk). The training

dataset consisted of 127 112 of these sequences, whereas the

remaining 14 124 sequences have formed the cross-validation

dataset. In this case, the performance indexes have been cal-

culated by replacing the total number of pixels Nlat × Nlon in

(8)–(10) by 0.9 Ne for the training dataset and by 0.1 Ne for the

test dataset. Moreover, data were simply indexed as Tb (i) with

i ranging from 1 to 0.9 Ne and from 1 to 0.1 Ne, depending on

the considered dataset.

A. Sensitivity Tests of IR Radiance Field Nowcast

In order to track storm cloud structures at the scale con-

sidered here, a typical wind velocity of 20–30 km/h can be

assumed. This means that, in 30 min, a cloud structure may be

advected of about 10 km. The larger the number of past frames

taken into account, the greater should be the extent of the region

around the considered xi, yj pixel in building the IP. This means

that the space and time dimensions, which are described by the

input vector sequence V(t1), . . . ,V(tk), are inherently related.

The number of layers n + 1 and neurons Nl in each hidden

layer and the number of elements N0 of the input vector can

impose some constraints on the synaptic weights wij . For a

three-layer NN, the latter is equal to (N0 + N1) · N1 + N1 · N2

for the RC-NN and equal to N0 · N1 + N1 · N2 for the FF-NN

(see Fig. 5). On the other hand, the number of examples Ne

to be provided to the network in the training phase should be

generally at least an order of magnitude larger than the number

of synaptic weights [21]. The reason for this requirement is

to avoid overfitting during training. Of course, the larger the

number of neurons (and weights), the larger the ability of the

NN to map complex functions, but it also implies a longer

computing time required for the training stage and a higher risk

to overfit the available data.

In our application, we have chosen a “pruning” approach

[20]; designing a redundant NN and then reducing all its pa-

rameters in order to find the best performance on the validation

dataset in terms of the statistical indexes given in (8)–(10).

We have randomly reduced the size of Ne down to 200 000,

changed n between two and three, and varied Nl from 100

down to 45. At the same time, the neighbor-contour order nc

has been varied from 10 to 1. The result of this extensive prun-

ing procedure is that three-layer (n = 2) NNs have comparable

performances with four-layer (n = 3) NNs. A number Ne equal

to about 240 000 should be optimal for training purposes. For

the hidden layer of the three-layer FF-NN, an optimal value of

N1 = 60 neurons has been found. For the three-layer RC-NN,

the optimal number N1 of hidden neurons has been found to

be equal to 44, a number which also guarantees to maintain a

comparable complexity (i.e., similar total number of weights)

between the three-layer RC and FF architectures.

In Table I, some results, which are related to the selection of

the suitable number of neighbor-contour order nc, are shown for

an RC-NN, having a fixed Ne = 240 000. The table indicates

that the use of neighbor contours of higher orders (up to nc = 8)

can give better performance indexes. However, since the use of

higher order neighbor contours also means a longer computing

time, we have decided to select, as a compromise, nc = 5 in

training the NNs considered in this paper.

In Table II, the best performance indexes of the two neural

architectures are reported. Both the NN architectures reached

the best cross validation after a few hundred epochs. The

mε(tk) =
1

NlonNlat

Nlon
∑

i=1

Nlat
∑

j=1

[

T̂b(xi, yj , tk) − Tb(xi, yj , tk)
]

(8)

sε(tk) =





1

NlonNlat

Nlon
∑

i=1

Nlat
∑

j=1

[

T̂b(xi, yj , tk) − Tb(xi, yj , tk)
]2





1/2

(9)

rε(tk) =

Nlon
∑

i=1

Nlat
∑

j=1

[

T̂b(xi, yj , tk) −
〈

T̂b(tk)
〉]

[Tb(xi, yj , tk) − 〈Tb(tk)〉]
(

Nlon
∑

i=1

Nlat
∑

j=1

[

T̂b(xi, yj , tk) −
〈

T̂b(tk)
〉]2 Nlon

∑

i=1

Nlat
∑

j=1

[Tb(xi, yj , tk) − 〈Tb(tk)〉]2
)1/2

(10)
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TABLE I
PERFORMANCE INDEXES AS A FUNCTION OF THE ORDER OF

NEIGHBOR CONTOURS NC FOR AN RC-NN, USING JANUARY 24,
2003, TRAINING AND VALIDATION SEQUENCE

TABLE II
COMPARISON OF PERFORMANCE INDEXES FOR THE RC-NN AND FF-NN,

USING JANUARY 24, 2003, TRAINING AND VALIDATION SEQUENCE

RC-NN shows an rmse of about 15% lower than the FF-NN

on the training dataset. This margin reduces to about 12.5% on

the validation dataset.

