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Summary

Rainfall is a phenomenon difficult to predict, due to its strong irregular-

ity in space and time. Knowledge of fallen precipitation is fundamental for

water resource planning and risk monitoring. Applications of rainfall predic-

tion span from agriculture to the insurance field; public agencies may benefit

from precise quantification of rainfall when decisions about safety have to be

taken. Short temporal resolution allows knowledge of the features and dy-

namics of single events, and creates challenges due to the abundance of zero

values. Moreover, right-skeweness of the distribution of positive amounts is

a peculiar feature of the phenomenon; the Gaussian assumption is thus not

adequate when modelling rainfall accumulation. Chapter 1 provides an in-

troduction to the problem of rainfall spatial prediction and an overview of

the existing literature. Rain gauge interpolation methods are presented in

Section 1.1. Additional information is often available, for example radar or

satellite maps; its exploitation is often crucial. Approaches for radar cal-

ibration aiming at correcting indirect measurements on the basis of direct

observations are reviewed in Section 1.2. When different data sources are

exploited, the spatial supports may not coincide, or they can even have dif-

ferent nature (e.g. point vs grid); the so called “change of support problem”

is introduced is Section 1.3.

Chapter 2 presents the motivating problem of the thesis, i.e. the spatial re-

construction of rainfall fields in the Emilia-Romagna Region, in Italy. Section

2.1 illustrates details on data: about 300 rain gauges are available in the area

under study, where radar information is also retrieved in the form of grids

with 1 km × 1 km resolution. The ARPA-SIMC Emilia-Romagna service col-

lects and preprocesses the data, which is thus available in the form of hourly

ix



x INTRODUCTION

accumulated amounts. Some preliminary exploratory analysis on the data

are provided. Special attention is devoted to the detection of rainfall occur-

rence, explaining the inadequateness of a definition of a deterministic thresh-

old; stochastic modelling of rainfall probability emerges as a better choice,

with the two-part semicontinuous approach becoming a leading theme of our

work. Section 2.2 presents our original contribution as regards modelling,

consisting in a three-stage Bayesian hierarchical model aiming at calibrat-

ing radar by exploiting rain gauges as reference measure. The relationship

between the two instruments is modelled in locations were they are both

available. Both when addressing rain probability and rain amounts, a linear

relationship in the log scale is assumed, with spatial correlated Gaussian ef-

fects capturing the residual information; a probit link is used for addressing

rainfall probability. The two steps are joined via a two-part semicontinuous

model, which directly specifies the probability of occurrence, and ensures

flexibility in dealing with rainfall accumulation, allowing the exploitation of

an arbitrary continuous distribution defined on the positive real semiaxis,

like the Gamma or the Lognormal. Section 2.2.2 deepens the investigation of

the change of support problem, sketching how rain gauge and radar data are

matched in our proposal. Three model specifications are presented: Model

“base” simply associates rain gauge locations to the radar pixel where they

fall; Model “mean” adds the mean over the 8 neighbouring pixels as a further

covariate; Model “SW” proposes a stochastic weighting of all radar pixels,

driven by a latent Gaussian process defined over the whole grid, aiming at

efficiently exploiting the entire radar map and correcting for the potential

misalignment between the two instruments. Estimation is performed via

Markov chain Monte Carlo procedures; in particular, Gibbs sampling with

Metropolis-Hastings steps is implemented in C, linked to R software, in order

to guarantee computational efficiency (also through BLAS and LAPACK al-

gebraic libraries) while preserving simplicity in arranging data and displaying

results. Details about estimation and prediction are illustrated in Sections

2.3 and 2.4.

The Bayesian approach provides whole posterior predictive distributions.

They constitute probabilistic forecasts, which are the most complete and

desirable kind of predictions, since they carry full information about the
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uncertainty originated by the stochastic nature of the model and parame-

ter estimation. For specific applications, single numbers representing the

forecaster’s best guess are required: in this case, point predictions can be

obtained as syntheses of the probabilistic forecasts via the application of

suitable functionals like the mean or a quantile; moreover, they can be ac-

companied by predictive intervals for quantifying uncertainty at a desired

level. Chapter 3 defines probabilistic forecasts as opposed to point forecasts,

introduces confidence intervals, and extensively reviews literature about the

evaluation of predictive performance. In particular, the concept of prob-

abilistic calibration is explained; the Probability Integral Transform (PIT)

histogram is the main graphical tool for its assessment, and proper scoring

rules are the correct numerical instruments allowing fair comparisons be-

tween competing forecasts. Consistent scoring functions are introduced for

the evaluation of point forecasts; finally, the concepts of sharpness and cover-

age are briefly summarized for the purpose of assessing confidence intervals.

The mixed discrete-continuous nature of precipitation creates challenges in

the evaluation of predictions, since some standard tools are incorrect when

applied to two-part semicontinuous models. For example, even in case of

ideal forecasts the PIT histogram is not uniform and the coverage of the pre-

dictive intervals exceeds the nominal level. Chapter 4 discusses this issue by

investigating the application of the tools presented in Chapter 3 to two-part

semicontinuous models for probabilistic quantitative precipitation forecasts,

and proposes modifications of the standard techniques when necessary. In

particular, a non-randomized PIT histogram for dealing with two-part semi-

continuous models is suggested; this also provides a straightforward correct

computation of interval coverage. Section 4.2 is devoted to the communi-

cation of predictions, with a specific focus on precipitation forecasts; some

best practices are reviewed regarding the communication to a non-specialized

public, based on joint studies of psychologists and statisticians. Chapter 5

shows the results of the different model specifications proposed in Chapter 2

when applied to Emilia-Romagna hourly rainfall data of September-October

2010. A simple model in which spatial effects are assumed independent is

introduced as a benchmark. Section 5.1 analyses the estimates for some

basic features of the model, like the coefficient for radar measurements in
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regressions, the weights for radar pixels in Model “SW”, and the spatial pro-

cesses. Sections 5.2, 5.3 and 5.4 report predictive results on the basis of the

evaluation tools suggested in Chapters 3 and 4; probabilistic, point and inter-

val forecasts are considered. Reliability plots show the success in predicting

rain probability, while sharpness histograms investigate boldness in detect-

ing rainfall occurrence. PIT histograms address the probabilistic calibration

of the model. Performances are also assessed and compared via numerical

tools, with synthetic tables providing results obtained on 8 rainfall events;

both event-specific scores and global results summarising the behaviour on

the whole analysed period are presented. In particular, the Brier Score is

employed for the assessment of rain probability, and the Continuous Rank

Probability Score (CRPS) for probabilistic forecasts. The Root Mean Square

Error (RMSE) and the Mean Absolute Error (MAE) provide evaluation of

point forecasts for the predictive mean and median, respectively. The Brier

Score Plot and the Quantile Decomposition Plot help in detecting differ-

ences between model specifications according to the threshold or quantile

level considered. Uncertainty information is provided via 90% and 50% con-

fidence intervals.

Conclusive remarks are summarized in Chapter 6, together with some possi-

ble future developments.



Chapter 1

Rainfall spatial prediction

Rainfall measurements are essential for public authorities, being the ba-

sis for hydrological models and risk monitoring: knowledge of precipitation

fields can be useful for water resource planning and management, and might

enable public agencies to alert citizens when extreme events occur. Rainfall

data are exploited both as an input for hydrological models and for valida-

tion of weather forecasts. Also, the detection of exceedances over a certain

threshold is critical in the insurance field, when assigning responsibilities for

damages occurred during a storm.

According to specific purposes, different precipitation accumulation times

can be of interest: yearly or monthly rainfall amounts are used for climate

research (see for example Adler et al. 2003), daily and hourly measurements

are the starting point for flood monitoring (Cooley et al. 2007) or agricul-

tural planning (Stern and Coe 1984), while hourly and instantaneous data

allow to study single rain events.

Direct measurements are provided by rain gauges, which are instruments col-

lecting rainfall in sparsely distributed locations at ground. Rain amounts are

read either manually or by automatic weather stations. Several types of rain

gauges exist, with tipping bucket ones being the most common: they consist

in a funnel that collects and channels precipitation into a small seesaw-like

container. After a pre-set amount of precipitation has fallen, the lever tips,

dumping the collected water and sending an electrical signal. “Instanta-

neous” rain gauges allow the detection of rainfall rate; otherwise, rainfall

1



2 1. Rainfall spatial prediction

quantities are accumulated over a certain time interval. Limitations in rain

gauges functionality are well known in case of violent convective events, due

to the possibility of rain drops to bounce off the gauge, or during floods,

since excessive amounts may not be collected; moreover, strong wind can

affect the angle of incidence toward the ground and cause dispersion of part

of rainfall, and non-heated rain gauges are not able to work properly in case

of snowy precipitation. Nevertheless, apart from rare circumstances, rain

gauges provide reliable measurements, which can be treated as ground truth.

Automatic and manual monitoring systems check the operation of the net-

work and invalidate malfunctioning or blocked rain gauges.

1.1 Rain gauge interpolation

The sparse nature of the rain gauge network only allows to collect infor-

mation in locations where a rain gauge resides. The need for a more complete

knowledge of rainfall over a region has urged meteorologists and statisticians

to look for interpolating methods able to fill the missing spatial information.

Rainfall spatial prediction has many challenges; strong spatial and temporal

heterogeneity in fact characterizes rainfall events. Different possible physical

processes can generate the weather front, giving birth to stratiform, convec-

tive or mixed events. Abrupt changes are common, leading to strong irregu-

larities, most of all when dealing with short accumulation times like one hour.

With such temporal granularity, the probability of finding dry locations is

non-negligible, thus making the presence of a relevant amount of zero values a

main feature of the phenomenon. Finally, a symmetric modelling of positive

rainfall amounts is not suitable, their distribution being highly right-skewed.

Deterministic or stochastic approaches can be adopted for interpolating rain

gauge measurements, with kriging being a widespread and powerful choice

(Matheron 1963, Cressie 1990). Rainfall distribution is known to be asym-

metric and skewed, which is in contrast with the assumption of normality;

Erdin et al. (2012) propose a Box-Cox transformation, which does not com-

pletely solve the problem. Moreover, basic kriging approaches do not directly

model the probability of rain, thus often resulting inadequate when dealing
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with relevant amounts of zero measurements; variogram estimation is heav-

ily affected by this feature, and spurious rainfall predictions are produced.

Several methods have been proposed for handling the large number of zero

measurements. Goovaerts (1997) constructs threshold-exceedance probabil-

ity maps using indicator kriging. Yoo and Ha (2007) propose bivariate mixed

distributions, Kim and Ahn (2009) exploit neural network classifiers for rain-

fall occurrence, Li et al. (2010) adopt nonlinear Markov Chain random fields

incorporating interclass dependences through transiograms. In the frame-

work of ensemble forecast calibration, Sloughter et al. (2007) model the

rainfall distribution at a specific site as a two-part semicontinuous model

with Gamma distribution for positive amounts; successively, Berrocal et al.

(2008) improve the model by including two spatial Gaussian processes driving

precipitation occurrence and accumulation, respectively.

1.2 Radar calibration

Rainfall can also be detected and measured by other instruments like

satellites and radar, which provide continuous spatial information in the form

of gridded maps, often at a high resolution; such technologies produce indi-

rect estimates of rainfall, deriving from the measurement and transformation

of variables that are correlated with the rainfall rate. For example, radar lo-

calizes rainfall by exploiting the reflection of its beams when they encounter

precipitation particles, and quantifies precipitation intensity by measuring

reflectivity. Knowledge of the orography of the terrain is fundamental for

determining the minimum vertical angle for radar beams; moreover, correc-

tions for beam blocking caused by mountains are often performed, together

with other deterministic procedures aiming at reducing biases caused by the

morphology of the region or by the meteorological conditions, like clutter,

anomalous propagation and the presence of bright bands. After this prepro-

cessing of radar data, the reflectivity Z is converted into the rainfall rate R.

The well known Z-R conversion formula (Marshall and Palmer 1948) estab-

lishes an exponential deterministic relationship between the two quantities:

Z = aRb, a = 200, b = 1.6. (1.1)
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Parameters a and b are usually kept fixed, but studies reveal the values in

(1.1) change slightly according to the meteorological condition. A large num-

ber of experimental corrections to this relationship have been proposed, for

example by Marshall and Palmer (1948), Gunn and Marshall (1958) and Bat-

tan (1973), among many others; in recent years, the National Oceanic and

Atmospheric Administration (NOAA) in the United States changed these

parameter values to a = 300 and b = 1.4 after the installation of new radars.

Thanks to the Z-R conversion, from each radar scan indirect instantaneous

rainfall rates can be obtained. Accumulation in time finally provides rainfall

amounts (mm); for this purpose, the Emilia-Romagna environmental agency

ARPA-SIMC uses pattern recognition tools for comparing successive radar

maps in order to detect cloud movement and assess rainfall transportation,

obtaining hourly accumulated rainfall. Hourly radar data can be made avail-

able on fine-pixel grids, thus overcoming the problem of sparseness of the

rain gauge network. However, such data consist of indirect measurements

and are affected by stochastic biases which are not removed by deterministic

preprocessing; for this reason, they are not reliable for the assessment of rain

amounts, and require calibration. Similarly, satellites provide rainfall maps

in the form of images; they are less direct then radar measurements but have

the advantage of complete coverage over oceans, mountainous regions, and

sparsely populated areas where other sources of rainfall data are not avail-

able.

Merging rainfall data provided by different instruments is a topic that re-

ceived considerable attention in the hydrological and statistical literature. In

particular, we focus on the problem of radar calibration on the basis of rain

gauge observations: the aim is to correct radar maps for providing reliable

rainfall predictions in locations where rain gauges are not available. Mean or

local adjustment factors can help in removing the radar bias (see for exam-

ple Koistinen and Puhakka 1981; Amorati et al. 2012). Several model-based

methodologies were proposed, adapting kriging and co-kriging techniques to

radar-rainfall calibration. Among others, Seo and Smith (1991a, b) inte-

grate kriging in a Bayesian framework incorporating a priori information on

past rainfall observations, for improving classical lognormal co-kriging and

nonparametric methods. A Bayesian approach is also adopted in Pilz and
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Spöck (2008), using trans-Gaussian kriging. Kriging with External Drift

(KED, Wackernagel 2003) allows to incorporate radar measurements in the

large scale component of a spatial model. Goudenhoofdt and Delobbe (2009)

show that this procedure outperforms common deterministic procedures for

gauge-radar combination, like mean or local bias correction, range depen-

dent and Brandes spatial adjustment, and Sinclair and Pegram’s conditional

merging (2005); a comparison with two bias correction techniques (Amorati

et al. 2013) confirms KED’s superiority when working on Emilia-Romagna

hourly rainfall data. Parametric estimation of the variogram, with a prefer-

ence for the exponential form in many rainfall applications (see for example

Leung and Law 2002, Pathac and Vieux 2007), is a widespread approach.

A non-parametric technique based on Bochner’s theorem and Fast Fourier

Transform was proposed by Yao and Journel (1998) and further developed

for automatically defining a valid correlogram from radar maps without the

need for the specification of an analytical expression (Velasco-Forero et al.

2009, Schiemann et al. 2011). Applications of KED to rainfall field recon-

struction in Italy are illustrated in Orasi et al. (2009), where the method

is applied to a cloud seeding experiment in the Puglia region, and in Scar-

dovi et al. (2012 b), where a rainfall event in the Emilia-Romagna region

is analysed. In both cases, KED provides smaller prediction errors with re-

spect to kriging performed only on rain gauge data. Despite the ability of

external information in driving the prediction, probabilistic performances of

this method are affected by the inadequacy of the normality assumption and

by the presence of many zero values, as anticipated in Section 1.1. Transfor-

mation approaches have been proposed for mitigating the former problem,

while two-steps procedures can address the mixed discrete-continuous na-

ture of rainfall, predicting the presence or absence of rainfall in a first stage,

and rain accmulation in a second one, conditioning on rain occurrence. In

both cases, care is required when assessing uncertainty in a multi-step proce-

dure. This is particularly awkward when indicator kriging, providing spatial

predictions of rain probability, is joined with a further kriging step for the

prediction of positive rainfall amounts. Plain single stage KED, without

directly addressing the abundance of zero measurements, outperforms multi

stage approaches which need an arbitrary threshold for the definition of rain-
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fall presence. Fully Bayesian approaches should be adopted for keeping track

of all modelling and estimating steps and correctly combining the resulting

uncertainties.

Methods alternative to kriging for exploiting radar information when deal-

ing with rainfall modelling and prediction have been proposed in the lit-

erature. Brown et al. (2001) introduce a pioneering calibration approach

building a multivariate state-space time series model for modelling reflectiv-

ity radar against gauge measurements. In a similar framework, Costa and

Alpuim (2011) provide a thorough study based on state-space models and

the Kalman filter; Sahu et al. (2005) adopt Kalman filtering in a Bayesian

framework. Fuentes et al. (2008) follow a different approach, developing a

spatio-temporal model where a latent process, corresponding to the true rain

amount, drives the probability of precipitation occurrence and the rainfall

accumulation; both radar and rain gauge data are modelled according to the

common latent process.

The problem of radar calibration falls within the wider framework of multi-

source combination. In particular, the availability of numerous data sources

arises the necessity for a comprehensive approach able to account for dif-

ferences in the spatial supports on which measurements are defined. In the

statistical literature, this issue goes under the name of “change of support

problem” (COSP); the next section provides an introduction to the problem

and an overview of the available techniques.

