
Mälardalen University Press Licentiate Thesis

No.224

Raising Abstraction of Timing

Analysis through

Model-Driven Engineering

Alessio Bucaioni

December 2015

School of Innovation, Design and Engineering

Mälardalen University

Västerås, Sweden

Copyright c© Alessio Bucaioni, 2015

ISSN

ISBN —

Printed by Mälardalen University, Västerås, Sweden

Abstract

The complexity of software running on vehicular embedded systems is con-

stantly increasing and this negatively affects its development costs and time to

market. One way to deal with these issues is to boost abstraction in the form

of models to (i) ease the reasoning about the system architecture, (ii) automate

certain stages of the development, (iii) early detect flaws in the system architec-

ture through fundamental analysis and (iv) take appropriate countermeasures

before the system is implemented.

Considering the importance of timing requirements in the design of soft-

ware for vehicular embedded systems, in this licentiate thesis we leverage

Model-Driven Engineering for realizing a semi-automatic approach which al-

lows the developer to perform end-to-end delay timing analysis on design mod-

els, without having to manually model timing elements and set their values.

The proposed approach, starting from a design model of an automotive

software functionality, automatically generates a set of models enriched with

timing elements whose values are set at generation time. End-to-end delay tim-

ing analysis is run on the generated models and, based on the analysis results,

the approach automatically selects the generated models which better meet a

specific set of timing requirements.

i

Sammanfattning

Nuförtiden finns inbyggda datorsystem i de flesta elektroniska och elektriska

produkter. Allt ifrån strömbrytare och mikrovågsugnar till bilar och tåg är

beroende av moderna inbyggda datorsystem. I fordonsindustrin, ökar ständigt

antalet inbyggda system som ersätter hydrauliska och mekaniska delar som

inte kan leverera moderna tjänster som kollisionsskydd och antisladdsystem.

Samtidigt ökar komplexiteten av dessa datorsystem och deras mjukvara, och

detta påverkar negativt utvecklingskostnader och tid. Ett sätt att minska dessa

problem är att använda abstraktioner i form av modeller för att i) enklare

resonera över systemets arkitektur, ii) automatisera vissa utvecklingsfaser, iii)

tidigt spåra brister i systemets arkitektur genom grundläggande analyser och

iv) åtgärda brister innan systemet färdigställs.

I denna avhandling använder vi modelldriven utveckling för att skapa en

ny metod som förenklar utvecklingen av inbyggda system för fordon. Detta

sker genom att utvecklaren beskriver systemet som en abstrakt arkitekturmod-

ell som används av metoden för att automatiskt generera ett antal möjliga

konkreta modeller. End-to-end tidsanalys körs på de genererade modellerna

och analysresultat används av metoden för att automatiskt välja bland de gener-

erade modellerna dem som uppfyller de uppsatta tidskraven bäst.

iii

Acknowledgements
First and foremost, my utmost gratitude to my supervisors Mikael Sjödin, An-

tonio Cicchetti and Federico Ciccozzi whose guidance is making this a possible

and pleasant journey. They are mentors, colleagues and friends and they are

helping me in becoming a better person before than a better researcher.

I would like to express my deepest gratitude to my “buddy” Saad Mubeen,

who helped me in moving the first steps into the research world. We shared

unforgettable moments and i could not ask for a better “buddy”.

I would like to thank Kurt-Lennart Lundbäck and all the people from Arcti-

cus Systems AB for giving me the possibility to work in such a successful

company without never interfere with my researches.

I would like to thank all the administrative staff, especially Carola Rytters-

son and Susanne Fronnå for making “paper-work” easier.

I would like to thank my friends and colleagues at the department for all

the good and funny moments and for the inspiration they give me each day.

I will never thank enough my family for supporting me, even financially,

and for never discussing my decisions, even when these brought me far away

from their life. Without you, i would be lost.

I would like to thank all my friends, both in Italy and Sweden, for standing

by my side and for never making me feel alone. Especially, i would like to

thank Manuel, Mirco and Giada for having brought some joy in a difficult

period of my life.

I would like to thank my grandpas Vincenzo and Terzilio, my aunts Ines

and Nunziata and my uncle Pasquale for watching over me.

Last, but not least i would like to thank the One above us all, God, for

answering my prayers and for giving me the strength to never throw in the

towel.