As explained before, for a trained RC-NN, the output re-

sponse to a given IP will depend on the previous network

activity. We have investigated how many previous images are

required for the RC-NN to perform at an optimal level. It

has been found that, in order to “spin up” the RC-NN, we

need to use few (usually four to six) previous Tb frames (see

Table III). This means that, if we have to apply the RC-NN

operationally, it should first run on a few frames before its

nowcasting performance reaches the best values in terms of per-

formance indexes. For example, if the first Meteosat-7 satellite

image is available at 00:00 GMT, the network response will

be optimal after five successive frames, i.e., beginning from

02:30 GMT.

An independent test between the nowcasting capabilities of

RC and FF-NNs, which are trained on data extracted from the

January 24, 2003, event, was also carried out on a sequence of

satellite images from November 25, 2005. This rainfall event

was characterized by a widespread intense rainfall over central

and south Italy and lasted for about 12 h. The results, which

are reported in Table IV, show the better performance of the

RC-NN configuration with respect to the FF, even considering

an event occurred almost two years later with different seasonal

and meteorological conditions.

B. Comparison With Conventional Methods

The performances of the FF and RC neural nowcast meth-

ods have been compared with the TIP, SSD, and LTE con-

ventional methods (see Section II-B). To this aim, we have

used the test dataset of January 25, 2003, as mentioned in

Section IV-C. The performance indexes, which are defined in

(8)–(10) and related to both neural configurations and con-

ventional methods, are shown in Table V. This table shows

that the SSD method results are slightly better than the TIP

method. The LTE method performs quite poorly with respect

to the other two methods. The correlation indexes of RC-NN

are larger than those obtained through the conventional methods

and the FF-NN configuration. The latter shows the performance

indexes closer to the best conventional method ones. This

analysis suggests that the RC-NN generalization capability may

be probably related to the dynamics description provided to the

network during the training stage.

The previous results refer to the entire frame nowcast. In-

deed, it is well known that, within clouds and precipitating ar-

eas, the IR Tb field is sensitive to the cloud top layers [5]–[14].

This means that colder pixels can be usually associated with

rainfall convective and stratiform activity, with some ambigu-

ities with respect to cirrus clouds when using only one IR

channel [14]. In place of any cloud and rain masking, we can

compare the performance indexes on selected areas (or cyclonic

areas) of the “cold” pixels in the nowcasted satellite image,

introducing a variable IR threshold Tb0 on Tb frames. For a

given value of Tb0, cyclonic contours are isolated such that the

lower is Tb0, the smaller is the selected cyclonic area.

In Figs. 6 and 7, the correlation diagrams corresponding to

the RC-NN and SSD nowcasting techniques are compared on

such selected areas for different values of the threshold Tb0

for a sequence of frames from January 24 and 25, 2003. Both

figures display the mean value and the standard deviation of rε.

Fig. 6 shows that the mean correlation index tends to decrease

as the threshold Tb0 is lowered, both for SSD and RC-NN.

The mean correlation indexes are higher for the RC-NN

than for the SSD for all threshold Tb0 values. The standard

deviation of RC-NN rε remains limited to few percent as long

as the threshold Tb0 is greater than 235 K, whereas it shows a

marked increase as Tb0 reaches or becomes smaller than this

limit. Similar results have been obtained on the sequence of

January 25.

In Figs. 8 and 9, scatterplots compare the measured IR

Tb’s to those obtained from the SSD and RC-NN nowcasting

methods, using data from frame 12 (6:00 UTC) of January 24,

2003. Intermediate Tb values show more scatter than higher

Tb values, which is consistent with the decrease of correlation

with the IR temperature. Despite the superior performance of

the RC-NN, we note that very low predicted IR temperatures

are affected by a small systematic bias. The NN training

algorithm seems to be less able to reproduce extreme values,

presumably because of their poor representation in the training

sample.

VI. RAINFALL FIELD NOWCASTING

The predicted IR Tb field can be used as input to any

rainfall estimation algorithm that is capable of processing the

IR satellite data. Both statistical and NN approaches have been

developed in recent years [10]–[14]. In this paper, in order

to provide rainfall field estimates from the nowcasted IR Tb

field, a further NN algorithm has been used [26], [29]. The

NN approaches to rainfall retrievals from space have proved

to be quite effective techniques, although with some inherent

limitations [7], [12], [18], [19].