1.3 Merging data sources

Direct observations usually consist of point data, sparsely distributed

in space according to the discrete structure of the monitoring network. In

many fields, there is a growing interest in supplementing such measurements

with additional information, deriving for example from numerical models,

radars and satellites, to increase the availability of data across space and

time. Such information is organized on grids; nevertheless, the richness of

continuous maps, which can span large spatial domains with no missing val-

ues, is compensated by their need for calibration and for an assessment of
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uncertainty. In fact, deterministic models mathematically approximate the

underlying physical processes, while instruments working on the basis of

scans or images provide indirect measurements of the phenomenon; discreti-

sation of space and time adds further approximations. Such data have been

derived with a deterministic approach; therefore, they do not convey any in-

formation about their inherent uncertainty. Calibration and the assessment

of uncertainty are possible by combining different data sources; nevertheless,

errors can be caused by misalignment and by inconsistences in the nature of

the supports. The increasing availability of data sources induced the search

for data assimilation tools. Kalnay (2003) reviews methods for combining

observational data on the current state of the atmosphere with a short-range

forecast. Algorithmic and ad hoc methods are usually employed in atmo-

spheric data assimilation. The so called “change of support” problem was

originated from the need for reconciling differences in spatial resolution un-

der a statistical approach (see, e.g., Cressie 1993; Gotway and Young 2002;

Banerjee, Carlin, and Gelfand 2004). Downscaling or upscaling approaches

can be followed: the former combines the sources of information for obtaining

improved predictions at point level, while the latter models station data in

order to provide predictions at point-level and on grid.

Block kriging (Cressie 1993; Chilès and Delfiner 1999; Banerjee, Carlin and

Gelfand 2004) predicts the average value of a process over a block exploiting

point observations. Carroll et al. (1995) link block and ordinary kriging to

develop a geostatistical method combining ground-based observations with

areal block measurements; Gotway and Young (2007) extend block kriging

and develop a flexible geostatistical method able to handle several change of

support problems at the same time, allowing both upscaling and downscal-

ing.

Fully model-based solutions to the change of support problem have been

proposed in the literature. Wikle and Berliner (2005) develop a Bayesian

hierarchical model that allows combination of data observed at different spa-

tial scales. The main assumption underlying their model is the existence

of a true unobserved process related with observations via a measurement

error model. Such underlying process is equipped with a spatial correlation

structure and specified at a spatial scale that is different from the one char-



8 1. Rainfall spatial prediction

acterizing observations. In a similar fashion, Fuentes and Raftery (2005)

present a Bayesian model combining point-referenced air pollution observa-

tions with block average predictions obtained by an air-quality model. The

model consists in an application of the Bayesian melding method developed

by Poole and Raftery (2000), and continues the work of Cowles et al. (2002)

and Cowles and Zimmerman (2003), who use systematic sampling and nu-

merical integration techniques to combine point and areal data. As in Wikle

and Berliner (2005), Fuentes and Raftery (2005) assume the existence of an

underlying unobserved spatial process driving both observational data and

numerical model output. However, instead of modelling the true process

at areal unit scale, Fuentes and Raftery (2005) specify it at point level. A

measurement error model links the unobserved process to observations; the

relation with computer model data is linear, accounting for potential bias in

the model output. Since the computer model output is specified in terms

of block averages, the linear model is expressed in terms of stochastic inte-

grals. The Bayesian melding model of Fuentes and Raftery (2005) has gained

considerable attention and has already been used in several applications (see

for example Smith and Cowles 2007; Foley and Fuentes 2008). However, it

is computationally intensive, due to the large number of stochastic integrals

needed to account for the abundance of grid cells. As in Fuentes and Raftery

(2005), McMillan et al. (2009) propose a spatio-temporal fusion model pos-

tulating the existence of a true spatial process related to both observational

data and numerical model output. However, they specify the true process at

block rather than at point level; in this way, upscaling is addressed instead of

downscaling, and the computational burden of Bayesian melding is avoided,

thus allowing spatio-temporal applications.

Relevant contributions focusing on spatial aspects have been provided in the

literature. Guillas et al. (2008) and Liu, Le, and Zidek (2008) use a two-

stage regression with spatial interpolation of the coefficients of the linear

regression. Berrocal et al. (2010a, 2010b) propose univariate and bivariate

hierarchical downscaler models. They take the numerical model output as

data and relate observations and numerical model output via a linear regres-

sion with spatially-varying coefficients (Gelfand et al. 2003). These are, in

turn, modelled as correlated spatial Gaussian processes exploiting coregional-
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ization (Schmidt and Gelfand 2003; Gelfand et al. 2004). These models offer

the advantage of local calibration of the numerical model output without

incurring problems due to the dimensionality of the computer model output,

being only fitted at the numerical model grid cells where the monitoring sta-

tions reside; moreover, they allow straightforward prediction at point level,

thus offering a fully model-based solution to the problem of downscaling. Sta-

tistical downscaling has been successfully applied to air quality simulations

(Berrocal et al., 2010a, b; Zhou et al., 2011), climate model output (Berrocal

et al., 2012; Zhou et al., 2012), and remotely-sensed satellite images (Liu

et al., 2009; Kloog et al., 2011). Reich et al. (2014) develop a multiscale

statistical downscaler for dealing with different spatial resolutions, utilizing

the spectral representation of spatial processes. Fassó and Finazzi (2013)

develop a space-time multivariate data fusion model addressing ground level

point observations and remote sensing pixel data over Europe, handling miss-

ing information without the need for data imputation. Covariates and latent

variables acting as space-time varying coefficients for the covariates allow

the adjustment of the model to local conditions; D-STEM (Distributed Space

Time Expectation Maximization) software provides a parallel and distributed

implementation of the EM algorithm for model estimation.

Neighbour-based extensions of the downscalers were firstly provided by Berro-

cal et al. (2011), with the inclusion of information belonging to grid cells near

the one where the location lies, thus directly addressing the potential problem

of misalignment between stations and putatively associated grid cells. An

adaptive smoothing of the computer model output is provided, allowing for

stronger association with the observed station data and resulting in improved

spatial interpolation. For this purpose, a Gaussian Markov Random Field

(GMRF) is employed to smooth the computer model. An alternative consists

in introducing spatially varying weights driven by a latent Gaussian process

to accomplish smoothing.

This thesis proposes a Bayesian Hierarchical three-stage model for pre-

dicting the probability and amount of rain exploiting radar information, with

the aim of calibrating radar and reconstructing the whole rainfall field. Sev-

eral variants are tested on hourly rainfall data of the Emilia-Romagna region

provided by the agency for the environment ARPA-SIMC. A detailed de-
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scription of the data and methods is performed in Chapter 2. In the first

formulation of the model, each rain gauge site is associated with the radar

grid cell where it is located. For addressing COSP, most approaches intro-

duced in the present Section can not be straightforwardly applied since they

rely on the Gaussian assumption; we develop a model able to address this

problem with non-Gaussian data. Several model specifications are developed

and tested, with increasing accuracy in handling the potential misalignment

between rain gauges and radar.



Chapter 2

Motivating problem:

rainfall field reconstruction

in the Emilia-Romagna Region

The motivating example of the work is the reconstruction of hourly rain-

fall fields in the Emilia-Romagna Region in Italy. Data have been provided by

the environmental agency ARPA Emilia-Romagna, SIMC division (Servizio

Idro-Meteo-Clima).

2.1 The data

ARPA environmental agency has hourly rain gauge data available on a

very dense monitoring network. Data quality control is performed by ARPA,

eliminating malfunctioning or blocked rain gauges from the network until

maintenance. Moreover, ARPA produces radar data exploiting two polari-

metric doppler C-band radars. We focus on the radar circle with 125 km

radius centred in San Pietro Capofiume, near Bologna; this area is equipped

with 317 rain gauges. A complex pre-processing is performed by ARPA

aiming at removing errors characterizing radar based measurements. More

precisely, hourly accumulated amounts are obtained through the following

procedure: reflectivity radar measurements, recorded every 15 min on a 1

× 1 km grid cell resolution (including about 49,000 pixels) are corrected for

11
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systematic and occasional biases due to the morphology of the region and

atmospheric conditions (see for example Fornasiero et al. 2004). Then, re-

flectivity data are transformed into rain rates by means of the Z-R conversion

formula (1.1) proposed by Marshall and Palmer. Finally, in order to accumu-

late data over an hour, pattern recognition tools are exploited for comparing

successive maps and finding pointwise vectors describing the movement of

rain masses; this information is used to integrate precipitation in time (ad-

vection, Hannesen and Gysi 2002). The procedure sketched above makes

radar and gauge data comparable and allows to model a calibration equa-

tion under a consistent physical framework. The accurate preprocessing of

ARPA on radar measurements provides high quality data which, however,

are still far from being reliable for assessing rainfall accumulation: they are

affected by temporally and spatially varying bias. To this regard, a thorough

exploratory analysis has been performed at the beginning of the work; early

results are reported in Scardovi et al. (2012). The main achievements of

the analysis are briefly summarized. The discordance between the two in-

struments in detecting rainfall presence was a central issue. While the rain

gauges threshold for discriminating between rainfall and moisture or dew

is commonly fixed at the rain gauge precision, i.e. 0.2 mm (meaning that

only measurements strictly higher then 0.2 mm are considered as rain), it is

not straightforward to determine radar precision, nor to establish a thresh-

old which helps in assessing where rainfall occurs when only radar data are

examined. The use of the same thresholds for the two instruments shows

disagreement in 6% of the cases, most of which attributable to radar mea-

suring rain in dry locations. A set of alternative thresholds was thus tried

for radar, spanning from 0.2 to 1.2 mm, and comparisons were made on the

basis of the agreement between the two instruments, via the skill scores that

are common in meteorology. We denoted with Y (Yes) the detection of rain

and with N (No) its opposite, i.e. measurement less or equal to the thresh-

old; then we built a 2× 2 contingency table reporting the detection of rainy

or non rainy measurement from the two instruments, and indicated the four

possible entries of the contingency table on n observations as couples of Y/N

with rain gauge result as first entry and radar as second one. The following

scores were computed:
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- H = hit rate = (YY+NN)/n = relative frequency of coherent detec-

tions; it lies between 0 and 1, with better results when it is near 1

- TS = threat score = YY/(YY+NY+YN) = probability of coherence

in detecting rain calculated excluding the NN case, which characterizes

the majority of the cases; it lies between 0 and 1, with better results

when it is near 1

- POD = probability of detection = YY/(YY+YN) = probability of

concordance when rain gauge detects rain; it lies between 0 and 1, with

better results when it is near 1

- FAR = false alarm rate = NY/(YY+NY) = probability of observing a

dry hour when radar detects rain; it lies between 0 and 1, with better

results when it is near 0

- BIAS = (YY+NY)/(YY+YN) = number of cases in which radar de-

tects rain divided by the number of cases in which the rain gauge detects

rain; it is not limited and denotes a better skill when near 1.

Results revealed that the disagreement between the two instruments is min-

imized when the threshold for radar is set near 0.9 mm. This result en-

couraged further investigations of the disagreement. The inspection of the

geographical distribution of the indices detected the presence of an area in

the Po river delta where FAR was particularly high. In that region, several

secondary trips were found: they consist in reflectivity spots which are in-

correctly localized. More precisely, the frequency with which radar beams

are sent is equal to the time the beam requires for reaching the boundary

of the selected circle (125 km of radius) and returning to the center. When

rain masses are found out of the boundary, the beam is reflected but returns

only after another beam has been sent; so, its detection is misunderstood,

being considered as the result of the lastly sent beam; this causes the local-

ization within the circle of storms which are actually out of it. Secondary

trips can be detected by comparing the short radius map (125 km radius)
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with the medium radius one (250 km radius): if rain masses are seen in the

small circle and not in the medium one in the same position, but can be

detected in the anulus between 125 and 250 km from the center, then they

are secondary trips and must be removed. On the basis of this reasoning, we

implemented an automatic algorithm of correction. It checks each rainy pixel

PS in the short radius grid, looking for the pixel PM in the medium radius

grid corresponding to the same location: if neither PM nor the 8 neighbours

detect rain, then PS is suspicious. Since short radius data are the most used,

ARPA-SIMC meteorological service performs a number of further corrections

with respect to the larger one; thus, in principle, PS might be the result of

a beam blocking correction and must not be corrected. In order to check

whether PS has to be removed, the position of the rain mass in the anulus

between 125 and 250 km that should have generated the secondary trip is

computed; if one of the 25 pixels around that location detects rain, PS is

considered as containing a secondary trip and removed. The amplitude of

the neighbourhoods which are analysed for the comparisons between small

and medium circle (9 pixels in the first phase, 25 in the second one) has

been chosen after several trials; a simple pixel-to-pixel comparison would not

be adequate, also due to a slight temporal misalignment between short and

medius radius radar scans. The simple procedure just summarized notice-

ably corrects short radius maps (see Figure 2.1), and convinced ARPA to

implement an operative algorithm. The analysis of the 2×2 tables regarding

the agreement/disagreement of the corrected radar and rain gauges about

rainfall detection confirmed the reduction of the problem of anomalous FAR

values in the Po river delta, which were caused by frequent storms in Istria.

As a consequence the optimal threshold value for rainfall definition accord-

ing to radar can be decreased to 0.8 mm. After corrections, however, the

preliminary analysis revealed a complex discordance between the two instru-

ments, consisting in overestimation of rainfall presence detected by radar,

which suggested to abandon the usual deterministic approach for establish-

ing rain occurrence. Relying on rain gauge detections and modeling rainfall

probability appeared a more promising solution than establishing empirical

exogenous thresholds.
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Figure 2.1: Correction of secondary trips at 6 p.m., September 4th, 2010:

short radius circle before the correction in the left hand panel; medium radius

radar circle before the correction in the central panel, with the rain mass

causing the secondary trip out of the short circle; short radius circle after the

correction in the left hand panel.

The period under study is September-October 2010. In particular, the

main 8 rainfall events of such period were chosen, denoted in Table 2.1 as

E1-E8. The table reports the duration in hours of each rain event, the per-

centage of zero values collected by rain gauges, and some quantiles of the

distribution of rain accumulation measured by rain gauges when rain oc-

curred. In the last column, the value of the linear correlation between rain

gauges and radar measurements is reported. Rain events are characterized

by different durations (ranging from 5 to 16 hours) and variable rainfall in-

tensity, both in terms of average and maximum amounts. Our rain gauges

have 0.2 mm precision. Several papers take explicit account of the discrete-

ness of rain gauge measurements in model building. As an example, Sahu et

al. (2005) consider this feature in a case study on a dry region characterized

by low rainfall amounts and short accumulation times (10 min). In contrast,

in each of the 8 rain events analysed here, a considerable amount of rainfall

is observed and the accumulation is made with hourly resolution, making

the effect of discretisation less relevant. Observed zero values are not due to

censoring but correspond to a reliable no-rain detection; their amount ranges

from 24% to 67% of the observations, suggesting that modelling rain accu-

mulation needs to be coupled with appropriate modelling of rain occurrence.

The correlation between radar and rain gauge data, reported in Table 2.1 as
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Event H.rs Zero % Q1 Med Q3 Max Corr

E1 6 24 0.4 1.0 2.4 19.4 0.81

E2 9 49 0.6 2.0 4.4 31.2 0.80

E3 10 30 0.4 0.8 2.2 34.4 0.55

E4 6 49 0.6 1.8 3.8 27.0 0.59

E5 7 53 0.2 0.8 3.4 37.2 0.76

E6 5 61 0.2 0.6 1.8 12.4 0.79

E7 11 67 0.2 0.8 2.0 15.0 0.46

E8 16 43 0.4 0.8 1.6 10.8 0.43

Table 2.1: Descriptive statistics of 8 rainfall events in September-October

2010: Event ID (Event); number of hours characterizing the Event (H.rs);

percentage of zero measurements (Zero %), first (Q1), second (Med) and

third (Q3) quartiles of positive amounts, in mm; maximum (Max), in mm;

correlation between rain gauge and radar measurements (Corr).

a proxy of the quality of radar data, shows variable but generally high values.

The fact that the lowest values occur in the longest Events (E7 and E8) is

not completely surprising, since these events are characterized by many near

zero values that radar does not accurately detect. confirming the

When building models for rainfall field reconstruction starting from radar

and rain gauge data, a basic concern is to understand if, for each event, the

relationship between the two measurements can be kept constant or varies

along time. Figure 2.2 reports hourly scatterplots of rain gauge against radar

data for Events E1 and E4 as an explorative tool in this direction. Event

E1 shows higher dispersion in the radar-rain gauge relationship with respect

to Event E4. Moreover, the slopes of OLS regression lines show variability

along time, both between and within rainfall events. This suggests that

the proposal of time-specific models for the radar-rain gauge relationship is

appropriate; previous work (Bruno et al. 2014) confirmes the superiority of

hour specific parameterisation over a common specification on an event, after

comparing model fit and predictive performances obtained in the two cases.

As an example of data spatial representation, Figure 2.3 shows radar and
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Figure 2.2: Scatter plots of rain gauge (y axis) versus radar data (x axis) in

rain Events E1 (left panel) and E4 (right panel); the solid line is the bisector,

the dashed line is the OLS regression line.

rain gauge measurements for the first hour of Event E4. The left panel

shows the bubble plot of rain gauge data: at each rain gauge site, the size

and color of the points are related to the amount of rainfall accumulation.