Alessio Bucaioni

Västerås, December, 2015

v

List of Publications

Publications Included in this Licentiate Thesis1

Paper A – A Metamodel for the Rubus Component Model: Exten-

sions for Timing and Model Transformation from EAST-ADL, Ales-

sio Bucaioni, Saad Mubeen, Federico Ciccozzi, Antonio Cicchetti, Mi-

kael Sjödin, Conditionally accepted at the Journal of Systems and Soft-

ware (JSS).

Paper B – Exploring Timing Model Extractions at EAST-ADL De-

sign -level Using Model Transformations, Alessio Bucaioni, Saad Mu-

been, Antonio Cicchetti, Mikael Sjödin, IEEE 12th International Confer-

ence on Information Technology: New Generations (ITNG), Las Vegas,

Nevada (USA), April, 2015.

Paper C – Raising Abstraction in Timing Analysis for Vehicular Em-

bedded Systems through Model-Driven Engineering, Alessio Buca-

ioni, Doctoral Symposium at Software Technologies: Applications and

Foundations (STAF), L’Aquila, Italy, July, 2015. Best paper award.

Paper D – Anticipating Implementation-Level Timing Analysis for

Driving Design-Level Decisions in EAST-ADL, Alessio Bucaioni, An-

tonio Cicchetti, Federico Ciccozzi, Romina Eramo, Saad Mubeen, Mi-

kael Sjödin, 1st International Workshop on Modelling in Automotive

Software Engineering (MASE) at ACM/IEEE 18th International Con-

ference on Model Driven Engineering Languages and Systems (Models),

Ottawa, Canada, September, 2015.

1The included publications are reformatted to comply with the licentiate thesis printing format

vii

viii

Related Publications not Included in this Thesis

Comparative Evaluation of Timing Model Extraction Methodolo-

gies at EAST-ADL Design Level, Alessio Bucaioni, Saad Mubeen, Fed-

erico Ciccozzi, Antonio Cicchetti, Federico Ciccozzi, Mikael Sjödin,

IEEE 12th International Conference on Embedded Software and Sys-

tems (ICESS), New York, New York, August, 2015.

Towards a metamodel for the Rubus Component Model, Alessio Bu-

caioni, Antonio Cicchetti, Mikael Sjödin, 1st International Workshop on

Model-Driven Engineering for Component-Based Software Systems at

ACM/IEEE 17th International Conference on Model Driven Engineering

Languages and Systems (Models), Valencia, Spain, September, 2014.

OSLC Tool Integration and Systems Engineering - The Relationship

Between The Two Worlds, Mehrdad Saadatmand, Alessio Bucaioni,

40th Euromicro Conference on Software Engineering and Advanced Ap-

plications, Verona, August, 2014.

Demonstrator for modeling and development of component-based

distributed real-time systems with Rubus-ICE, Alessio Bucaioni, Saad

Mubeen, John Lundbäck, Kurt-Lennart Lundbäck, Jukka Mäki-Turja,

Mikael Sjödin, Open Demo Session of Real-Time Systems (RTSS@Work

) at Real Time Systems Symposium (RTSS), Vancouver, Canada, De-

cember, 2013.

Other Publications

Understanding bidirectional transformations with TGGs and JTL,

Alessio Bucaioni, Romina Eramo, 2nd International Workshop on Bidi-

rectional Transformations (BX) at European Joint Conferences on The-

ory and Practice of Software (ETAPS), Roma, Italy, March, 2013.

A Model-Based Testing Framework for Automotive Embedded Sys-

tems, Raluca Marinescu, Mehrdad Saadatmand, Alessio Bucaioni, Cri-

stina Seceleanu, Paul Pettersson, 40th Euromicro Conference on Soft-

ware Engineering and Advanced Applications, Verona, August, 2014.

ix

EAST-ADL Tailored Testing: From System Models to Executable

Test Cases, Raluca Marinescu, Mehrdad Saadatmand, Cristina Sece-

leanu, Paul Pettersson, Alessio Bucaioni, MRTC Report MDH-MRTC-

278/2013-1-SE, September, 2013.