The NN retrieval algorithm consists of a cascade of two

FF-NNs (see Section IV), which are trained with the IR and

MW data from SSM/I [26] that are colocated in space and time.
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TABLE III
RC NEURAL CONFIGURATION NOWCASTING PERFORMANCE INDEXES WITH A GROWING NUMBER OF ORDERED IPS

TABLE IV
PERFORMANCE INDEXES, DEFINED IN (8)–(10), USING RC AND FF-NNS WITH INPUT FRAME AT TIME TK (ON THREE DIFFERENT TEST SEQUENCES) TO

NOWCAST THE IR RADIANCE MAP AT TK + 1. K INDICATES THE FRAME NUMBER IN THE 48 FRAMES OF THE METEOSAT DAILY SEQUENCE

TABLE V
PERFORMANCE INDEXES COMPARISON ON TWO DIFFERENT SATELLITE FRAME SEQUENCES

BETWEEN THE NEURAL AND CONVENTIONAL NOWCASTING METHODS

Fig. 6. Nowcasting of the frame k + 1, on a sequence of January 24, 2003,
analyzed by means of cyclonic contours. Comparison between NeuCAST and
SSD methodology mean correlation index and the associated standard deviation
for various IR Tb thresholds.

Both the IR and MW datasets cover the European Mediter-

ranean region of Fig. 2 during the period from 4:12 UTC to

18:58 UTC on January 24, 2003, for 15 polar orbiting satellite

overpasses. Note that, since the spatial resolution of MW data

is worse than that of the IR data, a nominal MW field of view

generally includes more than one IR pixel (see Section II). For

Fig. 7. Same as in Fig. 6 but for January 25, 2003.

this reason, a square 5 × 5 IR pixel grid was matched with an

MW field of view. Rain rates from SSM/I were retrieved by

using a globally validated regression algorithm applied to the

available SSM/I sequences [15].

The rain-rate retrieval procedure is divided into two steps. In

the first “masking” step, an FF-NN algorithm is trained to pro-

duce a rain/no-rain mask within the domain under consideration

(Southern Europe). This is accomplished by using, as inputs,
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Fig. 8. SSD nowcasting of frame 12 of January 24, 2003, sequence. Fore-
casted IR Tb compared to the measured IR Tb.

Fig. 9. Same as in Fig. 8 but for the RC-NN methodology.

the IR Tb image and the digital terrain model information of

the region under consideration and, as targets, the binary mask

obtained from the SSM/I estimated rain-rate map [14]. In the

second “inversion” step, the rain-mask output of the previous

FF-NN becomes an input of a second FF-NN. The latter has

been trained using, as inputs, the IR Tb image texture and the

rain mask and, as outputs, only those pixels recognized as rainy

pixels and characterized by an SSMI-derived rain rate [26],

[29]. After an NN optimization procedure (see Section V-A),

a four-layer topology has been chosen for both the FF-NNs.

The number N1 and N2 of neurons of the two hidden layers has

been set to ten and eight, respectively, for both the FF-NNs.

An example of the NeuCAST prediction chain (see Fig. 1)

is shown in Figs. 10 and 11. Fig. 10 shows the nowcast of IR

Tb field by means of the RC-NN algorithm and its related error

for frame 31 on 15:30 GMT on January 24, 2003, using frame

30 of Fig. 2 as the latest available frame. The error is defined

Fig. 10. Example of the RC-NN prediction of IR radiance field at 15:30 GMT
(frame 31) on January 24, 2003, using the measured IR Tb image at 15:00 GMT
(frame 30) shown in Fig. 2 as the latest available frame. (Top panel) Nowcasted
IR Tb field and (bottom panel) estimation error (in kelvin), with respect to the
measured IR Tb, are displayed.

as the difference between the nowcasted IR Tb values and the

measured ones.

As a second step, Fig. 11 shows the rain-rate field estimated

by the FF-NN technique from the nowcasted IR Tb field in

Fig. 10. On the bottom panel, the rainfall field difference

between the rain-rate estimates derived from the nowcasted IR

Tb field and those derived from the corresponding measured

IR Tb field is also shown. From Figs. 10 and 11, larger

errors are associated with regions where, as expected, spatial

discontinuities are more significant as along the warmer pixel

clusters embedded within the wide cold area over central Italy.

The errors are almost negligible where the clear-air atmospheric

conditions tend to prevail, as physically reasonable. The overall

error is quite low, representing a percentage error less than 15%

with respect to the average range of retrieved rainfall rates from

an instantaneous Tb image.
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Fig. 11. Example of the NeuCAST prediction of rain-rate field (in millimeters
per hour) from the IR nowcasted image of Fig. 10 at 15:30 on January 24,
2003. Rain-rate retrieval from (top panel) the IR nowcasted image and (bottom
panel) the estimation error (in millimeters per hour), with respect to the rain-
rate estimate from the IR measured image, are displayed.