The right panel displays the observed radar map, with rain gauge locations

marked with black dots. Since predictive performances of the calibration

procedures need to be assessed, 50 randomly selected rain gauge sites (red

squared marks in the right-hand panel of Figure 2.3) will be excluded from

model estimation and used for validation. The eastern part of the radar

circle covers the Adriatic Sea, where no rain gauges are available: in this

area, prediction relies solely on radar data. The spatial overview provided

by these maps confirms the high concordance between the two instruments

in identifying and localizing rain masses.

2.2 A two-part three-stage Bayesian model

A strategy for radar-rainfall calibration in a Bayesian hierarchical frame-

work is proposed, relying on a two-part semicontinuous model in order to

properly handle zero and positive values. The main aim is not modelling

the rainfall process, neither time forecasting, rather, model construction is

mainly focused on the spatial features of the relationship between radar in-

formation and rainfall probability and amounts in sites where both radar and
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Figure 2.3: Rain gauge data (left panel) and radar data (right panel) for the

first hour of Event E4. In the left panel, point size and color are related to

values of rain accumulation. In the right panel, rain gauge sites are identified

by black dots, sites left aside for validation are marked with a red square.

rain gauge measurements are available, in order to reconstruct rainfall fields

starting from an observed radar map. Several alternatives are investigated.

We now introduce the main concepts; model structure is described in detail

in Section 2.2.1, and details about how to address the change of support

problem are presented in Section 2.2.2.

The classical problem of calibration (see for example Brown 1994) involves

measurements of the same quantity, along time and space, simultaneously

obtained by a reference and an equivalent measuring instrument. In our cali-

bration proposal, we face the problem of rainfall field reconstruction merging

radar and rain gauge data, in the spirit of Brown et al. (2001): rain gauges

represent our reference measures, whereas radar-based rainfall estimates are

treated as measures produced by the equivalent, uncalibrated instrument,

and are calibrated on the basis of rain gauge data, in order to provide accu-

rate spatial predictions of hourly rainfall.

We denote with SG the set of rain gauges locations, #SG = 317, and with

SR the set of all the available pixels in the radar grid, NR = #SR = 48047;

the radar circle covers the whole area in which rain gauges lie. As already

mentioned in Section 1.2, joint modelling of radar and rain gauge data, di-
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rectly including all radar data in the model, is proposed in Fuentes et al.

(2008), where the elicitation of the spatial structure for the joint process

requires the specification of a NR ×NR -dimensional covariance matrix, con-

sidering all available information in the model. We propose a different, less

complex approach, that focuses only on sites s ∈ SG in order to learn about

the relationship between rain gauges and radar measurements. Successively,

spatial prediction of rainfall is performed starting from radar data for any

s ∈ SR \SG. The high density of the monitoring network, the smoothness of

the radar surface (see Fig. 2.3 as an example) and the major interest in a cal-

ibration procedure that allows to efficiently transform radar measurements

into rain amounts, motivate our choice to build the model by including only

data measured at sites s ∈ SG. Following this approach, the model turns out

to be characterized by a manageable computational complexity, preserving a

satisfactory efficiency of the predictions. Thus, we focus on conditional mod-

elling of rain gauge data (reference measure) Y on radar data R (uncalibrated

measure), i.e. on the distribution

p(Ys|{RP , P ∈ SR}), s ∈ SG (2.1)

where subscripts indicate the location. Expression (2.1) allows rainfall in

a certain location to depend on the whole radar map. In fact, several ap-

proaches are proposed in this thesis: a punctual one, in which Ys only depends

on the radar value in the grid cell containing location s, for each s ∈ SG; a

simple improvement, taking also the nearest neighbouring cells into account;

and a more sophisticated one, where Ys depends on all RP (with only P in a

neighbourhood of s being relevant, properly weighted). Details about these

model specifications are provided in Section 2.2.2. For the moment, radar

information is generically denoted with R; it will be further specified accord-

ing to the chosen downscaler.

Notice that expression (2.1) does not include temporal subscripts. The

present work does not address modelling of the temporal evolution of the

relationship between rain gauges and radar measurements; we work on each

hour separately. Several reasons have driven this choice. Early checks, re-

ported in Bruno et al. (2014), showed that the joint modelling of successive

hours worsens model performance: the flexibility gained by separately mod-
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elling each hour turned out to be more decisive than the common features

shared within the same rainfall event. Moreover, model estimation is easier

and faster if performed on single hours, and permits a real time processing of

data hour by hour. In the following we thus ignore the temporal dimension

and always refer to a single hour.

2.2.1 Model structure

The empirical distribution of rainfall measurements shows high percent-

ages of zero values (see Table 2.1); on the other hand, the continuous nature

of the phenomenon and the high sensibility of the instruments suggest a con-

tinuous distribution is suitable for modelling positive amounts. A review of

possible approaches for dealing with this kind of data, called semicontinuous,

can be found in Frees (2009) and Neelon et al. (2014). A flexible choice is

constituted by the two-part model, which was proposed in Sloughter et al.

(2007) for modelling rainfall; it constitutes the first level of the hierarchy in

the following proposed models. This likelihood allows, at the higher levels

of the hierarchy, to model both rain probability and, conditionally on rain

occurrence, rain accumulation. As a difference from tobit model, in which

a single latent process drives both the zeros and the positive values, a two-

part approach ensures the widest possible flexibility, addressing zero values

and positive amounts with separate ad-hoc modeling. Conditionally on rain-

fall probability and radar data, rain gauge data are therefore independently

distributed as:

p(Ys|R, πs) = P0 sIYs=0 + (1− P0 s)p(Xs)IYs>0, s ∈ SG (2.2)

where I is the indicator function, P0 s is the probability of zero at location s

and p(Xs) = p(Ys|Ys > 0) is the distribution of the hourly rain accumulation

when rain occurs.

The second level of the hierarchy regards rain occurrence. We propose a

spatial probit regression where rain probability is modelled as a function of

log-transformed radar data plus a spatial adjustment specified as a Gaussian
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spatial process with exponential covariance function:

probit(1− P0 s) = γ1 + γ2 log(Rs) + ǫs where (2.3)

ǫ|σ2
ǫ , φǫ ∼MVN(0, σ2

ǫΣǫ) and Σǫ(s, s
′) = exp(−φǫ ds,s′), s, s′ ∈ SG

(2.4)

where Σǫ(s, s
′) denotes the (s, s′)-entry of the spatial covariance matrix of

the random effects ǫ, and ds,s′ indicates the Euclidean distance between sites

s and s′. Parameters σ2
ǫ and φǫ denote the sill and the decay parameter of

the spatial covariance function, respectively. Dropping the spatial random

effect from the model would imply that radar measurements efficiently ex-

plain rain occurrence along space, which is not the case, as shown in Bruno

et al. (2014). Rs denotes radar information1 associated with location s; in a

basic formulation, it can consist of the radar measurement provided by the

cell containing location s, but other choices are possible. A detailed discus-

sion of gauge-radar matching is provided in Section 2.2.2, in which several

specifications of the model are proposed.

Probit link has been preferred against logit for simplicity in implementation;

no relevant differences distinguish the results obtained with the two different

specifications.

With regard to the conditional distribution of rain accumulation given

rain occurrence, the main features to be respected are the positive support

and the right-skewness. Gamma distribution is thus a suitable choice, often

used for modelling precipitation (see for example Sloughter et al. 2007; Berro-

cal et al. 2008), thanks to it asymmetry and flexibility. We parameterized it

with the second parameter representing the rate:

Xs|µs, τ ∼ Gamma(τ, τ/µs), s ∈ SG (2.5)

in order to have

E[Xs|µs, τ ] = µs Var[Xs|µs, τ ] = µ2
s/τ. (2.6)

An alternative can be the Lognormal distribution (see for example Fuentes et

al. 2008); we do not treat the Lognormal specification here, since in Bruno et

1Since modeling is performed in the log scale, max(0.01,Rs) is taken
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al. 2014 we showed it returns sightly worse results than Gamma distribution

in terms of predictive performance.

According to (2.6), the model is heteroscedastic but characterized by a con-

stant coefficient of variation. In the original scale, the variance is expressed as

an increasing function of the mean. Parameter τ is devoted to capture mea-

surement errors and to accommodate for the spatial misalignment between

rain gauge point data and radar data measured on a raster grid; it can be

interpreted as a tuning parameter adjusting the mean-variance relationship.

The third level of the hierarchy is explicitly devoted to the calibration of

radar measurements. The calibration equation for rain amounts is specified

in the log scale as follows:

log µs = αs + β1 + β2 log(Rs). (2.7)

The inclusion of a spatial random effect is needed in order to capture the in-

fluence of unobserved confounding factors on the reliability of radar measure-

ments as proxies of rain gauges. This is the role of terms αs, each modelled

as a Gaussian spatial process, i.e.:

α|σ2
α, φα ∼MVN(0, σ2

αΣα) and Σα(s, s
′) = exp(−φα ds,s′), s, s′ ∈ SG.

(2.8)

The covariance function is assumed to be exponential with sill σ2
α and decay

parameter φα. The inclusion of the spatial effect translates the simple idea

of continuity of radar bias, suggested by the smoothness of radar surface (see

Fig. 2.3). If radar data are positively/negatively biased at a rain gauge site,

then they will be positively/negatively biased in the neighbourhood.

Equations 2.7 and 2.3 might in principle be enriched with the addition of

further geographical or meteorological covariates. For what concerns our case

study, the preprocessing performed by ARPA on radar information already

addressed the removal of the influence of orography and meteorological con-

ditions on the measurements. Moreover, explorative analysis revealed that

altitude is not relevant in explaining discrepancies between radar and rain

gauges, and no evidence is found in literature supporting correlation between

altitude and rainfall when short cumulation periods (like an hour) are con-
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sidered.

The model hierarchy is completed by hyperpriors specification: we assume

Normal independent priors N(0, 1000) for parameters Γ1, Γ2, β1, β2. Inde-

pendent small parameter Gamma distributions, i.e. Gamma (0.001, 0.001),

are assumed for parameters τ, σ2
ǫ and σ2

α. The decay parameters φǫ and

φα are fixed, in order to guarantee an approximate range of 100 and 150

km for the spatial effects driving rainfall probability and rain accumulation

respectively; further details about this choice are provided in Section 2.3.

2.2.2 Alternative model specifications

Both rain occurrence and rain accumulation are modelled by exploiting

radar measurements as a covariate. In Bruno et al. (2014) the matching

between rain gauges and the corresponding radar information is performed

by relating Ys to the radar measurement RP (s), where P (s) is the grid cell

containing location s; this corresponds to take Rs = RP (s) in Equations (2.3)

and (2.7). From now on this formalization will be denoted as Model “base”;

it represents a simple downscaler. The spatial effects correct for potential

inconsistencies due to the different spatial supports on which the data are

available.

In order to directly face misalignment and to take advantage of the abun-

dance of radar spatial information, a covariate RP 8(s)
can be added, represent-

ing the mean of the 8 cells surrounding P (s) ; this corresponds to substitute

Equation (2.7) with

log µs = αs + β1 + β2 log(RP (s)) + β3 log(RP 8(s)
). (2.9)

In this way we preserve the privileged role of pixel RP (s) containing location

s, and enrich the calibration equation with radar neighbouring information.

This simple procedure can of course be applied to Equation (2.3) as well by

setting probit(1−P0 s) = γ1+γ2 log(RP (s))+γ3 log(RP 8(s)
)+ ǫs; nevertheless,

results show the basic model is already very skilled in predicting rain occur-

rence, as confirmed by diagnostic tools such as the Brier Score (see Bruno et
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al. 2014 and Section 5.2.1). Therefore, we we focus on modelling the posi-

tive amounts of rain, looking for enrichments which can improve predictive

performance.

Following Berrocal et al. (2011), the mean of radar cells can be made

more flexible and effective by introducing stochastic weights and extending

the mean over the whole radar map. As in the previous case, we only adopt

this method when modelling rainfall amounts. More precisely, Rs in Equation

(2.7) takes the form of an s-specific weighted mean of radar values over the

grid SR:

RPs =
∑

P∈SR

wP,sRP , s ∈ SG. (2.10)

This model will be denoted as Model “SW” (Stochastic Weighting) in the

following. The weights w are stochastic, relying on a unique latent NR-

dimensional Gaussian process Q, defined over the grid; its exponential co-

variance function has decay parameter ψQ. The influence of each component

QP of such a process on a specific location s ∈ SG is smoothed according to

the distance between s and the centroid cP of pixel P using an exponential

kernel K:

wP,s =
K(s, cP ) exp(QP )

∑

P ′∈S(R) K(s, cP ) exp(QP ′)
, K(s, cP ) = exp(−ψQ(ds,cP )). (2.11)

The decay parameters ψQ and ψK for the covariance function of Q and for

K respectively are exogenously set in order to make negligible the influence

of the pixels exceeding a distance of 5 km.

While the kernel K attributes more weight to radar pixels near the location

of interest s, determining a symmetric decrease with increasing distance, the

latent GP Q is defined on the radar grid and is able to capture local effects,

but its value is common to each location s; thus, when multiplying K and

exp(Q), asymmetric patterns can be produced, allowing weights to be direc-

tional, possibly generating different shapes of the weighting schemes when

moving from site to site. When the pixel containing location s is the most

representative, as expected in most of the cases, the flexible weighting driven

by this method is able to attribute it a leading role. For this reason, as a

difference from Model “mean”, there is no need to keep RP (s) as an additional



2.3 Model estimation and computational issues 25

covariate; thus, we simply take Rs = RPs.

From (2.11), the Q process is not identified, since a shift in its center leaves

the weights unchanged; as suggested in Berrocal et al. (2011), we thus im-

pose a sum to zero constraint, implementing it on the fly during model fitting.

Moreover, in order to alleviate computation when working with the 49, 000-

dimensional process Q, as suggested in Banerjee et al. (2008) a predictive

process Q∗ is actually estimated instead of Q, defined on a rougher grid

(1 pixel every 16 in both directions). The Gaussian process specification is

therefore imposed only on Q∗, i.e. on the knots of the rougher grid; this trick

allows a reduced rank approach, requiring the inversion of smaller matrices.

Q∗ consists in the projection of the original spatial process onto the smaller-

dimensional space; at the other locations, Q is replaced by the conditional

expectation given the knots, obtained by exploiting the analytic properties

of the multivariate normal distribution. Little sensitivity on knots selection

is proved, particularly if the knots are chosen on a regular grid with small

spacing relatively to the range of the parent process, as in our case.

The three aforementioned model specifications are the result of a selection

made on a wider set of tested models. In particular, some modifications of

Model “mean” were tested, trying for example to exploit wind information

for driving the deterministic weighting scheme of radar pixels. Nevertheless,

wind is a very complex phenomenon with a high variability also in the ver-

tical direction, due to the differences in the flows at different altitudes, and

simple approaches did not provide conclusive improvements with respect to

the presented models.

2.3 Model estimation and computational is-

sues

Parameter estimation is performed through Markov chain Monte Carlo

algorithms, implementing a Gibbs sampler with Metropolis-Hastings steps.

OpenBUGS (Thomas et al. 2006) codes were replaced by own MCMC sam-

plers for a better control and understanding of the estimation steps. R soft-
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ware is employed for data manipulation and visualization and for handling

the results, while the computational core is written in C for allowing fast

computation. The link between C and R is performed via the loading of

pre-compiled dynamic libraries, both in Windows and in Linux Operating

Systems, generating .dll or .so files, respectively. The exploitation of BLAS

and LAPACK algebraic libraries determines a further dramatic improvement

in computational speed, which is now compatible with real time application

of the method. In fact, Model “base” only takes approximately ten min-

utes for 200,000 MCMC iterations. The computational times we refer to

correspond to mean performances tested on several machines (among which

Intel(R) Core(TM) i5 2.27 GHz, AMD Phenom(tm) II X4 945 Processor 3.0

GHz, and on ARPA computer) with R generic BLAS and LAPACK versions,

for guaranteeing portability of the code; they are further reduced, also no-

ticeably, if optimized algebraic libraries are chosen according to the machine

under use. Most of the computational time is spent by the estimation of the

probability of rain, which follows the implementation for the probit model

suggested by Holmes and Held (2006). In particular, let Ỹs be a random

variable denoting rain occurrence at location s, i.e. Ỹs ∼ Bernoulli(1− P0 s).

Then, Equations (2.3) and (2.4) have the following equivalent representation

exploiting an augmented approach with auxiliary variables:

Ỹs =

{

1 if Zs > 0

0 otherwise
(2.12)

Zs = γ1 + γ2 log(Rs) + ǫs + νs, νs i.i.d. ∼ N(0, 1)

ǫ|σ2
ǫ , φǫ ∼ MVN(0, σ2

ǫΣǫ) and Σǫ(s, s
′) = exp(−φǫ ds,s′), s, s′ ∈ SG.

(2.13)

In this formulation, Ỹs is deterministic conditionally to the sign of the auxil-

iary variable Zs. The unit variance of the white noise effects νs guarantees the

identifiability of the model; more details for the spatial case with correlated

spatial effects are provided in Gelfand et al. (2000). Marginalization over

the spatial effects allows faster convergence at the cost of many non-diagonal

matrices inversions; algorithms suggested by Rue and Held (2005) help in

quickly extracting correlated Gaussian random variables. The estimation of
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rainfall accumulation is fast in the basic model, only taking a few minutes;

this is made possible by the exploitation of efficient algebraic functions and

by the need for estimation only involving the rainy sites. The additional

effort required by Model “mean” is negligible, thanks to an efficient matrix

implementation. Model “SW” is instead more computationally intensive, re-

quiring about an hour of estimation for each run over an hour of data with

200000 iterations. As explained in Section 2.2.2, a predictive process Q∗

instead of the whole Q is estimated for reducing dimensionality; moreover,

updating of Q and its sill parameter is performed via a block Metropolis-

Hastings step in 1 MCMC iteration every 10.