xi

To my princesses Chiara and Elisa

Contents

I Thesis 1

1 Introduction 3

1.1 Thesis Contribution . 5

1.2 Terminology . 6

1.3 Thesis Outline . 7

2 Research Plan 9

2.1 Research Goal . 9

2.2 Research Challenges . 10

2.3 Research Contributions . 11

2.4 Papers Contribution . 16

2.4.1 Paper A . 16

2.4.2 Paper B . 17

2.4.3 Paper C . 17

2.4.4 Paper D . 18

2.5 Research Methodology . 19

3 Conclusions and Future Works 21

Bibliography 23

II Included Papers 25

4 Paper A:

A Metamodel for the Rubus Component Model: Extensions for

Timing and Model Transformation from EAST-ADL 27

4.1 Introduction . 29

xiii

xiv Contents

4.2 Background and related work 31

4.2.1 MDE and CBSE in the Automotive Domain 31

4.2.2 End-to-end timing models and analyses 34

4.2.3 Paper contributions 36

4.3 Providing a metamodel for RCM 37

4.4 DL2RCM model transformation 41

4.5 Application to the steer-by-wire system 48

4.6 Evaluation and discussion . 52

4.7 Conclusions and future work 56

Bibliography . 57

5 Paper B:

Exploring Timing Model Extractions at EAST-ADL Design-level

Using Model Transformations 61

5.1 Introduction . 63

5.1.1 Paper Contribution 63

5.1.2 Relation with Authors’ Previous Works 64

5.2 Background and Related Works 65

5.2.1 EAST-ADL Development Methodology 65

5.2.2 The Rubus Component Model (RCM) 66

5.2.3 End-to-end Timing Models and Analyses 67

5.2.4 Model Driven Engineering (MDE) and Janus Transfor-

mation Language (JTL) 68

5.2.5 MDE for DSE . 69

5.3 Problem Statement . 69

5.4 Proposed Solution and Methodology 71

5.4.1 Transformation phase 73

5.4.2 Timing analysis phase 73

5.4.3 Proof of concept . 75

5.5 Conclusion . 75

Bibliography . 77

6 Paper C:

Raising Abstraction in Timing Analysis for Vehicular Embedded

Systems through Model-Driven Engineering 79

6.1 Introduction . 81

6.1.1 Context . 81

6.1.2 Paper Outline . 84

6.2 Problem Formulation . 84

Contents xv

6.2.1 Research Goal . 84

6.2.2 Research Challenges 85

6.3 Proposed Solution and Intended Contributions 86

6.4 Preliminary Work and Current Status 88

6.5 Validation . 89

6.6 Related Work . 89

6.6.1 Modeling Languages for Vehicular Embedded Systems 89

6.6.2 Model-Driven Engineering for Vehicular Embedded

Systems . 91

Bibliography . 93

7 Paper D:

Anticipating Implementation-Level Timing Analysis for Driving De-

sign -Level Decisions in EAST-ADL 97

7.1 Introduction . 99

7.2 Related Work . 100

7.3 A Running Example: the Steer-by-wire System 101

7.4 Applying the methodology 102

7.4.1 Transformation Phase 103

7.4.2 End-to-end Delay Analysis Phase 107

7.4.3 Filtering and Propagation Phases 108

7.5 Discussion . 109

7.6 Conclusion . 110

Bibliography . 111

I

Thesis

1

Chapter 1

Introduction

Nowadays, embedded systems play a prevailing role in everyday life as they are

widely employed in most electronic and electrical products, from microwave

ovens to trains and cars. In the specific case of the automotive domain, embed-

ded systems replace many of the hydraulic and mechanical parts of a vehicle,

improving the driving experience, the comfort of the passengers and the safety

of the vehicle. The growing complexity of software running on embedded

systems results in an increasing complexity of its development, which in turn

negatively affects the development costs and time to market [1].

The software engineering community has agreed on three instruments when

dealing with the increasing complexity of software and its development: i)

abstraction, ii) separation of concerns and iii) automation. In the midst of

the many methodologies advocating these three instruments when developing

software systems, Model-Driven Engineering (MDE) has progressively gained

recognition and industrial attention in the last 15 years [2].

MDE is a paradigm which aims at raising the level of abstraction of soft-

ware development by shifting the focus from coding to modeling activities.

In this context, models and model manipulations are promoted as first-class

citizens. A model represents an abstraction of the software system, from a par-

ticular point of view [3]. Models promote separation of concerns by describing

the software system by means of different models each of which highlight-

ing different concerns corresponding to different views. The set of rules and

constraints for the construction of valid models are specified in the so-called

metamodel [3]. The relation between a model and its metamodel is called con-

formance [3]. According to the MDE paradigm, a software system is developed

3

4 Chapter 1. Introduction

by means of model manipulations, where abstract models are refined into more

detailed ones, until code is automatically generated. Model manipulations are

performed by means of model transformations [4] which automatically trans-

late a source model into a target model while ensuring their conformance to

their respective metamodels.