TABLE VI
ERROR BIAS, rmse, nrmse, CORRELATION COEFFICIENT, PODNR, PODR,
AND FAR FOR THE RAIN-RATE FIELD, USING RC-NN FOR A SEQUENCE

OF RAIN RATE NOWCASTS OF THE SUBSEQUENT FRAME,
BASED ON FRAMES 3 TO 10 ON JANUARY 25, 2003

In order to extend the statistical analysis of rain-rate now-

cast error, Table VI shows the performance indexes related to

the rain-rate field estimated from the nowcasted IR Tb field

with respect to the rain field estimated from the actual IR

Tb field for the test sequence of Meteosat satellite images of

January 25, 2003 (frames 3 to 10). Apart from error bias,

rmse, and correlation coefficient, we have also computed

the normalized rmse (nrmse) defined as the ratio between the

rmse and the measured rain-rate-field standard deviation. The

following rain detection indexes have been evaluated as well:

the probability of detection of no rain (PODNR), the probability

of detection of rain (PODR), and the false alarm ratio (FAR)

defined as in [14]. Table VI suggests that the rainfall rmse is

about 10% of the maximum rain rate obtained for this event

(4 mm/h), and the correlation coefficient of 60% is reasonable

for instantaneous estimates. The bias is very low, and the

nrmse is lower than one, which means that the estimate error

is lower than the uncertainty associated to the rain field used

as reference. In the same table, the POR and PODNR values

are both quite high, whereas FAR is quite low as we desire

it to be.

This analysis would suggest that the nowcasted rain-rate

field may be not the critical element within the nowcasting-

chain error budget. We have assumed here that the combined

MW–IR rainfall retrieval algorithm provides the actual rain-

rate field. Indeed, this assumption is not true as the SSM/I-

derived rain-rate estimates usually show a correlation of about

0.6 with measured rain-gauge fields [5], [30]. Even though this

consideration does not affect the NeuCAST methodology, it can

have an impact when validating the entire multisatellite nowcast

procedure with ground-based measurements to evaluate the

overall rain-rate error budget.

VII. CONCLUSION

The objective of this paper has been to apply an NN ap-

proach, which is named NeuCAST, to the very short-term

prediction of the rainfall field from IR and MW radiometric

imagery aboard, respectively, GEO and LEO satellites. The

NeuCAST procedure has been divided in two cascade steps.

First, the IR radiance field measured from the GEO satellites

is projected ahead in time; second, the projected radiance field

is used in estimating the rainfall field by means of an MW–IR

combined rain retrieval algorithm.

Concerning the first step of NeuCAST prediction, the NN

techniques, based on RC and FF architectures, have been

proposed and extensively compared. Several three-layer RC

and FF neural configurations have been tested, varying the

order of neighbor pixel contours, the number of hidden neu-

rons, and the training parameters. The RC-NN configuration

is found to be the best performing architecture for the same

degree of complexity. The comparison of NN and conven-

tional techniques for the satellite IR brightness temperature

image nowcast has shown that the NN approach performs

significantly better than any of the three conventional methods

considered here. The results indicate that an RC-NN, which is

properly designed and trained, can exhibit significant advan-

tages in terms of accuracy with respect to the conventional

nowcasting methods. Concerning the second step of NeuCAST

retrieval, the predicted IR temperature field has been used as

an input for a combined MW–IR rain estimation algorithm.

The combined multisatellite algorithm has been based on a
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further cascade of FF-NNs, which are trained by space-time

colocated IR and MW data, the latter derived from spaceborne

MW radiometers (e.g., SSM/I in this paper). The overall error,

which is found after the application of the entire NeuCAST

prediction chain to some case studies, has been shown to be

relatively low and quite encouraging. It should be stressed that

the combined MW–IR rainfall retrievals are affected by some

inherent errors which have been disregarded here. Even though

these errors do not affect the NeuCAST methodology, they

may be a significant part of the overall budget of a rainfall

nowcasting.

A further improvement in the nowcasting performance of

an NN algorithm is expected if a wider set of input/output

patterns, which are representative of different meteorological

and geographical situations, is provided to the network during

the training phase. Another possible way to optimize the fore-

casting capability of an NN-based system is to use multisensor

information at a higher sampling rate, using the MSG data from

different multispectral channels with a sampling interval of

15 min. Ground-based radar rain products may also be used as

a more accurate source of the rain-rate calibration fields within

the NeuCAST retrieval step. Future work will also be focused

on the systematic evaluation of the error budget of the MW–IR

combined rain estimate algorithms, particularly over land, the

NN optimal design for operational use, and the exploitation of

the NN approach to predict rain fields more than half an hour in

advance.
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