A burnin of 50,000 iterations is removed, corresponding to a reasonable set of

pre-convergence iterations; convergence has been checked by graphical exam-

ination of the trace plots of the chains sample values versus iterations, and of

the autocorrelation plot for each chain. Thinning of the chains is performed,

keeping only one over 100 MCMC iterations in order to reduce autocorre-

lation; tests on the persistent autocorrelation show a desirable behaviour.

In this way, a final set of 1,500 iterations is obtained for each parameter,

representing an appropriately sized sample from the posterior distribution.

Simplicity in the predictive procedure and code optimization allow a recon-

struction of the whole rainfall field with a 1 km × 1 km resolution in a couple

of minutes. It is relevant to highlight the effort towards an efficient imple-

mentation, which allowed to reach a 15-minute version on 200,000 estimating

iterations against an initial (non-optimized) full-R implementation requiring

about one hour for the estimation and one hour for the prediction with one

tenth of the iterations.

Estimation of rain probability is performed via Gibbs sampler exploiting full

conditionals for each parameter. When dealing with rain accumulation in-

stead, closed form full conditional is only available for the variance of the

spatial effect σα. As anticipated, Metropolis-Hastings steps compensates for

this lack; tuning algorithms help in retrieving a correct mixing and accelerat-

ing the convergence, by modifying the dispersion of the proposal distributions

via the successive modification of appropriate tuning parameters, in order to

reach acceptance rates around 40% for singly updated parameters and 25%

for vector parameters, as common working rules suggest.
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A separate mention is needed for the choice of the decay parameters φǫ and

φα. An empirical Bayes approach was firstly followed (Sahu et al. 2010): a

two-dimensional grid with varying values of the decay parameters for rain

probability and accumulation is built, and an optimal value is chosen on

the basis of a predictive criterion. In particular, we considered a set SV of

validation sites, and chose the couple φǫ and φα which minimized the mean

square prediction error. This approach relies on two main justifications: first

of all, spatial interpolation is sensitive only to the product between the decay

parameter and the variance parameter (Stein 1999) that are weakly identifi-

able when contemporaneously included in the model as unknowns; secondly,

setting the decay parameters allows to speed-up computation. The search

for optimal range values was driven by the assumption that events may be

characterized by different ranges, according to the nature and the exten-

sion of the perturbation. The analysis on the chosen set of rainfall events

was conducted on a two dimensional grid containing the values 0.01, 0.02,

0.03 and 0.04 corresponding to spatial ranges of 300, 150, 100 and 75 km.

These range values permit to appreciate the influence of random effects in

the spatial domain, since the maximum distance between rain gauge sites

is 250 km. Spatial ranges of 100 and 150 km for rainfall probability and

rain accumulation, respectively, turned out to be appropriate for all events

in terms of MSPE (see Bruno et al. 2014). This result was confirmed by

other approaches for the estimation of φǫ and φα, such as the adoption of

discrete or continuous priors. These techniques reflect that convective events

are usually more localized, showing smaller values for the ranges; neverthe-

less, the employment of such estimated values does not improve results. The

explanation is twofold: on one hand, it is well known that flexibility in mod-

elling does not always guarantee better results, even when convergence is

reached, since simpler formulation can improve stability; on the other hand,

wide spatial dependence may characterize all events despite the effective ex-

tension of the nucleus of the storm. All these trials suggested that the model

can be run with the fixed chosen values for φǫ and φα; this also reduces the

computational burden.
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2.4 Sampling from the predictive distribution

Major attention is devoted to predictions. They are firstly employed for

model checking in the validation sites, allowing comparison between differ-

ent specifications. Then, reconstruction of the rainfall fields is achieved by

computing predictions at all the pixels of the radar grid. Sampling from the

predictive distribution of rain accumulation at an unmonitored site s0 needs

to take account of both the probability of rain occurrence and the rain accu-

mulation in case of rain occurrence. Let K be the size of the postconvergence

MCMC sample. Samples of rain probabilities for the k-th MCMC iteration

(k = 1, . . . , K) are obtained as follows:

1. Predict ǫ
(k)
s0 , on the basis of (2.4), by sampling from

ǫ(k)s0
|ǫ(k), σ2 (k)

ǫ ∼ N (σ−2 (k)
ǫ ω(k)′

ǫ Σ−1
ǫ ǫ

(k)
s , σ2(k)

ǫ − σ−2 (k)
ǫ ω(k)′

ǫ Σ−1
ǫ ω(k)

ǫ )

(2.14)

where ω
(k)
ǫ is an n-dimensional vector with elements σ

2 (k)
ǫ exp(−Φǫdss0),

s ∈ SG

2. According to (2.3), generate a realization of a Bernoulli variable with

parameter

1− P0 = Φ(Γ
(k)
1 + Γ

(k)
2 log(RP (s0)) + ǫ(k)s0

)

with Φ denoting the CDF of the standard normal distribution.

If the outcome is zero, then Ŷ
(k)
s0 = 0. Otherwise, sampling from the

predictive distribution of the rain accumulation consists in the two steps

below:

3. Predict α
(k)
s0 following a procedure analogous to (2.15):

α(k)
s0
|α(k), σ2 (k)

α ∼ N (σ−2 (k)
α ω(k)′

α Σ−1
α α

(k)
s , σ2(k)

α − σ−2 (k)
α ω(k)′

α Σ−1
α ω(k)

α )

(2.15)

where ω
(k)
α is an n-dimensional vector with elements σ

2 (k)
α exp(−Φαdss0),

s ∈ SG
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4. Generate a realization from a Gamma(τ (k), τ (k)/µ
(k)
s0 ), where

log(µ(k)
s0
) = αs0 + β1 + β2 log(Rs0).

In step 4, Rs0 assumes the value RP (s0), RP (s)R
β
(k)
3

P 8(s0)
or R

(k)

Ps0
for Model

“base”, “mean” and “SW” respectively. In the last case, the apex k is needed

for specifying the stochastic weights corresponding to the estimation of the

Q process available at the k-th iteration:

RPs0
=

∑

P∈SR

w
(k)
P,s0

RP , w
(k)
P,s0

=
K(s0 − cP ) exp(Q

(k)
P )

∑

P ′∈S(R) K(s0 − cP ′) exp(Q
(k)
P ′ )

.

Let us note that, differently from the assessment of the spatial effects ǫ and

α, no spatial interpolation is required for the process Q, which is not s0-

specific: it is defined on the grid SR and each value QP corresponding to a

cell P is appropriately weighted for the prediction in location s0 according

to its distance from s0 via the deterministic kernel K.

The presented predictive procedure provides a chain composed of both zeros

and positive values. The probability of rain, predicted at each iteration and

thus available as a chain, can also be approximated as the percentage of zero

values in the chain drawn from the posterior predictive distribution.
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Forecast evaluation

Once a forecasting model is available, the evaluation of its predictive per-

formance is a crucial issue. In fact, the analysis of the results reveals whether

the goals of the study have been reached; further efforts might be necessary

for reducing the weaknesses that affect predictions. Moreover, comparison

between competing models allows to rank the available forecasting proce-

dures on the basis of a desired performance criterion, detecting the best

solution according to the specific purpose at hand. Defining the focus of the

study is fundamental for correctly understanding, evaluating and comparing

all results. Are we interested in producing point predictions, or do we seek

for predictive distributions reproducing the true data generating process? In

the first case, do we want to penalize single huge errors? Are we aware of the

uncertainty associated with the forecasts? This Chapter provides a review

of the main concepts about the form in which forecasts can be provided and

presented, the features which ideal predictions should possess and how to

evaluate predictive performance. First of all, the distinction between point

and probabilistic predictions must be made clear. The former consist in a

single number representing the forecaster’s best estimation of the quantity of

interest; the latter provide a whole predictive distribution for each location

and time instant. Predictive distributions communicate complete informa-

tion about the forecast, and can be reduced to simple point forecasts by the

application of suitable functionals, like the mean or a quantile.

The assessment of the predictive ability of forecasters, and the comparison

31
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and ranking of competing forecasting methods, are critical issues. Rele-

vant methodology is present in the literature for meteorology (Jolliffe and

Stephenson, 2003) and econometrics (Diebold and Mariano, 1995; Christof-

fersen, 1998; Diebold et al., 1998; Corradi and Swanson, 2006). This Chap-

ter provides guidelines for the assessment of predictive performances and

the ranking of competing predictive models; specific tools for precipitation

predictions are investigated in Chapter 4.

3.1 Probabilistic forecasts

Due to the inner uncertainty characterizing predictions of non-deterministic

phenomena, forecasts should be probabilistic in nature, taking the form of

probability distributions (Dawid, 1984). Predictive distributions completely

specify the process of interest. In simple cases, they may be available in ana-

lytic form. In the classical framework, this is often obtained via the plug-in of

parameter estimates ; in contrast, Bayesian solutions aim at a correct assess-

ment of the variability of the results, taking the uncertainty on parameters

into account. In case of complex models, advances in Markov chain Monte

Carlo methodology have led to explosive growth in the use of predictive dis-

tributions, mostly in the form of Monte Carlo samples from the posterior

predictive distribution; every summary of the distribution can be obtained

from this sample with the desired level of accuracy. Finally, even in the

field of numerical models, the awareness of uncertainty in input data and of

imprecisions in the mathematical and physical formulations urged forecast-

ers to run numerical models many times, with different boundary conditions

corresponding to perturbations of the best estimate of the existing state,

and several specifications in the model; this procedure provides an ensemble,

consisting in a sample of point forecasts with the aim of approximating the

predictive distribution.

In the statistical literature, the diagnostic approach for dealing with prob-

abilistic forecasts faces a challenge, in that the predictions take the form of

probability distributions whereas the observations are real valued.

Following Gneiting et al. (2007), I denote with Gi the true unknown data-
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generating process, in the form of a predictive Cumulative Distribution Func-

tion, for individual i, i = 1, . . . , n (the subscript may refer to time, space

and/or subjects, and no sequentiality is assumed), with yi the correspond-

ing observation , and with Fi the predictive CDF; an ideal forecaster would

choose Fi = Gi for all i. In accordance with Dawid’s (1984) prequential prin-

ciple, probabilistic forecasts need to be assessed on the basis of the forecast-

observation pairs (Fi, yi) only, regardless of their origins.

Probabilistic forecasts must be statistically consistent with the observations.

This concept goes under the name of “calibration”, which assumes a differ-

ent and more specific meaning with respect to Chapters 1 and 2, where it

denoted the consistency of radar deterministic information with rain gauge

observations. Subject to calibration, sharp forecasts are desirable (see Gneit-

ing et al. 2007).

Gneiting et al. (2007) propose a formalization of the concept of calibration

providing several definitions corresponding to different asymptotic proper-

ties; we focus on the most widely studied form of calibration, which goes

under the name of “probabilistic calibration”:

Definition 3.1. The sequence F1, . . . , Fn is probabilistically calibrated

relative to the sequence G1, . . . , Gn if

1

n

n
∑

i=1

Gi ◦ F
−1
i (p) → p ∀p ∈ (0, 1) (3.1)

where “◦” denotes the composition operator.

The following sections review the existing literature about the assessment

of probabilistic forecasts, presenting the main tools for checking probabilis-

tic calibration and evaluating predictive distributions. Both graphical and

numerical tools are provided; they are presented in Section 3.1.1 and 3.1.2

respectively.

3.1.1 PIT histogram

For assessing probabilistic calibration, Dawid (1984) and Diebold et al.

(1998) proposed the use of the Probability Integral Transform (PIT). It
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consists in the value that the predictive CDF attains at the observation:

PIT(yi) = Fi(yi). If the forecasts are ideal and Fi is continuous, then the

PIT has a uniform distribution. The connection to probabilistic calibration

is established by substituting the empirical distribution function 1(yi ≤ y)

for the data-generating distribution Gi(y), in the probabilistic calibration

condition (3.1), and noting that yi ≤ F−1
i (p) if and only if PIT(yi) ≤ p.

Hence, checks for PIT uniformity constitute a tool for forecast evaluation.

An exploratory approach is usually adopted, by plotting the empirical CDF

of the PIT values and comparing it with the CDF of the uniform distribution.

As an alternative, histograms of the PIT values can be displayed, with 10 or

20 histogram bins being generally adequate (Diebold et al. 1998, Gneiting et

al. 2005); this kind on display is recommended when the sample size is large

and departures form uniformity are small. Underdispersion, overdispersion

or bias in the predictive distribution can be detected by visual inspection,

since they give raise to U-shaped, inverse U-shaped or triangle-shaped PIT

histograms, respectively. Formal tests of uniformity can be employed, but

non negligible efforts are required for their definition in case of complex de-

pendency structures, and they are subject to potential fallacies (Hamill 2001).

When dealing with ensemble forecasts, PIT histogram is substituted by the

verification rank histogram, which exploits the empirical CDF of the ensem-

ble values as predictive distribution. This tool, also called Talagrand dia-

gram, was proposed independently by Anderson (1996), Hamill and Colucci

(1997) and Talagrand et al. (1997), and represents the principal device for

assessing calibration. It consists in the histogram of the rank of the observa-

tions when pooled within the ordered ensemble values; interpretation follows

the same rationale as for PIT.

In case of a discrete distribution, PIT is no longer uniform even under the hy-

pothesis of an ideal forecast, due to the jumps in the CDF which prevent PIT

from assuming certain values. To remedy this, several authors have suggested

a randomized PIT (Smith, 1985; Frühwirth-Schnatter, 1996; Liesenfeld et al.

2006; Brockwell, 2007). Gneiting and Ranjan (2013) propose a generalised
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formulation of the randomized PIT, which holds for every CDF F :

PIT(F, y) = lim
w↑y

F (w) + V (F (y)− lim
w↑y

F (w)), V ∼ Unif(0, 1). (3.2)

Nevertheless, its random nature causes slight changes in the PIT behaviour

according to the specific realization of V in (3.2). As an alternative, Czado

et al. (2009) proposed a non-randomized version of the PIT histogram, still

preserving uniformity when dealing with count data. Let us denote the cu-

mulative distribution function with (Pk)
∞
k=0, and define P−1 = 0; then the

non-randomized PIT histogram is obtained by calculating the conditional

CDF F PIT of the randomized PIT given the observed count y ∈ N:

F PIT (u|y) =











0 u ≤ Py−1

(u− Py−1)/(Py − Py−1) Py−1 ≤ u ≤ Py

1 u ≥ Py

(3.3)

The letter i, i = 1 . . . , n has been dropped for simplicity of notation, but it

should be attached both to F PIT and any instance of y in formula (3.3).

The mean PIT is thus obtained aggregating the PIT CDFs {F PIT (u|y1), . . . ,

F PIT (u|yn)} over the conditioning observations {y1, . . . , yn}:

F̄ (u) =
1

n

n
∑

i=1

F PIT (u|yi), 0 ≤ u ≤ 1. (3.4)

Calibration can be assessed directly comparing F̄ to the CDF of the standard

uniform law, that is, the identity function, or by creating a non-randomized

PIT histogram as follows: once chosen the number of bins, named J , the

frequencies are computed as

fj = F̄
( j

J

)

− F̄
(j − 1

J

)

, j = 1, . . . , J (3.5)

and used as heights for equally spaced bins. If the predictive distributions

coincide with the true ones, the histogram is uniform.

The non-randomized PIT provides a fixed and reproducible diagnostic tool,

not affected by random fluctuations.
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3.1.2 Proper scoring rules

Scoring rules assign numerical scores to probabilistic forecasts and form

attractive summary measures of predictive performances, in that they ad-

dress calibration and sharpness simultaneously (Gneiting et al. 2007). A

scoring rule is a function S(F pred, yobs) of the predictive distribution F pred and

of the observation yobs, and consists in a penalty the forecaster aims to mini-

mize. A validation approach is adopted, keeping n observations yobs1 , . . . , yobsn

out of the estimating set, using the model for predicting them, and compar-

ing the predictions F pred
i with the effective outcomes yobsi ; a single score for

a set of predictions is obtained as the mean over the cases, i.e.

S(Fpred,yobs) =
1

n

n
∑

i=1

S(F pred
i , yobsi ) (3.6)

where Fpred denotes the set of predictive distributions {F pred
1 , . . . , F pred

n } and

yobs = {yobs1 , . . . , yobsn }.

A fundamental property for a scoring rule is propriety: in fact, it guarantees

fairness in the evaluation of results.

Definition 3.2. A scoring rule is proper if

EFS(F, Y ) ≤ EFS(G, Y ) ∀F, G.

Propriety implies that if the true distribution is F , the scoring rule is

minimized on average when the proposed forecast is exactly F . Strict pro-

priety if achieved when the minimum is unique. Proper scoring rules thus

encourage honest and sharp forecasts (see Winkler 1977), representing deci-

sion theoretically justifiable tools for probabilistic forecasts evaluation.

We now provide an overview of the most relevant and well-known scoring

rules.