In the automotive domain, the adoption of MDE resulted in the standard-

ization of an architectural description language, EAST-ADL [5], which is used

for modeling product-lines of vehicular embedded systems. EAST-ADL pro-

poses a view over the software development process composed by four differ-

ent abstraction levels, which implicitly ensure separation of concerns through

the different engineering phases. Each abstraction level is described by means

of metamodeling constructs and aims at hiding unnecessary information from

higher abstraction levels. EAST-ADL defines a set of activities to perform for

each abstraction level, based on the expressible concepts. Figure 1.1 shows the

EAST-ADL abstraction levels together with the related languages and activi-

ties.

Figure 1.1: EAST-ADL Abstraction Levels Together With The Related Lan-

guages and Activities

The highest abstraction level is represented by the vehicle level, which cap-

tures information regarding the system’s functionality. At the analysis level,

by using formal notations, vehicle functions are expressed in terms of behav-

iors and interfaces. Yet, design and implementation details are omitted. At this

stage, high level analysis for consistency checking of the requirements can be

performed. At the design level, analysis-level artifacts are refined with design-

oriented details, such as software, middleware and hardware separation as well

1.1 Thesis Contribution 5

as allocation of software. At the implementation level, artifacts introduced at

the design level are refined with implementation details for enabling system

properties analyses, e.g., end-to-end delay timing analysis. At this stage, com-

ponent models1 (e.g., Rubus Component Model (RCM) or AUTOSAR) are

used to model the system in terms of components and their interactions. The

output of this level is a complete software architecture which can be used for

code generation.

In this thesis, we consider RCM as the language for the implementation

level [7]. RCM is a component model for the development of resource-constrai-

ned embedded real-time software systems. It is developed by Arcticus Systems

AB in collaboration with Mälardalen University and it is currently adopted by

several international companies, e.g., as alternative to AUTOSAR. Consider-

ing the importance of timing analysis for vehicular embedded systems [8] [9],

RCM implements state-of-the-art end-to-end delay timing analysis [10] [11].

End-to-end delay timing analysis is used for providing evidence that behav-

iors of the software system meet a specific set of timing requirements. Within

EAST-ADL, end-to-end delay timing analysis gives meaningful results only if

run on implementation models which are currently manually defined starting

from design models. Unfortunately, when dealing with systems of industrial

size, this manual process becomes soon overwhelming, leading to the creation

of a very limited subset of implementation models only . By having automation

support among the different EAST-ADL abstraction levels, and in our specific

case between EAST-ADL design and implementation levels, it would be pos-

sible to enable swift transitions avoiding error-prone and tedious manual activ-

ities (model manipulations). Also, it would be possible to leverage end-to-end

delay timing analysis results for driving design decisions avoiding late discov-

eries of unacceptable quality of service with respect to timing requirements [8].

1.1 Thesis Contribution

In this licentiate thesis, we leverage MDE for realizing a semi-automatic ap-

proach which allows the developer to perform timing analysis on EAST-ADL

design models without having to manually specify their timing elements. More

precisely, starting from an EAST-ADL design model of an automotive software

1A software component is a software element which i) conforms to a component model, ii) can

be deployed independently and iii) can be composed according to a composition standard [6]. A

component model specifies i) the properties of software components and ii) how software compo-

nents can be composed [6].

6 Chapter 1. Introduction

functionality, the proposed approach automatically generates a set of RCM

models enriched with timing elements. End-to-end delay timing analysis is run

on the generated RCM implementation models and, based on the results, the

approach supports the selection of the generated RCM implementation model

(or set of models) which better meets a specific set of timing requirements. To

this end, the following contributions are identified:

1. RCM metamodel. Model transformations are required for achieving a

full-fledged MDE approach for leveraging end-to-end delay timing anal-

ysis at design level. Moreover, model transformations are specified on

the involved metamodels. While EAST-ADL provides a metamodel def-

inition for the design level, RCM has not been described by metamodel-

ing means. This contribution provides a metamodel definition for RCM.