A well known proper scoring rule for checking binary events is theQuadratic

or Brier Score

BS(F pred, yobs ∈ Ω) = (P pred
F (Y ∈ Ω)− I{yobs∈Ω})

2 (3.7)

which compares the predicted probability of the realization of an event with

the effective outcome, being Ω the set of values corresponding to the realiza-

tion of the event; notice that it is bounded between 0 and 1.
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When dealing with continuous variables, the logarithmic score is the

negative of the logarithm of the predictive density f evaluated in the obser-

vation (Good, 1952; Bernardo, 1979). It is proper and has many desirable

properties (Roulston and Smith, 2002), for example it is the only local proper

scoring rule, meaning it only depends on the value of the predictive density

in the observation. Some of its drawbacks are lack of robustness (Selten,

1998; Gneiting and Raftery, 2007) and the need of explicit predictive density

f pred. In case the predictive distribution is available in the form of a big sam-

ple (as with Markov chain Monte Carlo procedures), we denote with F pred,k

the predictive CDF corresponding to the kth iteration, for k = 1, . . . , K,

and with f pred,k the respective density. Thus, the logarithmic score can be

approximated as

LS(F pred, yobs) = − log
( 1

K

K
∑

k=1

f pred,k(yobs)
)

(3.8)

(see e.g. Czado and Gschlößl 2007).

Another interesting scoring rule for predictive distributions on R
m depend-

ing only on the estimated mean vector µ and the dispersion or covariance

matrix Σ is the Dawid and Sebastiani score (Dawid and Sebastiani 1999,

Gneiting and Raftery 2007):

DS(Fpred,yobs) = − log(detΣ)− (yobs − µ
pred)TΣ−1(yobs − µ

pred). (3.9)

It is proper relative to for probability measures with finite first two moments,

but strictly proper only if such moments fully define the distribution (as in

the Gaussian case).

The Continuous Ranked Probability Score (CRPS) is the integral of

the Brier Scores associated with the binary events describing the exceeding

of all possible thresholds in the set of outcome values:

CRPS(F pred, yobs) =
∫

(−∞,+∞)
BS(F pred, {yobs ≤ x}) dx

=
∫

(−∞,+∞)
(F pred(x)− I{yobs≤x})

2 dx

(3.10)

where F pred is the predictive CDF and yobs is the observation. When the

predictive distribution is represented by a sample, possibly based on MCMC
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output or ensemble forecasts, the following alternative representation of the

CRPS is useful for its calculation (Gneiting and Raftery 2007):

CRPS(F pred, yobs) = EF pred |Y − yobs| −
1

2
EF pred |Y − Y ′| (3.11)

where Y and Y ′ are independent copies of a random variable with CDF F pred

and finite first moment. If we consider the discrete approximation of F pred

via the sample {F pred,1, . . . , F pred,k}, the second expectation in (3.11) implies

a double summation, which can be time demanding if the sample is big;

nevertheless, the following equivalence holds:

K
∑

i, j=1

|xi − xj| = 2
K−1
∑

i=1

i(K − i)(x′i+1 − x′i)

where x′1 ≤ . . . ≤ x′K are obtained after reordering {x1, . . . , xK} (see Hers-

bach 2000 and Scheuerer 2013).

Representation (3.11) also shows that the continuous ranked probability score

generalizes the absolute error, to which it reduces if F is a point forecast;

moreover, it highlights the fact that the CRPS is reported in the same unit

as the observations.

The continuous ranked probability score is proper. As anticipated in (3.6),

ranking of competing forecasting procedures is performed via its average:

CRPS(Fpred,yobs) =
∫

(−∞,+∞)
1
n

∑n

i=1 BS(F
pred
i , {yobsi ≤ x}) dx

=
∫

(−∞,+∞)
BS(Fpred, {yobs ≤ x)} dx

(3.12)

where BS(Fpred, {yobs ≤ x}) denotes the mean Brier Score, averaged over the

forecasting cases, corresponding to the threshold x. Formula (3.12) provides

a decomposition of the mean CRPS according to the thresholds: besides

calculating the single overall CRPS value, a plot of the mean Brier Score

versus the thresholds may be a useful diagnostic tool, providing a deeper

insight into the behavior of competing predictions (Schumacher et al. 2003

call it prediction error curve, Gneiting et al. 2007 name it as Brier Score plot).

It can reveal variations in the ranking of the predictions on different intervals.

If our interest is not uniform over the domain of the possible outcomes, it is
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possible to apply a nonnegative weighting function w to the CRPS threshold

decomposition formula (4.4), obtaining the (still proper) weighted CRPS

(see Gneiting and Ranjan 2011):

wCRPS(F pred, yobs) =

∫

(−∞,+∞)

w(x)(F pred(x)− I{yobs≤x})
2 dx. (3.13)

The CRPS can also be decomposed and plotted with respect to quantiles

(see Gneiting and Ranjan 2011):

CRPS(F pred, yobs) = 2
∫ 1

0
(I{yobs≤(F pred)−1(α)} − α)((F pred)−1(α)− yobs) dα

=
∫ 1

0
QSα((F

pred), yobs) dα

(3.14)

where QSα((F
pred), yobs) = 2 (I{yobs≤(F pred)−1(α)} − α)((F pred)−1(α) − yobs) is

the quantile score for the quantile forecast (F pred)−1(α) at the level α ∈ (0, 1).

When averaging over the forecasting cases, it gives

CRPS(Fpred,yobs) = 2
∫ 1

0
1
n

∑n

i=1(I{yobsi ≤(F pred
i )−1(α)} − α)((F pred

i )−1(α)− yobsi ) dα

=
∫ 1

0
QSα((F

pred)−1(α),yobs) dα

(3.15)

with QSα((F
pred)−1(α),yobs) denoting the mean of QSα((F

pred), yobs) over the

forecasting cases.

Notice that the quantile score is not bounded, neither is CRPS.

3.2 Point forecasts and predictive intervals

Probabilistic forecasts provide complete information about the predic-

tion and its uncertainty and are therefore the best choice. Nevertheless,

many practical situations require single valued point forecasts, which can be

obtained via the application of a suitable functional like the mean or a quan-

tile. Error measures S(ypred, yobs) are exploited for quantifying the distance

between point forecasts and observations; following Gneiting (2011), we call
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S scoring function. When predicting n cases, the average is taken; thus, the

performance criterion takes the form

S̄(ypred,yobs) =
1

n

n
∑

i=1

S(ypredi , yobsi ).

S is usually taken as negatively oriented: higher S̄ values correspond to

worse predictions according to the chosen error measure. As anticipated,

the predictions {ypredi , i = 1, . . . , n} are usually obtained as the result of the

application of a functional T on the predictive distribution Fi, like the mean

or the median. Establishing which summary of the predictive distribution is

to be taken is thus a fundamental issue, strictly related to the way in which

the forecasts are assessed and compared. Consistency links the choice of the

functional to the one of the scoring function.

Definition 3.3. A scoring function S is consistent for a functional T if

EFS(t, Y ) ≤ EFS(l, Y )

whatever is the true distribution F of Y , the chosen value t ∈ T (F ) and the

potential prediction l belonging to the domain of the outcomes.

Thus, concistency means that if the cumulative distribution of the obser-

vations is F , no other point prediction can be better on average, according to

the chosen scoring function, then the one obtained by applying the functional

T to F ; in other words, T is the functional that minimizes the expected

score. As a consequence, the values of a chosen scoring function S corre-

sponding to competing predictions must be calculated on the point forecasts

{T (F1), . . . , T (Fn)} where T is a functional for which S is consistent; and vice

versa, if the functional T is chosen, the point forecasts {T (F1), . . . , T (Fn)}

must be compared according to a consistent scoring function S.

The most common choices for S are the absolute error and the squared error

S(ypred, yobs) = |ypred − yobs| and S(ypred, yobs) = (ypred − yobs)2

which lead to the Mean Absolute Error (MAE) and Mean Square Error

(MSE) as average scoring functions:

MAE(ypred,yobs) =
1

n

n
∑

i=1

|ypredi − yobsi | (3.16)
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MSE(ypred,yobs) =
1

n

n
∑

i=1

(ypredi − yobsi )2. (3.17)

Consistent functionals for these choices are known to be the median and

the mean of the predictive distribution, respectively. A main advantage of

MAE and MSE is their easy interpretation; if the square root of the MSE

is taken (RMSE), they are both expressed in the scale of the observations

(without affecting consistency). MSE gives more weight to bigger errors, as

desirable in some cases. On the other hand, the median has a straightforward

explanation as a quantile (1/2 probability of obtaining a higher or lower

amount according to the predictive distribution); moreover, it is robust with

respect to fluctuations in the right tail of the distribution. Gneiting (2011)

proves that the only consistent scoring functions for an α-quantile have the

form of generalized piecewise linear (GPL) scoring functions:

GPL(qpred, yobs) = (I{qpred≥yobs} − α)(g(qpred)− g(yobs)) (3.18)

where g is a nondecreasing function on the domain. In particular, taking the

identity function as g, we obtain the piecewise linear quantile score (see e.g.

Koenker and Machado 1999, Gneiting and Raftery 2007):

PLQS(qpred, yobs) = (I{qpred≥yobs} − α)(qpred − yobs). (3.19)

Since point forecasts are rather poor, only conveying prediction in the

form of a single number, they are often accompanied by predictive intervals,

which provide information about the uncertainty.

Credibility intervals are not uniquely defined by the percentage of the pre-

dictive distribution they contain; an information about their location is also

necessary for identifying them. Lower or upper intervals can be chosen, whose

left or right extreme coincides with the left or right boundary of the predic-

tive domain respectively. Central intervals are the most common choice;

they leave out the same probability in the two tails. When dealing with sym-

metric unimodal distributions, their center coincides with both the mean and

the median of the distribution; in that particular case, they also constitute

higher posterior density (HPD) intervals, consisting in the narrower (sets of)

intervals among the ones containing the same amount of probability. In case
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of asymmetric or multimodal distributions, the centered intervals may not

be HPD.

Credibility intervals are also used to assess sharpness, via numerical and

graphical summaries of their width. In real world applications, conditional

heteroscedasticity often determines considerable variability in the width of

the prediction intervals; box plots of interval widths represent an instructive

graphical device (Bremnes 2004).

Finally, the correctness of predictive intervals is checked via the computation

of the coverage, which should be close to the nominal level.



Chapter 4

Evaluation and communication

of quantitative probabilistic

precipitation forecasts

Probabilistic Quantitative Precipitation Forecasts (PQPF) consist in pre-

dictions providing numerical and probabilistic characterization of precipita-

tion. The form in which such forecasts are provided changes according to

the purposes and the modelling framework. For example, Seo et al. (2000)

focus on a set of quantiles, and National Oceanic and Atmospheric Adminis-

tration (NOAA) defines PQPF as a “form of QPF that includes an assigned

probability of occurrence for each numerical value in the forecast product”.

We adopt a comprehensive approach based on the specification of a predic-

tive Cumulative Distribution Function (CDF) which respects the nature of

the phenomenon allowing flexibility in modelling both the exceedance of the

zero threshold and the continuous distribution for positive amounts (as in

Sloughter et al. 2007).

This Chapter investigates how to evaluate (Section 4.1) and communicate

(Section 4.2) PQPFs, since some modifications to the standard tools are nec-

essary for handling the positive probability of no rain. The procedures we

propose can be adopted regardless of the method used for obtaining the pre-

dictions and of the temporal or spatial structure of the predicted values. In

Chapter 5 we will show their application to the predictions obtained with

43
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the model developed in Chapter 2, but they are not exclusive for that spe-

cific model; the only fundamental assumption, which we consider suitable in

most cases when dealing with precipitations, is the two-part semicontinuous

structure of the predictive distribution with a spike of probability on zero

(see (4.1) in the following).

We point out that the focus of this Chapter is on univariate predictions,

which are compared with the observed outcomes. On the other hand, the

purpose of investigating how to assess field forecasts, with main attention to

the spatial aspect, was addressed by the Spatial Verification Method Inter-

comparison Project (ICP; Gilleland et al. 2009); it provided an insight on

the available methods, which are classified as filtering methods (neighbour-

hood or field separation) and displacement methods (feature-based or field

deformation). Such tools essentially look at the prediction in its totality and

try to detect and quantify displacement and stretching errors avoiding the

double-penalisation implied by usual tools. However, our interest here is on

the assessment of precisely geolocated predictions. The ground truth is only

known in locations where a rain gauge is available; thus, the comparison of

predictions with the observed values can only be performed in a sparse set.

Rigorous methods have been proposed (see Chapter 3), but they need for re-

vision when dealing with rainfall. Precipitation distribution is characterized

by a potentially positive probability of zero and by skewness on the positive

real semiaxis. Such features must be taken into account both in modelling

and in presenting and assessing predictive performance. In particular, we

focus on the case of rainy precipitations, even if the proposed methodologies

are general and can be exploited also for other kinds of precipitation like

snow.

Models for rainfall vary according to purposes, cumulation time, available

data and covariates, and the chosen framework for the estimation (classical

or Bayesian). As explained in Section 2.2.1, a flexible choice for addressing

the positive probability of no rain and the asymmetry of the distribution of

the positive amounts is the two-part model. It corresponds to specifying a
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likelihood with a CDF in the following form:

F (y) = P (Y ≤ y) = P0 + (1− P0)Fc(y) (4.1)

where P0 is the probability of no rain and Fc is the CDF of a continuous

random variable with support on the positive real semiaxis.

For what concerns the probability of rain, numerous modelling choices are

available. Probit or logit regressions are suggested when significative covari-

ates are available; tobit or other approaches involving left censoring of a real

valued distribution belong to our framework as a special case, corresponding

to imposing a constraint on modelling dry locations.

Gamma distribution has often been suggested as suitable for modelling pos-

itive rainfall amounts (see for example Sloughter et al. 2007), sometimes

showing a slight superiority over the competing Lognormal (see Bruno et al.

2014); left-censored GEV constitutes an appealing alternative allowing for

flexibility in modelling high quantities due to its heavy tail (see Scheuerer

2014). While some approaches, like EMOS for ensemble postprocessing, im-

pose that the predictive distribution is of the form (4.1) specifying a single

parametric distribution for the positive amounts, this is not a general rule:

for example, Bayesian Model Averaging output is a mixture of distributions,

while in complex Bayesian hierarchical models the analytic expression of the

posterior predictive distribution may not be available at all. Nevertheless,

in all of these cases a predictive distribution of the form (4.1) emerges after

assuming a two-part semicontinuous model.

4.1 Forecast evaluation

Due to the mixed discrete-continuous nature of the distribution, care is

required when assessing performances of rainfall prediction. In particular,

specific tools are needed for addressing rainfall occurrence; moreover, for

what concerns the whole distribution, some of the tools presented in Chap-

ter 3 cannot be exploited when dealing with precipitation, due to the positive

probability of zero. Modifications are proposed in this Section in order to
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guarantee the correctness of the evaluation procedures when a two-part semi-

continuous model with a spike of probability on zero is employed. If useful

in other contexts, generalization of the proposed procedures for a two-part

semicontinuous specification with the spike on a non-zero value is straight-

forward.

4.1.1 Probabilistic forecasts

Graphical tools for evaluating rainfall probability

A first goal of precipitation predictions is to assess the presence or ab-

sence of rain. When probabilistic forecasts are available, graphical tools can

be exploited for investigating the ability in discriminating between the two

cases. Reliability diagrams (or calibration curves, Sanders, 1963; Pocher-

nich 2009) consist in plots of the Hit Rate computed on successive bins of

predictive rainfall probability: the conditional observed frequency of rainfall

is plotted against its forecasted probability. For perfect reliability the fore-

casted probability and the frequency of occurrence should be equal, resulting

in points lying on the diagonal.

Sharpness diagrams consist in the histogram of predicted rainfall probabil-

ity: high frequencies of probabilities near zero or one denote a bold forecast

characterized by a high level of certainty, which is a preferable attitude under

calibration. Both tools are provided by the function “verify” in R package

“verification” (Pochernich 2009).

Graphical tools for assessing probabilistic calibration: the PIT

histogram

PIT histogram for rainfall predictions needs to share features from both

the discrete and the continuous formulations, due to the mixed nature of

precipitation distribution, which is made up of a probability mass at zero

and a continuous density for positive amounts. An easy explanation of why

the standard PIT for continuous distributions cannot be exploited in the two-

part semicontinuous case relies on the fact that, while the CDF in the former

case assumes values in [0,1], in the latter it only takes values in [P0, 1], where
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Figure 4.1: Standard PIT for continuous distributions applied to a two-part

model with Gamma specification on positive values, with P0=0.4, shape=2

and scale=0.2.

P0 is the probability of zero; therefore, values of the CDF smaller then P0

appear as a cumulated peak on 0 in the PIT histogram, leaving the interval

[0,P0) empty. An example of this phenomenon is shown in Figure 4.1. It

shows the PIT histogram and the CDF of the PIT in a simulated example:

we took the forecast coinciding with the true data generating process, but

standard PIT is not uniform.

A correction in correspondence to zero observations can be applied ei-

ther with a randomized or a non-randomized approach. The former solution

simply randomizes the PIT in zero, substituting the predicted probability of

zero P0 with v P0 where v ∼ U [0, 1]; in practice, this corresponds to draw

the value of PIT in zero from a uniform distribution on [0, P0]. In this way,

the peak on P0 of the PIT CDF evident in the left panel of Figure 4.1 is

redistributed on [0,P0], as shown in Figure 4.2.
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Following a non-randomized approach instead, the whole CDF of the PIT

is to be computed for each observation: when y = 0 the proposal of Czado et

al. (2009) is maintained (see Section 3.1.1), while in correspondence to pos-

itive observations the degeneration of (3.3) to a step function is considered:

F PIT (u|y, y = 0) =











0 u ≤ 0

u/P0 0 ≤ u ≤ P0

1 u ≥ P0

F PIT (u|y, y 6= 0) =

{

0 u < F (y)

1 u ≥ F (y)

(4.2)

We recall from (4.1) that F is the predictive CDF of the whole likelihood

of the two-part semicontinuous model. The mean PIT is thus obtained by

aggregating over the observations {y1, . . . , yn} and the respective PIT CDFs

{F PIT (u|y1), . . . , F
PIT (u|yn)}:

F̄ (u) =
1

n

n
∑

i=1

F PIT (u|yi), 0 ≤ u ≤ 1. (4.3)

Then, a number J of bins for the PIT histogram is chosen, usually 20, and the

frequencies fj, j = 1, . . . , n are calculated according to (3.5) as suggested in

Czado et al. (2009). As already explained, while the randomized PIT slightly

changes according to the draws of the U variable, the non-randomized PIT

provides a fixed and reproducible diagnostic tool, not affected by random

fluctuations. Figure 4.3 reports the non-randomized PIT for the previous
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Figure 4.2: PIT randomized in zero applied to a two-part model with Gamma

specification on positive values with P0=0.4, shape=2 and scale=0.2.
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simulated example.

Correct non−randomized PIT
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Figure 4.3: Non-randomized PIT applied to a two-part model with Gamma

specification on positive values with P0=0.4, shape=2 and scale=0.2.
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Numerical tools for assessing probabilistic calibration: proper

scoring rules

In this paragraph we review the proper scoring rules examined in Section

3.1.2 for the special case of precipitation. When studying this phenomenon,

a proper Lebesgue density cannot be defined due to the positive probabil-

ity on zero; nevertheless, the Logarithmic Score can be computed by taking

f pred(0) = P0 and f pred(yobs|yobs 6= 0) = F ′(yobs), with F being differentiable

on the positive semiaxis.

In contrast, Dawid and Sebastiani score is not suitable for assessing rain-

fall predictions, since the two-part semicontinuous nature of predictive dis-

tributions allows to assign probability one to the value zero, thus making the

variance-covariance matrix not invertible.

Brier Score is widely used for verifying the ability in detecting the pres-

ence of rain (Ω = (0,+∞)). Its integral over all possible thresholds, i.e.

the continuous ranked probability score, is the most recommendable scoring

function for assessing overall predictive performances. Due to the domain

of precipitation distribution, the support of the integral is reduced to the

positive semiaxis:

CRPS(F, y) =

∫

[0,+∞)

BS(F, {y ≤ x}) dx =

∫

[0,+∞)

(F (x)− I{y≤x})
2 dx. (4.4)

Brier Score plot and Quantile Decomposition plot provide useful deeper in-

sights into CRPS results.

4.1.2 Point forecasts and predictive intervals

Precipitation distributions are asymmetric, skewed and subject to the

presence of outliers. The mean is thus not a good choice, since it lacks in

robustness; therefore, even though the MSE can be useful for giving more

weight to higher errors, in case of precipitation forecasting the median can

be a better synthesis than the mean. In any case, the use of MSE and MAE

computed on the predictive mean and median, respectively, is correct, since
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they are consistent with these functionals also in the two-part semicontin-

uous case. The use of quantiles is widespread in the field of precipitation

forecasting. Consistent scoring functions are proposed in Section 4.1.2 and

can also be used without the need for modifications. In many meteorological

applications skill scores are used for normalizing results with respect to a

reference method. Nevertheless, skill scores are in general not consistent; it

is thus recommendable to rely on the raw scores, which also maintain full

information about the results.

The assessment of predictive intervals for precipitation is challenging. In

particular, the computation of coverage requires care, due to the mass of

probability on zero. In fact, when dealing with continuous distributions, the

inclusion of the extremes of the interval has no interest since the probability

of an observation being equal to one of them is always zero. In case of pre-

cipitation forecasting instead, the probability P0 of observing zero is positive,

and the lower bound of credibility intervals is often zero. This generates trou-

bles when calculating the coverage: it is necessary to define whether the left

extreme is included or not, and if the wrong decision is taken, the coverage

will not equal the nominal level α even when the predictive distribution is

the true one. For example, focussing on centered intervals, the inclusion of

the left extreme in the credibility interval implies the inclusion of the left tail,

which corresponds to a probability of (1− α)/2 that should not be ascribed

to the interval.

One possible solution is the randomization of the inclusion of the left extreme

when it coincides with zero. This corresponds to compute the percentage P0in

of zero observations that must be ascribed to the interval; then, a Bernoulli

variable with probability P0in of “1” exit is extracted, and only the observa-

tions corresponding to a 1 exit are ascribed to the credibility interval. More

precisely, when computing the coverage of a centered interval of level α, three

different situations can occur:

a) if P0 ≤ (1 − α)/2, then the confidence interval entirely falls into the

continuous part of the density; thus no problems arise and the coverage

is computed as usual as the percentage of observations falling into the
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interval;

b) if (1− α)/2 < P0 < 1− (1− α)/2 = (1 + α)/2, then P0in = (P0 − (1−

α)/2))/P0, in order to remove the left tail;

c) if P0 ≥ (1+α)/2, then the interval degenerates to zero, and the discrete

peak of probability on zero also includes both the left tail and part of

the right tail of the distribution that should be left apart; for this

reason, P0in = (P0 − (1− α)/2 + ((1− α)/2− (1− P0)))/P0 = α/P0.
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Figure 4.4: Issues arising when computing the coverage of a centered interval

in case of a two-part model with Gamma specification on positive values:

attention must be put to the left tail in cases b) and c) (blue), and to the

right tail in case c) (red and green).

Nevertheless, randomization procedures provide non-fixed results; we rather

suggest a non-randomized approach based on non-randomized PIT. Cover-

ages in fact can be computed through calculation of the area underlying the

desired portion of [0,1]. For example, in case of centered intervals of level α,

the coverage can be recovered as

Coverageα = F
(1 + α

2

)

− F
(1− α

2

)

. (4.5)

Finally, in case of precipitation forecasting, the assessment of the per-

formances of a model in terms of lower prediction intervals coincides with

checking the ability in predicting quantiles; as showed in Section 4.1.2, this

can be done using piecewise linear scoring functions.
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4.2 Communicating forecasts

A crucial issue for every forecaster is the communication of results. Pre-

dictions can be provided in the form of point or probabilistic forecasts, ac-

cording to specific needs; in the former case, a quantification of uncertainty is

fundamental, while in the latter it is necessary to establish guidelines explain-

ing how to efficiently illustrate and summarize the distributions. In 2005 in

USA the National Weather Service (NWS) commissioned the National Re-

search Council (NRC) to provide recommendations for effective estimates

and communication of uncertainty in weather and climate forecasts; this re-

sulted in the publication of “Completing the Forecast: Characterizing and

Communicating Uncertainty for Better Decisions Using Weather and Climate

Forecasts” (2006). Interdisciplinary studies, involving experts in meteorol-

ogy, physics, statistics and psychology, have been developed in the follow-

ing years for providing reliable predictions in easy-to-understand formats.

The University of Washington Probability Forecast project (PROBCAST,

see Mass et al. 2009) was a test bed for exploring the best approaches for

communicating high-resolution uncertainty information to a large and varied

user community. Its web site (online at www.probcast.com) is the front end

of a sophisticated modelling and postprocessing data system, and provides

an easy-to-interpret interface for the probabilistic forecasts.

In this Section, we briefly revise main achievements in the field of rain-

fall forecasts communication; probabilistic, point and interval forecasts are

investigated.

4.2.1 Predictive distributions

The quest for good probabilistic forecasts has become a driving force in

meteorology over the past two decades (Gneiting and Raftery, 2005). As

sketched in Chapter 1, models for precipitation forecasts can be developed

and estimated in the frequentist and in the Bayesian framework. In both

cases, the mixed discrete-continuous nature of the distribution often encour-

ages to split modelling (and thus the estimation and the prediction) in two

steps: firstly, the presence or absence of rain is assessed; then, in the lo-
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cations and instants in which it is raining, the positive amount of rain is

analysed. We remark that an appropriate Bayesian approach is preferable

since it ensures to include all the steps in a comprehensive framework and to

keep track of all the uncertainties, through the use of full distributions (also

for the parameters).

When ensemble forecasts are produced, they can be seen as (small) sam-

ples from the predictive distribution. Some postprocessing techniques work

individually on the ensemble members, thus leaving the dimensionality un-

changed (see for example Diomede et al. 2013); on the other hand, most sta-

tistical procedures, like BMA and EMOS, perform calibration of the whole

ensemble turning it into a predictive distribution, whose analytical form is

known. The present work focusses on this second case.

Thus, in each location and each time instant, the output consists in a pre-

dictive distribution, which is available as a big sample or analytically. Be-

fore trying to summarize it, statisticians have the task of communicating

the customers the richness deriving from the availability of a whole distri-

bution: every aspect of the phenomenon can be investigated and evaluated

when the complete information about the outcome, and its uncertainty, is

provided. Predictions are made on uncertain events, and thus can not be

deterministic by definition; awareness of the necessity of probabilistic fore-

casts is growing (see Gneiting and Katzfuss 2014 for an overview) but still

needs to be strengthened. When possible, communicating the whole pos-

terior distribution is the best solution. Softwares often provide only some

“relevant” summaries; however, what is relevant depends on the customer’s

interest and, possibly, on the circumstances, since new situations or needs

may require new summaries, which can be easily obtained if all information

is available. As a general suggestion, it would be useful to always provide a

function for calculating quantiles and extracting a sample from the predictive

distribution; such tools would also allow a straightforward exploitation and

analysis of transformed variables.

When results must be communicated to a wide and diversified public,

possibly not possessing a specific education, clear graphical displays can be

useful. EPS-grams are the tool ECMWF uses for summarising ensemble pre-

dictions: they consist in a sequence of Box and Whisker plots corresponding
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to successive time instants, showing the median, the 25th and 75th percentiles

in the thicker part, the 10th and 90th percentiles in the narrower boxes, and

the maximum and minimum (see Figure 4.5). Examples can be found in

the official website (http://old.ecmwf.int/products/forecasts/guide/

Ten_day_EPSgrams.html). Schefzik et al. (2013) develop a similar tool in

(a)

(b)

Figure 4.5: Structure of a Box and Whisker plot (a) and an EPS-gram (b)

referring to Strasbourg, 12-22 July 2011; figures are taken from ECMWF

website.

the right panel of their Figure 4, dropping the first and third quartiles but

inserting marks denoting the predictions from all ensemble members and the

realized outcome. The same additional information is included when plot-

ting the predictive density at a single time instant, and helps the forecasters

in understanding how the predictions and their correction via calibration

are performing. EPS-grams are a common tool in meteorology. In some

cases, successive Box plots are connected by lines highlighting the tempo-

ral development of the forecasts, or predictions provided by different sources

are reported (see for example the Meteorological Service of Canada web-

site http://weather.gc.ca/ensemble/naefs/EPSgrams_e.html). Similar

visualization tools have been developed for functional forecasts; in that case,

a definition of the rank of the curves is needed in order to provide confidence
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bands (see for example Sun and Genton 2011).

As outlined in the introduction, our main interest relies in univariate predic-

tions; nevertheless, some suggestions for displaying predictions corresponding

to different locations at the same time can be useful. A map with geolocated

Box and Whisker plots can be drawn, but it will result too crowded in case

of many analysed locations, and even illegible in case of grid predictions.

In this case, we suggest to split the EPSgrams information in three or four

different maps (for each leading time), reporting a relevant quantile (.05,

.5, .95) or the mean of the predictive distribution. PROBCAST website for

example produces a variety of forecast maps. Moreover, determining the

best way to communicate the probability of precipitation was a main task

of PROBCAST project. Web-based surveys and psychological studies (see

for example Morss et al. 2008) revealed that users benefit of direct access

to uncertainty information which prevents them from relying on their own

subjective estimates of uncertainty. Extensive testing of several visual pre-

sentation formats revealed that interpretation errors are reduced when the

chance of observing zero is made explicit, i.e. reporting the probability of

facing a dry hour together with the one of rain occurrence; in fact part of

the public is not familiar with the concept of probability, but a simple and

complete communication allows to deliver information about the uncertainty

of rain occurrence.

4.2.2 Point forecasts and predictive intervals

Despite the superiority of probabilistic forecasts, many practical situa-

tions require single valued point forecasts. At the same time, uncertainty

estimates associated to forecasts are fundamental for a correct assessment

and understanding of predictions. Moreover, explicit uncertainty informa-

tion, both in the form of probability of exceeding a certain threshold and

of credibility intervals, benefits users in everyday decision-making allowing

to better distinguish between situations in which a target event is likely or

unlikely. Psychological tests revealed that people have the background knowl-

edge necessary to understand explicit uncertainty forecasts, being aware of
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the uncertainty inherent in deterministic forecasts as well as of the factors

that tend to increase uncertainty, including lead time and deviations from

climatology (see for example Morss et al. 2008, Joslyn and Savelli 2010).

Uncertainty forecasts, in the form of calibrated predictive intervals for in-

stance, can provide a better understanding of where to expect potential un-

certainty and allow users to tailor the forecast to their own tolerance for risk.

Moreover, predictive intervals increase trust in the forecast with respect to

traditional point forecasts (Joslyn and Savelli 2013). Since users without a

specific education might encounter difficulties in interpreting credibility in-

tervals, displays of forecasts should be simple, and simple text format seems

to be more effective than visualization tools in this case (Joslyn et al. 2013).

The concept of complementary probability is not always straightforward, as

already explained in the previous paragraph; moreover, people mistrust pre-

dictive interval forecasts as they mistrust deterministic forecasts, tending for

instance to expand the forecasted range, considering it as an underestimation

of the real one. Interestingly, presenting the probability of obtaining a result

beyond a certain threshold, or out of a certain interval, turns out to be more

effective than defining the probability of falling within a range.

When credibility intervals are communicated, the centered ones are the

most common choice. In case of two-part semicontinuous models, HPD inter-

vals can not be easily considered, due to the mixed nature of the distribution.

More precisely, HPD intervals would be well defined if the chosen density on

positive amounts is decreasing; otherwise, a single point (zero) with positive

probability may be part of the “interval”, thus requiring an appropriate mea-

sure definition. For example, in the case of Gamma specification for positive

rainfall amounts, a straightforward use of HPD intervals is possible if the

shape parameter is greater then one.
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Chapter 5

Results for rainfall spatial

prediction in the

Emilia-Romagna Region

The three model specifications (“base”, “mean” and “SW”) presented in

Chapter 2 are applied to the 8 selected rainfall events in Emilia-Romagna

(see Section 2.1 for details). This Chapter examines the results obtained by

exploiting the tools introduced in Chapters 3 and 4. For a more compre-

hensive understanding of the proposed framework and of the relevance of its

spatial connotation, an additional benchmark model is added, denoted by

“No Sp” (No Space); it corresponds to a simple model in which the spatial

random effects are supposed to be uncorrelated:

ǫ|σ2
ǫ , φǫ ∼MVN(0, σ2

ǫ Id), α|σ2
α, φα ∼MVN(0, σ2

αId) (5.1)

with Id denoting the identity matrix. Equation (5.1) replaces equations (2.4)

and (2.8).

The analysis of the results is organized as follows. Section 5.1 provides an

overview of the obtained estimates for the most interesting parameters; more

precisely, the role of radar in the regressions in the various model specifica-

tions is investigated, and examples of maps of the spatial random effects are

provided. Sections 5.2, 5.3 and 5.4 are devoted to the assessment of the pre-

dictive performances on 50 randomly selected validation sites for each hour;

59
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probabilistic, point and interval forecasts are evaluated and compared, and

some reconstructed rainfall fields are shown.

5.1 Analysis of relevant model components

In this section, an insight into the estimates for some coefficients is pro-

vided. Our motivating problem is rainfall prediction. Therefore, investiga-

tion of the single model components is intended as a tool for achieving a

better understanding, which may help for future development. After verify-

ing that convergence has been reached by all the posterior chains (see Section

2.3 for details), precise knowledge of the value of all the parameters is not

of interest, also due to the difficulty in their interpretation deriving from the

complexity of the hierarchical structure. We focus on understanding the in-

fluence of radar in the various steps of rainfall reconstruction. The aim is to

gain knowledge about the way in which the several model specifications are

able to exploit radar information, in order to highlight interesting behaviour

or trends. We recall from Section 2.2.1 and 2.2.2 that the coefficients γ1 and

γ2 quantify the influence of the logarithm of radar in the probit regression

for rainfall probability, while coefficients β1 and β2, and β3 in Model “mean”

determine the effect of radar on rain accumulation in the log scale; remember

they are all hour-specific. Our Bayesian approach provides whole posterior

distributions for these coefficients, carrying information about their uncer-

tainty. We choose boxplots to summarize their behaviour for each of the 69

analysed hours. We specify that each of the 8 chosen events corresponds to a

block of successive hours, but events are separated one from the other; thus,

a temporal evolution of the coefficient might be followed within an event but

not across them.