2. Model transformation between EAST-ADL design level metamodel and

RCM metamodel. This contribution allows the automatic translation

from an EAST-ADL design model into a set of meaningful RCM im-

plementation models that can be used as input for running end-to-end

delay timing analysis.

3. Selection mechanism. Based on end-to-end delay timing analysis re-

sults, this contribution supports the selection of the RCM implementa-

tion model (or set of models) which better meets a specific, non-empty

set of timing requirements.

1.2 Terminology

In this section we introduce the terms that we use in the remainder of this

licentiate thesis.

• End-to-end delay timing analysis. Schedulability analyses are a priori

analysis techniques used for ensuring that the software system meets its

timing requirements. End-to-end delay timing analysis are well-establish-

ed schedulability analyses which calculate upper bounds on the response

time and delays of event chains distributed over several nodes or in the

system. We will refer to end-to-end delay timing analysis simply as tim-

ing analysis.

• EAST-ADL design level. We will refer to EAST-ADL design level simply

as design level.

1.3 Thesis Outline 7

• EAST-ADL implementation level. We will refer to EAST-ADL implemen-

tation level simply as implementation level.

• EAST-ADL design level model. We will refer to EAST-ADL design level

model simply as design model.

• EAST-ADL implementation level model. We will refer to EAST-ADL im-

plementation level model simply as implementation model.

• RCM implementation model. Different component models can be used

at the implementation level. As aforesaid, we decided to use RCM as the

target language for the implementation level. With the term RCM imple-

mentation model we refer to a RCM model used at the implementation

level.

• Timing requirement. We will refer to timing requirement as the required

timing performance specified on the vehicle functionality. A typical ex-

ample would be: “the time between the request from the driver and the

response of the physical system shall be lower than 10 milliseconds”.

• Timing property and timing value. Timing property is a property which

concerns the timing behavior of the software. A typical example of a

timing property is the worst-case execution time of a function. Timing

value is the actual value of a timing property.

• Timing element. We refer to timing element as a modeling element which

represents a timing property or requirement.

• Non-bijective model transformation. A non-bijective model transforma-

tion is a model transformation that translates a single source model into

multiple target models.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 describes the re-

search plan in terms of research goals, challenges and contributions. Chapter 3

discusses conclusions and future directions. The second part of the thesis con-

sists of Chapter 4 through Chapter 7 and describes the research contributions

in terms of research publications.

Chapter 2

Research Plan

This chapter discusses the adopted research plan in terms of research goal,

research challenges (RCs), research methodology and research contributions

(RCOs).

2.1 Research Goal

Timing requirements are crucial in the design of the software running on vehic-

ular embedded systems [9] [8]. Timing analysis is a primary means by which

timing requirements are verified. However, design decisions are usually not

driven by timing analysis results as timing analysis is usually performed af-

ter the design activities [12]. To this end, we believe that anticipating timing

analysis at design level can mitigate software development issues (e.g., cost,

time-to-market) as it would avoid late discoveries (i.e., during the testing ac-

tivities) that the system delivers services of unacceptable quality with respect

to timing [10] [8]. Within an EAST-ADL based methodology, the way towards

early timing analysis is hampered by the weak linkage between the modeling

language used at the implementation level (where timing analysis is usually

performed) and the language used at the design level.

The goal of this research work is to enable timing analysis at design level

for supporting design decisions. More specifically, we aim at providing an

approach which gives automation means for seamlessly linking design and im-

plementation level.

9

10 Chapter 2. Research Plan

2.2 Research Challenges

Considering the research goal, the following RCs have been formulated and

used as main drivers for this research work.

RC 1. Definition of a metamodel for RCM.

While EAST-ADL does not fully embrace the MDE paradigm, it still provides

metamodel definitions for the languages adopted at each abstraction level. Con-

sequently, MDE seems to be the natural choice for automating an EAST-ADL

based methodology.

According to the MDE paradigm, metamodels and model transformations

are crucial for providing automation within the software development: the for-

mer serves for regulating the specification of models while the latter for au-

tomating their manipulations. In particular, it is very beneficial that all the

modeling languages involved in the development process are provided with a

metamodel definition. Considering that we want to provide automation be-

tween the design and implementation levels, both the languages used at these

levels should be provided with metamodel definitions. While for the design

level a metamodel definition exists, our challenge is the definition of a meta-

model for RCM, the language we use at the implementation level. In particular,

the metamodel should be defined bearing in mind the following:

1. Backward compatibility: the metamodel should not hinder a migration

of legacy RCM artifacts.