Figures 5.1 and 5.2 show the effect of radar on rain probability in Models

“No Sp” and “base”; results for Models “mean” and “SW” are not reported

here since they coincide with Model “base” for what concerns rain probabil-

ity. In fact, all the four model specifications share Equation (2.3), but while

“base”, “mean” and “SW” provide for spatial correlation in the random ef-

fects according to Equation (2.4), the benchmark Model “No Sp” assumes ǫ
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is uncorrelated, following Equation (5.1). Both figures show the coefficients

are significant, with boxplots non crossing the axis y = 0 (apart form the last

one), reported as a dashed horizontal line. Differences are evident between

the events, but also within them, confirming the choice of modelling each

hour separately was appropriate: a common event-specific coefficient would

hide precious hourly variability. Imposing a temporal evolution for the coef-

ficient within an event might be an interesting attempt in the future, even if

the boxplots reveal a non-negligible irregularity, with some hours performing

very differently for the previous and successive ones. Model “base” provides

sharper posterior distributions if compared to Model “No sp”. Spatial cor-

relation thus turns out to be a relevant feature; capturing it via Equation

(2.4) helps in ascribing more precise coefficients to the covariate containing

radar information. The effect of the inclusion of correlated spatial effects on

the value of the coefficients is not uniform in time. In some hours, like the

second one of Event E2, a larger γ2 in Model “base” denotes an enhancement

of the role of radar; nevertheless, in the majority of the cases, the values of

radar coefficient is smaller in the more structured models where the spatial

random effects ǫ are able to capture a lot of information, causing a reduction

of radar relevance as a side effect. Later in this Section, examples of maps

of the random effects are provided; their complex spatial patterns in Models

“base”, “mean” and “SW” confirms their cardinal role in modelling rainfall

probability, while in Model “No Sp” they only consist in random errors which

would not be able to drive the modelling of rainfall probability. We specify

that the decrease in the width for γ2 intervals is not compensated by an in-

crease in the overall uncertainty, as shown in the following (Section 5.4).

We finally notice the coefficients are all positive, as expected, reflecting a

positive correlation between rain probability and radar measurements.

In a similar fashion, Figures 5.3, 5.4, 5.6 and 5.5 show boxplots of the co-

efficient for the logarithm of radar in the regression for rainfall accumulation.

Comments for Models “No Sp”, “base” and “SW” are similar to the previ-

ous ones, with coefficients generally being different from zero, and showing

differences across and within events. Also in this case, the coefficients are

positive. A decreasing pattern, sometimes preceeded by a short peak, might

be driven by the evolution of the rainfall event. Future development of the
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Figure 5.1: Boxplots of hourly coefficient γ2 obtained with Model “No sp”.
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Figure 5.2: Boxplots of hourly coefficient γ2 obtained with Model “base”.

work may try to address temporal modelling of the parameters; such attempt

would be not trivial, due to the different behaviours in the various events,

with E2, E5 and E6 being quite irregular.
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Figure 5.3: Boxplots of hourly coefficient β2 obtained with Model “No sp”.
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Figure 5.4: Boxplots of hourly coefficient β2 obtained with Model “base”.
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Figure 5.5: Boxplots of hourly coefficient β2 obtained with Model “SW”.
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A separate discussion is needed for Model “mean”, for which the two

coefficients β2 and β3 are shown, the former referring to radar value in the

pixel containing the location of interest, the latter referring to the mean over

the 8 pixels surrounding that location. The boxplots in Figure 5.6 and 5.7 are

partly beyond, partly below, and sometimes crossing the x-axis, with a main

common feature: when a big coefficient β2 is estimated for the contingent

pixel, the corresponding coefficient β3 for the neighborhood is small, often

negative, and vice-versa; moreover, when one of the two coefficients is not

significant, the other one is positive. This behaviour reflects the split of

relevant radar information into the two parts, corresponding to the contingent

radar pixel, and the mean over its 8 neighbors, respectively. A highly variable

behaviour both across and within the events is observed: no general rule can

be easily inferred about the predominance of one of the two elements over

the other.

Finally, since Model “SW” is the least intuitive but most powerful of

the four presented specifications, we provide some examples of the estimated

weights for the radar pixels. We recall from Section 2.2.2 that this model

takes as a covariate a weighted mean of the raw radar map values; since such

weights are stochastic, and driven by a spatial process defined on the whole

grid, the weighting scheme is allowed to be asymmetric and also to change

across the map. This means that, for example, more weight can be assigned

to the pixels standing on the West of a certain location of interest, but when

looking at another location (in the same hour) its Northern pixels can be

the most relevant ones and gain the biggest weights. Moreover, not only the

orientation but also the shape of the weighting scheme can vary across the

map. Figure 5.8 shows the posterior mean of the latent Gaussian process Q

for the 18th September 2010 at 5 p.m., defined over the radar grid, driving the

weights for that hour. Figure 5.9 highlights nine of the fifty validation sites

on the radar map. The weights for the radar pixels in the neighbourhoods of

such locations is shown in Figure 5.10: it reports the posterior means for the

weights of the 49 nearest pixels, the central one containing the validation site

(the other pixels in the 49000-dimensional map have a non relevant weight).

Notice that the weight of the central pixel significantly changes across the

map; in particular, in panel “6” the pixels on the East of the validation site
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Figure 5.6: Boxplots of hourly coefficient β2 obtained with Model “mean”.
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Figure 5.7: Boxplots of hourly coefficient β3 obtained with Model “mean”.

has the same relevance as the central one.

The flexibility ensured by model “SW” can help in correcting errors due to

the topographic differences in the region of interest, and potentially to the

displacement of rainfall measurements caused by wind. Its positive impact

on the predictive performances of the Model is discussed in Sections 5.2 and

5.3.
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Figure 5.8: Latent Gaussian process Q on 18/09/2010 at 5 p.m.

Figure 5.9: Radar map on 18/09/2010 at 5 p.m.; 9 locations are numbered,

for which the weighting scheme is reported in Figure 5.10.



5.1 Analysis of relevant model components 67

Figure 5.10: Radar weighting on 18/09/2010 at 5 p.m. for the 9 validation

sites highlighted in Figure 5.9.
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To conclude the Section, we provide some insights into the random effects

characterizing the four model specifications. First of all, we recall ǫ and α

are defined on the spatial domain, assuming a random value ǫs and αs on

each location s of interest. Therefore, when reconstructing the whole rainfall

field, their posterior mean can be visualized via maps; as an example, in

Figures 5.11, 5.12, 5.13 and 5.14 we report their estimated mean values in

two hours belonging to Event E1 and E3. Rainfall data for these two hours

are shown in Figures 5.23 and 5.27 respectively. As already noticed, Models

“mean” and “SW” coincide with “base” for what concerns rain probability,

thus we only report ǫ once. According to Equation 5.1, in Model “No Sp” the

components of ǫ are spatially uncorrelated, thus generating random noise, as

shown in Figures 5.11 and 5.12. Spatial correlation is instead evident in the

panels corresponding to Model “base”. The same rationale holds for α, with

Model “No Sp” retrieving uncorrelated random noise. The almost uniform

maps in the left panels of Figures 5.13 and 5.14 are the result of a unique

legend for four models; Figure 5.15 shows the maps of α for Model “No Sp”

in the two selected hours with more appropriate colors. Spatial patterns

characterize the other three models; differences in the regression determining

rainfall amounts, with an increasing exploitation of radar information, have

consequences on the spatial effect. In particular, while Models “base” and

“mean” are very similar, the patterns for Model “SW” are slightly more ir-

regular and noisy; this is coherent with the role of α, which represents the

spatial information not explained by the covariates. More precisely, in Model

“base” α’s task is burdensome, since it adjusts for main local discrepancies

between the observed value and the estimated linear transformation of the

contingent radar value (in the log scale); when radar influence is more effec-

tively included, as in Model “SW”, α should only capture residual patterns

and adjust for local fluctuations. Notice that ǫ and α assume both positive

and negative values.
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Figure 5.11: Spatial effect for rainfall probability obtained with Models “No

Sp” and “base” on 19/09/2010 at 05 p.m.: mean of the posterior predictive

distribution of ǫ.

Figure 5.12: Spatial effect for rainfall probability obtained with Models “No

Sp” and “base” on 18/09/2010 at 01 a.m.: mean of the posterior predictive

distribution of ǫ.
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Figure 5.13: Spatial effect for rainfall amounts obtained with the four models

on 19/09/2010 at 01 a.m.: mean of the posterior predictive distribution of

α.

Figure 5.14: Spatial effect for rainfall amounts obtained with the four models

on 18/09/2010 at 5 p.m.: mean of the posterior predictive distribution of α.

Figure 5.15: Spatial effect for rainfall amounts obtained with Models “No

Sp” on 19/09/2010 at 01 a.m. and on 18/09/2010 at 5 p.m.: mean of the

posterior predictive distribution of α.
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5.2 Probabilistic prediction

In this Section and in the following ones, an investigation of the predictive

performances is provided by focussing on each of the 8 events individually,

preserving the natural grouping of the hours and highlighting the differences

in performance in the various cases; moreover, results on the whole pool of

hours are shown, in order to give an overall idea of how the different model

specifications are performing, and simplify their comparison. In particular,

this Section is devoted to the analysis of probabilistic predictions, which are

available in the form of a big sample from the posterior predictive distribu-

tion, as explained in Section 2.4. Section 5.2.1 focuses on the probability of

rain and the prediction of rainfall occurrence, while Section 5.2.2 addresses

the whole predictive distributions, investigating probabilistic calibration.

5.2.1 Assessment of rainfall probability

The three model specifications presented in Chapter 2 all share Equations

(2.3) and (2.4), thus they all predict the same probability of rain; the bench-

mark Model “No Sp” instead assumes the random effect ǫ follows Equation

(5.1). Therefore, in this Section we only show the performances of Models

“base” and “No Sp” in terms of prediction of rainfall probability (the other

two models are equal to “base”).

First of all, Figure 5.16 reports the result of function “reliability.plot” of

the R package “verification”. The reliability plots show consistence of the

predicted versus the conditioned rainfall occurrence, with the red dots dis-

tributed near the bisector. A deeper insight is given by Figure 5.17, which

shows results for each event; Model “base” shows an overall improvement

with respect to Model “No Sp”. Sharpness histograms are reported in the

right-bottom of the figure and reveal a bold (and thus desirable) behaviour,

with probabilities mainly concentrated on 0 and 1; this feature is more evi-

dent when correlated spatial effects are included in the model.
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Figure 5.16: Reliability plots obtained with the different model specifications

on all the analysed hours pooled together.

Table 5.1 reports the Brier Scores relative to the zero threshold, showing

the inclusion of spatially correlated random effects in the model improves the

ability in predicting rainfall occurrence, as remarked in Bruno et al. (2014).

BS E1 E2 E3 E4 E5 E6 E7 E8 tot

No Sp 0.099 0.086 0.098 0.083 0.115 0.116 0.108 0.172 0.117

Base 0.079 0.069 0.094 0.070 0.108 0.090 0.091 0.086 0.086

Table 5.1: Brier Score computed on the 50 selected validation sites separately

on each of the 8 Events (E1-E8) and on all the analysed hours together (tot).
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5.2.2 Probabilistic calibration

Probabilistic calibration is achieved, as confirmed by the nearly uniform

shape of non-randomized PIT histograms displayed in Figure 5.18. No rele-

vant differences distinguish the four model specifications, neither main dis-

crepancies emerge from the separate analysis of the 8 events (Figure 5.19).
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Figure 5.18: Non-randomized PIT histograms obtained with the different

model specifications on all the analysed hours pooled together.

Numerical quantification of both probabilistic calibration and sharpness is

provided by the Continuous Rank Probability Score (CRPS), which is shown

in Table 5.2. It allows comparison between models: spatial correlation of

the random effects turns out to be a fundamental feature, determining a

noticeable reduction of CRPS when included in the model. The relevance

of neighbouring information, in particular when exploited through stochastic

weighting, emerges more evidently from Figure 5.20, where the quantile and

threshold decompositions of the CRPS are shown; the blue line associated

to Model “SW” is lower than the others, denoting smaller values of the

Brier Scores corresponding to different thresholds (left-hand panel) and of the

Quantile Scores corresponding to several quantile levels (right-hand panel).

Main differences around the central quantiles are evident; the superiority of

the median obtained with “SW” over the other Models will also be confirmed

by the analysis of Mean Absolute Error in Section 5.3. Finally, Figures

5.21 and 5.22 report the Quantile and Brier Score plots analysing the events

separately.
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CRPS E1 E2 E3 E4 E5 E6 E7 E8 tot

No Sp 0.440 1.011 0.594 0.697 0.826 0.262 0.491 0.297 0.560

base 0.249 0.665 0.419 0.563 0.684 0.184 0.360 0.174 0.393

mean 0.248 0.656 0.421 0.553 0.705 0.185 0.363 0.176 0.395

SW 0.251 0.661 0.409 0.519 0.658 0.182 0.348 0.175 0.383

Table 5.2: Continuous Rank Probability Score computed on the 50 selected

validation sites separately on each of the 8 events (E1-E8) and on all the

analysed events together (tot).
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Figure 5.20: Comparison of the Brier Score plots and quantile decomposition

plots obtained with the different model specifications on all the hours and

events pooled together.



5.2 Probabilistic prediction 77

E1

0 5 10 15 20 25 30

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Threshold (mm)

B
ri

e
r 

s
c
o
re

No sp

base

mean

SW

E2

0 5 10 15 20 25 30

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Threshold (mm)

B
ri

e
r 

s
c
o
re

No sp

base

mean

SW

E3

0 5 10 15 20 25 30

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Threshold (mm)

B
ri

e
r 

s
c
o
re

No sp

base

mean

SW

E4

0 5 10 15 20 25 30

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Threshold (mm)

B
ri

e
r 

s
c
o
re

No sp

base

mean

SW

E5

0 5 10 15 20 25 30

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Threshold (mm)

B
ri

e
r 

s
c
o
re

No sp

base

mean

SW

E6

0 5 10 15 20 25 30

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Threshold (mm)

B
ri

e
r 

s
c
o
re

No sp

base

mean

SW

E7

0 5 10 15 20 25 30

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Threshold (mm)

B
ri

e
r 

s
c
o
re

No sp

base

mean

SW

E8

0 5 10 15 20 25 30

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Threshold (mm)

B
ri

e
r 

s
c
o
re

No sp

base

mean

SW

Figure 5.21: Comparison of the Brier Score plots obtained with the different

model specifications on the 8 Events.
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Figure 5.22: Comparison of the quantile decomposition plots obtained with

the different model specifications on the 8 Events.
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5.3 Point predictions

Both the mean and the median of the posterior predictive distribution

are taken as point predictions, and appropriately evaluated via Root Mean

Square Error (RMSE) and Mean Absolute Error (MAE), respectively; pre-

dictions are compared with the amounts observed by rain gauges on the 50

considered validation sites for each hour. Event-specific and global results

are reported, showing overall satisfying performances; we remark that they

are expressed in mm. Differences among events reveal difficulties in predict-

ing higher rainfall amounts, most of all in cases in which radar information is

far from the gauge measurement. Nevertheless, in all cases radar calibration

(with the meaning of correction of indirect measurements, as in Section 1)

has been overall successful. The first rows of Tables 5.3 and 5.4 report the

scores computed on radar information; more precisely, for each validation

site s, we take radar value RP (s) in the pixel containing s as point prediction.

Each of the proposed models outperforms raw radar in terms of MAE, and

the three models with spatial correlated effects also perform noticeably bet-

ter in terms of RMSE. The inclusion of neighbouring information turns out

to be relevant, with Model “SW” returning the lowest scores, in particular

in Events 4 and 5, in which more complex rainfall patterns are observed, due

to the convective nature of the phenomenon.

RMSE E1 E2 E3 E4 E5 E6 E7 E8 tot

radar 1.603 2.928 2.249 3.660 3.457 1.216 2.034 1.222 2.346

No Sp 1.247 3.260 1.717 2.308 2.828 0.878 1.404 0.783 1.925

base 0.589 2.306 1.434 2.052 2.648 0.728 1.077 0.602 1.546

mean 0.595 2.283 1.435 2.032 2.696 0.712 1.076 0.603 1.547

SW 0.626 2.281 1.400 1.939 2.566 0.729 1.039 0.586 1.506

Table 5.3: Root Mean Square Error computed on the 50 selected validation

sites separately on each of the 8 Events (E1-E8) and on all the analysed hours

pooled together (tot).
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MAE E1 E2 E3 E4 E5 E6 E7 E8 tot

radar 0.935 1.400 1.376 1.854 1.540 0.678 0.917 0.630 1.109

No Sp 0.618 1.366 0.817 0.923 1.185 0.366 0.689 0.415 0.773

Base 0.326 0.890 0.571 0.773 0.937 0.232 0.475 0.234 0.529

Mean 0.313 0.880 0.575 0.753 0.966 0.244 0.479 0.240 0.531

SW 0.314 0.883 0.555 0.692 0.860 0.228 0.458 0.234 0.508

Table 5.4: Mean Absolute Error computed on the 50 selected validation sites

separately on each of the 8 Events (E1-E8) and on all the analysed hours

together (tot).
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Examples of reconstructions of the rainfall field are provided in Figures

5.24 and 5.28 for the four model specifications on the two hours analysed in

detail in Section 5.1; the original rain gauge and raw radar data are shown

in Figures 5.23 and 5.27. The maps consist in the means of the posterior

predictive distributions in the centroids of radar pixels. A visual comparison

shows that Model “No Sp” operates a simplification of the rainfall patterns

identified by radar, while the other model specifications are able to smooth

radar while preserving the richness of its spatial information. More in de-

tail, Models “base” and “mean” originate very similar results, the latter being

slightly smoother, thanks to the additional information about the neighbour-

ing pixels; the map obtained with Model “SW” better succeeds in capturing

spatial patterns and high intensities. It is interesting to highlight that the

proposed models also allow to predict rainfall in areas where no rain gauges

are available, as in the Eastern part of the radar circle which covers part

of the Adriatic Sea. Figures 5.25 and 5.29 show the predictive bias in the

validation sites. Predictive errors are small and around zero in the former

example, while in the latter a point of relevant underestimation is detected,

in which radar overestimates rainfalland the model correctly intervenes in

reducing its value, but an excessive correction causes underestimation in the

nucleus of the storm.

Maps of some quantiles from the predictive distribution for the same two

hours are provided in Figures 5.26 and 5.30.
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Figure 5.23: Gauge measurements (left panel) and radar grid (right panel)

on 19/09/2010 at 01 a.m.

Figure 5.24: Reconstructed field with the four model specifications on

19/09/2010 at 01 a.m.

Figure 5.25: Predictive bias in the validation sites with the four model spec-

ifications on 19/09/2010 at 01 a.m.
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Figure 5.26: Map of the 25th, 50th, 75th and 90th predictive percentile with

the four model specifications on 19/09/2010 at 01 a.m.
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Figure 5.27: Gauge measurements (left panel) and radar grid (right panel)

on 18/09/2010 at 05 p.m.

Figure 5.28: Reconstructed field with the four model specifications on

18/09/2010 at 05 p.m.

Figure 5.29: Predictive bias in the validation sites with the four model spec-

ifications on 18/09/2010 at 05 p.m.
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Figure 5.30: Map of the 25th, 50th, 75th and 90th predictive percentile with

the four model specifications on 18/09/2010 at 05 p.m.
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5.4 Predictive intervals

Tables 5.5 and 5.6 report the average width of the 90% and 50% cen-

tral predictive intervals, showing that modelling correlation in the spatial

effects allows a reduction in the amplitude of the intervals, thus ensuring

sharper predictions. Differences between models “base”, “mean” and “SW”

are not very relevant, with “SW” retrieving slightly bigger intervals. This be-

haviour is not unexpected since the uncertainty in the results obtained with

the Bayesian procedure derives from the consideration of all the sources of

uncertainty, and the last model also includes the stochastic process Q. More-

over, such small increase in the interval is also associated with an increase

in the coverage, computed here from the non-randomized PIT as explained

in Section 4 and shown in Tables 5.7 and 5.8; coverages are overall close to

the nominal level as desired. A further insight into the amplitude of the

predictive intervals is provided by the boxplots of their width, reported in

Figures 5.31 and 5.32; large intervals associated to huge rainfall amounts can

be object of investigation for future development.

avgwd 90% E1 E2 E3 E4 E5 E6 E7 E8 tot

No Sp 2.573 5.056 3.325 3.942 4.042 1.582 2.830 1.876 2.805

Base 2.036 4.031 2.619 3.226 3.857 1.279 2.246 1.207 2.118

Mean 2.032 4.029 2.633 3.133 3.758 1.211 2.235 1.181 2.089

SW 2.130 3.994 2.694 3.248 4.318 1.303 2.267 1.217 2.180

Table 5.5: Average width of the 90% centered credibility intervals for the 50

selected validation sites separately on each of the 8 Events (E1-E8) and on

all the analysed events together (tot).
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avgwd 50% E1 E2 E3 E4 E5 E6 E7 E8 tot

No Sp 0.930 1.631 1.083 1.423 1.203 0.536 0.953 0.634 1.020

Base 0.761 1.451 0.947 1.143 1.268 0.442 0.793 0.433 0.868

Mean 0.764 1.469 0.952 1.131 1.251 0.427 0.789 0.426 0.866

SW 0.802 1.452 0.976 1.16 1.439 0.455 0.804 0.436 0.898

Table 5.6: Average width of the 50% centered credibility intervals for the 50

selected validation sites separately on each of the 8 Events (E1-E8) and on

all the analysed hours together (tot).

cov 90% E1 E2 E3 E4 E5 E6 E7 E8 tot

No Sp 0.906 0.905 0.899 0.899 0.914 0.900 0.895 0.906 0.903

Base 0.926 0.905 0.899 0.900 0.900 0.910 0.882 0.911 0.903

Mean 0.930 0.900 0.891 0.897 0.891 0.898 0.878 0.918 0.901

SW 0.929 0.904 0.915 0.894 0.897 0.905 0.891 0.918 0.908

Table 5.7: Non-randomized coverage of the 90% centered credibility intervals

for the 50 selected validation sites separately on each of the 8 Events (E1-E8)

and on all the analysed hours together (tot).

cov 50% E1 E2 E3 E4 E5 E6 E7 E8 tot

No Sp 0.503 0.514 0.504 0.507 0.520 0.525 0.463 0.474 0.469

Base 0.586 0.545 0.487 0.513 0.522 0.538 0.522 0.539 0.530

Mean 0.589 0.542 0.493 0.507 0.513 0.521 0.518 0.519 0.523

SW 0.580 0.529 0.511 0.542 0.539 0.536 0.519 0.530 0.532

Table 5.8: Non-randomized coverage of the 50% centered credibility intervals

for the 50 selected validation sites separately on each of the 8 Events (E1-E8)

and on all the analysed hours together (tot).
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Figure 5.31: Boxplots of the widths of the 90% credibility intervals obtained

with the different model specifications on the 8 Events.
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Figure 5.32: Boxplots of the widths of the 50% credibility intervals obtained

with the different model specifications on the 8 Events.
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Chapter 6

Conclusions

Spatial prediction of hourly rainfall via radar calibration is addressed

in the thesis. The existing literature is reviewed in Chapter 1: geostatis-

tical models exploiting radar information, like Kriging with External drift,

outperform methods only relying on rain gauge interpolation. The task of

merging data provided by different sources is challenging, especially when

spatial supports do not coincide; the change of support problem (COSP) has

become a very debated issue in recent years. The increasing availability of

data of various nature motivated statisticians to develop tools for address-

ing misalignment and efficiently exploiting all available information. The

downscaler approach proposed by Berrocal et al. (2011) provides an appeal-

ing solution, thanks to its flexibility in assigning spatially varying stochastic

weights to a gridded covariate; its definition at a point level allows to restrain

the complexity, thus preserving computational feasibility.

Most of the existing literature, including Kriging and the aforementioned

downscaler with stochastic weights, relies on the hypothesis of normality;

nevertheless, such assumption is not adequate when dealing with hourly pre-

cipitation. Gamma distribution is a rather common and suitable choice for

modelling rainfall amounts, thanks to its flexible shape driven by two pa-

rameters, which allows to reproduce the right skewness typical of rainfall

distributions. Nevertheless, a relevant amount of zero values characterizes

hourly rainfall and cannot be explained by a continuous distribution; a mixed

discrete-continuous specification should be exploited instead. Two-part mod-

89
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els constitute an appealing solution: their likelihood consists of a (positive)

probability on zero and a continuous distribution modelling positive amounts.

This tool has not been deeply explored when complex spatial processes are

involved. Part of our original contribution consists in the construction of

a Bayesian hierarchical model for hourly rainfall spatial prediction, with

a two-part semicontinuous specification. It allows direct modelling of rain

probability without the need for a deterministic threshold; radar is exploited

as a covariate in this stage, and correlated random effects capture spatial

patterns. At the same time, positive amounts of rain are modelled via a

Gamma distribution, whose mean is driven by radar via a spatial regres-

sion. In its basic formulation, introduced in Bruno et al. (2014) and here

denoted as Model “base”, rain gauges are punctually associated with the

radar cell containing their location. Nevertheless, the model allows for en-

hancements addressing the change of support problem in this non-Gaussian

setting. Neighbouring information is added via the mean of the 8 surround-

ing pixels (Model “mean”), or through a stochastic weighting of radar cells

driven by a latent Gaussian process defined on the whole grid (Model “SW”,

inspired by Berrocal et al. 2011). Details about the model structure are pro-

vided in Chapter 2. The model is defined on rain gauge locations only, thus

containing the complexity. Estimation is performed via Markov chain Monte

Carlo algorithms; its implementation in C language, together with the use

of BLAS and LAPACK algebraic libraries, allows for computational speed,

with estimation of Model “base” on 300 rain gauges completed in about ten

minutes, and reconstruction of the whole rainfall field (∼49,000 pixels) re-

quiring only one minute. Model “SW” is more computationally demanding,

but an efficient implementation, with its additional efforts restrained only to

some of the iterations, make estimation and prediction feasible in operational

time, too. R software is essentially exploited for managing and visualizing

data and results.

The aim of the work is rainfall prediction. Literature from Dawid (1984) en-

courages to produce and communicate full probabilistic predictions, rather

than point forecasts, since they deliver complete distributional information.

Our model succeeds in this, by providing large MCMC samples from the pos-

terior predictive distribution. We remark that our fully Bayesian approach
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guarantees a reliable assessment of uncertainty taking all the estimating

steps into account. Chapter 3 recalls the most important desired features

for probabilistic forecasts, like calibration and sharpness, and explains how

to evaluate them starting from a literature review. The assessment of prob-

abilistic forecasts is not trivial, due to the necessity of comparing predictive

distributions with observed point data; moreover, competing forecasts must

be ranked with fair procedures favouring the data-generating process over

the alternatives. Graphical and numerical tools are proposed for assessing,

quantifying and comparing probabilistic forecasts, PIT histogram and Con-

tinuous Rank Probability Score being the most common. Moreover, since

practical applications often require point forecasts, the concept of consis-

tent scoring functions is recalled; they represent the correct tool for a fair

model comparison. Uncertainty information can be associated to point fore-

casts via predictive intervals. Most of the tools available from the literature

have been developed for continuous distributions, with some exceptions for

count data; two-part semicontinuous models create further challenges, due

to their mixed discrete-continuous nature. Chapter 4 explains why some of

the standard tools for evaluating predictions give incorrect results when ap-

plied to the two-part semicontinuous case, and proposes alternatives when

necessary. In particular, a non-randomized PIT histogram for two-part semi-

continuous models is proposed, ensuring uniformity when the ideal forecast

is considered. Moreover, both randomized and non-randomized procedures

for computing the coverage of predictive intervals are illustrated, correcting

standard methods that would retrieve erroneous results due to the positive

probability of zero. The presented tools are suitable for the evaluation of

every kind of rainfall prediction relying on a two-part semicontinuous model.

For example, they can be applied to time forecasts obtained from ensemble

postprocessing via Bayesian Model Averaging or Ensemble Model Output

Statistics (EMOS). It is worth noticing that no restriction is put on the con-

tinuous distribution for positive values: the proposed procedures need not

to be adapted for this. Moreover, they can be easily adapted for assess-

ing semicontinuous predictions obtained with different approaches. In this

work, we focused on the two-part assumption since it allows to model rain

probability independently from rain accumulation as a difference from other
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approaches like tobit. Further research might investigate whether the mod-

elling of correlation among the regression coefficients or the spatial effects in

the two stages would constitute a useful enrichment of the proposed model

(see for example Su et al. 2009, Neelon et al. 2011). Different modelling

choices can also be considered; for example, left censoring consists in the

attribution to zero of all the probability corresponding to negative outcomes

of a suitable distribution defined on the real axis. Such approach of course

limits the flexibility in modelling rainfall probability, but may be suitable

in scenarios where the focus is on high rainfall amounts; the left censored

generalized extreme value distribution (see Scheuerer 2014), with its heavy

right tail, might be an adequate choice for that purpose.

Chapter 5 presents the results for the three models, plus a simple regression

model without spatial correlation which constitutes a benchmark (Model

“No Sp”). Hourly precipitation regarding 8 distinct rainfall events in the

Emilia-Romagna Region is analysed, with separate model runs on each hour.

Literature often suggests to pool the available data together for obtaining

a big training dataset; in our case, the richness of the spatial information

eliminates this necessity. Moreover, the estimates of the regression param-

eters, showing irregularity in the behaviour in the radar-gauge relationship,

support the decision of separately addressing successive hours. All model

specifications thus focus on the spatial aspects, which are predominant; fur-

ther advancements may address the temporal development, linking succes-

sive hours by modelling the evolution of the regression parameters. When

the mean of the neighbouring pixels is included as a further covariate (Model

“mean”), the influence of radar is split between the contingent pixel and its

neighbourhood, with a change of predominance of the former or the latter.

Examples of maps of the spatial random effects reveal their role in identify-

ing spatial patterns. Model “SW”, with its efficient exploitation of the whole

radar map, delegates part of this task to the covariate, relying slightly less

on the structured errors. Model “No Sp”, lacking of instruments for captur-

ing and reproducing spatial trends, is outperformed by the three proposed

model specifications, on the basis of the aforementioned tools for forecast

assessment. All predictive performances are evaluated on a randomly cho-

sen set of 50 validation sites for each hour; both event-specific and global
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scores and plots are shown, in order to provide a detailed insight into re-

sults and simplify interpretation. In terms of probabilistic forecasts, Model

“SW” provides the best results, indicated by the smallest Continuous Rank

Probability Score values. Quantile decomposition plot reveals that the main

differences between competing specifications are collected around the central

quantile levels. The same ranking is obtained when analysing point predic-

tions, with “SW” providing the best predictive performances. Root Mean

Square Error and Mean Absolute Error, computed after choosing the pos-

terior predictive mean or median, respectively, are shown; comparison with

raw radar confirms the three spatial specifications succeed in calibrating the

indirect measurements, providing smaller values of the scoring functions.

Analysis of the credibility intervals confirms the probabilistic consistency be-

tween predictions and observations, with coverages close to the nominal value;

modelling spatial correlation has a positive effect also in terms of sharpness,

reducing interval widths.

A relevant peculiarity of our models is the estimate of rainfall probability,

obtained as a by-product but interesting per se. Specific tools for evaluating

the prediction of rainfall probability, such as the Brier Score and the Reli-

ability plot, confirm good performance also in this specific task; sharpness

histograms highlight low uncertainty when predicting rainfall occurrence,

with a predominance of probabilities near zero or one. Recent joint stud-

ies from statisticians and psychologists (Mass et al 2009, Joslyn and Savelli

2010) suggest to communicate uncertainty in meteorological forecasts, also

when rainfall occurrence is the object of the study and when a non special-

ized public is addressed. Probabilistic results can improve the effectiveness of

communication and increase users’ confidence. Since we provide full informa-

tion about the predictive distribution, the probability of exceeding a certain

threshold can be computed, which can for example be useful for quantifying

the risk of floods. Probabilistic calibration ensures that the probabilities ob-

tained with our three spatial models are reliable.

Our models produce spatial predictions in every location where radar is avail-

able; this allows to overcome the absence of rain gauges in the Eastern area

covered by the Adriatic Sea.

As a conclusion, the proposed model allows reconstruction of the rainfall
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field correcting radar information. Simple exploitation of neighbouring radar

information via a deterministic mean (Model “mean”) does not improve pre-

dictions, but the estimates of the coefficients reveal that the pixel containing

the location of interest is not always the most relevant. A more sophisti-

cated methodology, consisting in stochastically weighting the neighbouring

pixel (Model “SW”), improves point and probabilistic forecasts. While the

basic model fast implementation is compatible with an operational exploita-

tion, Model “SW” is more computationally demanding. For this reason,

since differences between the performances of the two models are moder-

ate, we suggested ARPA the use of Model “base” for operational every day

purposes, and to run Model “SW” when investigating more complex events,

where the improvement of this model can be more valuable.

Future model development may address the detection of high rainfall amounts

localized in small areas where a few rain gauges (or none) are available; this

scenario is not rare in convective events, which are often characterized by ma-

jor discrepancies between radar and rain gauges. Possible extensions of the

work may address the distinction between stratiform and convective rainfall

events, based on an automatic method for classification based on the analysis

of the patterns of radar maps; distinct model specifications should then be

developed for the two scenarios, and possibly also for the mixed stratiform-

convective case. An alternative approach which may help in detecting heavy

rainfall can rely on quantile regression, which allows the influence of the

covariate to change across the quantile levels of the response variable; an ap-

proximation of the whole predictive distribution might be recovered in that

case by considering a large number of quantiles.
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Fassó, A. and Finazzi, F. (2013). A varying coefficients space-time

model for ground and satellite air quality data over Europe. Statistica

& Applicazioni, Special Issue, 45–56.

Foley, K. M. and Fuentes, M. (2008). A statistical framework to

combine multivariate spatial data and physical models for hurricane

wind prediction. Journal of Agricultural, Biological and Environmental

Statistics, 13, 37–59.

Fornasiero, A., Amorati, R., Alberoni, P. P., Ferraris, L. and Tara-

masso, A. C. (2004). Impact of combined beam blocking and anomalous

propagation correction algorithms on radar data quality. Proceedings

of ERAD 2004, the 3th ERAD conference held in Gotland, Sweden,

Copernicus GmbH 2004, 216–222.

Fraley, C., Raftery, A., Gneiting, T., Sloughter, M. and Berrocal,

V. (2011). Probabilistic weather forecasting in R. R Journal, 3(1),

55–63.

Frees, E. W. (2009). Regression Modeling with Actuarial and Financial

Applications. Cambridge University Press, Cambridge.



102 BIBLIOGRAPHY
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