2. Maintainability: the metamodel should be easy to update and refine.

RC 2. Definition of a mapping between EAST-ADL design level meta-

model and RCM metamodel.

Separation of concerns and abstraction are the pillars on which EAST-ADL

relies and the EAST-ADL abstraction levels are designed to ensure these prin-

ciples. Within EAST-ADL, timing analysis can only be performed at the imple-

mentation level, since timing properties are not entailed in higher abstraction

levels.

One way to leverage timing analysis results at design level is the defini-

tion of a transparent and automatic process able to translate design models to

implementation models, i.e., RCM implementation models, on which timing

analysis can be performed. In fact, RCM implementation models contain tim-

ing elements, e.g., clocks, control-flow ports, to mention a few, that can not

be modeled at the design level. However, these elements represent variabil-

ity points in the transition from design to implementation level, meaning that

2.3 Research Contributions 11

more than one RCM implementation model can be a valid translation of a given

design model [13].

The challenge is to define and implement a semi-automatic translation able

to produce a set of RCM implementation models for a given design model

avoiding any manual, error-prone and time-consuming model manipulations.

RC 3. Definition of a mechanism for the selection of the best RCM model

for a specific, non empty set of timing requirements.

This represents the last step in the process of leveraging timing analysis at

design level for enabling guided design decisions. After the RCM implemen-

tation models are generated, timing analysis is run. Based on the timing anal-

ysis results, the challenge is to define a mechanism able to select the RCM

implementation model which better meets a specific, non empty set of timing

requirements. The mechanism should be able to select multiple equally good

RCM implementation models. Once the RCM implementation model (or set of

models) is identified, its analysis results should be propagated back to design

level and made accessible to the developer. In case no RCM implementation

model satisfies the set of timing requirements, refinements on the design model

are required.

2.3 Research Contributions

The main contribution of this licentiate thesis is the definition of an approach

for seamlessly linking design and implementation level in order to enable tim-

ing analysis at design level. This is needed to allow timing analysis results to

drive design decisions. Figure 2.1 provides a graphical representation of the

proposed approach.

Starting from a Design Model representing an automotive software func-

tionality, the approach is able to generate a set of corresponding RCM Model(s).

The generated set contains all the RCM Model(s) which are meaningful for

the considered Timing Analysis. RCM Model(s) are equipped with timing ele-

ments. While the generation of these elements is fully automated, their com-

pletion with timing properties is entrusted to the developer. That is to say,

the developer drives the automatic generation of all the meaningful combina-

tions of timing elements by inserting timing properties, via configuration files,

only once per element instead of having to manually edit all the generated RCM

Model(s). At this point, Timing Analysis is run on the generated RCM Model(s)

resulting in a set of Analysis Result(s). These results are checked against a non-

12 Chapter 2. Research Plan

Figure 2.1: Research Contributions

empty set of Timing Requirements and the RCM Model which better satisfies

the Timing Requirements is selected; note that multiple RCM Models might be

equally good and thereby selected. Eventually, the corresponding analysis re-

sults, i.e., Selected Analysis Result(s), are propagated back to the developer by

means of annotations to the design model. Figure 2.1 provides a breakdown of

the main contribution in specific RCOs.

RCO 1 - RCM metamodel. This contribution, marked as 1 in Figure 2.1,

provides a metamodel definition for RCM as the first step in the process of

providing automation means. The RCM metamodel has been realized within

the Eclipse Modeling Framework1 (EMF) as an EMF model, and it has been

defined with particular attention to backward compatibility and maintainability.

In order to address the first goal, i.e., backward compatibility, we reverse-

engineered the internal representation of RCM into the Rubus-ICE for polish-

ing redundancies and optimizing model traversals. This resulted in the addi-

1http://www.eclipse.org

2.3 Research Contributions 13

tion of 6 modeling elements (e.g., connectors) and the refinement of element

hierarchies (e.g., ports and data element hierarchies). With respect to main-

tainability, building-up the development environment on the RCM metamodel

allows to separate the modeling elements from their rendering and features of

the development environment.

RCO 2 - DL2RCM transformation. This contribution, marked with 2 in

Figure 2.1, provides a model-to-model transformation between design models

and RCM implementation models (DL2RCM).

The DL2RCM transformation has been implemented by means of a bidi-

rectional model transformation language, namely Janus Transformation Lan-

guage (JTL) [14]. JTL is a constraint-based bidirectional model transforma-

tion language specifically tailored to support non-bijectivity by generating all

the possible models, at once. JTL adopts a QVTr-like syntax [15], supports ob-

ject pattern matching, and implicitly creates traces to record what occurs during

the execution of a model transformation. The JTL implementation relies on the

Answer Set Programming (ASP) [16], which is a declarative programming lan-

guage based on the answer set (model) semantics of logic programming. The

ASP solver, by means of a deductive process, finds and generates in a single

execution all the possible models which are consistent with the transformation

rules.

The DL2RCM transformation consists of 28 rules mapping design ele-

ments to corresponding RCM implementation elements. The contribution bro-

ught by the DL2RCM transformation is two-fold. On the one hand, it allows

the automatic translation of EAST-ADL design models to RCM implementa-

tion models. On the other hand, it is able to generate the set of all meaningful

RCM implementation models for a given design model. That is to say, given

the EAST-ADL design model depicted in Figure 2.2a and considering the gen-

eration of clocks in the RCM implementation models, the DL2RCM transfor-

mation produces 8 RCM implementation models each of which has a unique

combination of clocks. 3 of the 8 possible models are depicted in Figure 2.2b.

It is worth to note that JTL supports the specification of logic constraints

which can be used for reducing the number of generated models and tailoring

their generation for specific purposes. In the specific case of the DL2RCM

transformation, we employed logic constraints for forcing the injectivity on

the design elements not affected from the specified timing constraints. Paper

A (Section 4) discusses an initial version of the transformation which produces

one single RCM model from a design model. In Paper D (Section 7) we pro-

vide an enhanced version which is able to generate all the meaningful RCM

14 Chapter 2. Research Plan

Sensor

software component

Controller

software component

Actuator

software component

(a) Example of a design model

10 ms 10 ms 10 ms

(c)

Sensor

SWC
Actuator

SWC

Controller

SWC

Data sink

Sensor

Input

Trigger sink

10 ms
10 ms

(b)

Sensor

SWC
Actuator

SWC

Controller

SWC

Data sink

Sensor

Input

Trigger sink

10 ms

Sensor

SWC
Actuator

SWC

Controller

SWC

Data sink

Sensor

Input

(a)

Trigger sink

Trigger port

Data port

Software Circuit (SWC)

10 m

(b) 3 of the 8 RCM implementation models for the model in Figure 2.2a

Figure 2.2

2.3 Research Contributions 15

models for the leveraged timing analysis.

RCO 3 - Filtering mechanism. This contribution, marked as 3 in Figure 2.1,

provides a conceptual mechanism supporting the selection of the best RCM

implementation models for a specific, non-empty, set of timing requirements.

This represents the last step in the process of leveraging timing analysis at de-

sign level for driving design decisions. The proposed filtering mechanism con-

sists of two cascaded filters, i.e., the elimination filter and the selection filter, as

shown in Figure 2.1. After timing analysis is run on the generated RCM imple-

mentation models, the RCM implementation models and their analysis results

are provided as input to the elimination filter together with the non-empty set of

timing requirements specified on the vehicle functionality. The elimination fil-

ter discards all the RCM implementation models whose analysis results violate

the set of timing requirements. The remaining RCM implementation models,

along with their analysis results, are provided as input to the selection filter.

This filter further refines the selection by considering the type of component

chains required from the vehicle software functionality, i.e., single-rate chain

or multi-rate chain 2, also received as an input. If the selection mechanism fails

in identifying a suitable RCM implementation model, architectural refinements

at the design model may be needed and the developer will be notified with a

message in the console. Similarly, the developer will be notified if one (or a

set of) RCM implementation model is selected. Paper B (Section 5) and Paper

C (Section 6) present and discuss an initial version of the selection mechanism

consisting of the elimination filter. Paper D (Section 7) describes the enhanced

version of the selection mechanism consisting of the two cascade filters. Ta-

ble 2.1 summarizes the relations between RCOs and RCs: RC 1 and RC 2 are

addressed by the RCO 1 and RCO2, while RCO 3 addresses RC 3.

Research Challenges

RC 1 RC 2 RC 3

Research Contributions

RCO 1 X X

RCO 2 X

RCO 3 X

Table 2.1: Research Contributions in relation to the Research Challenges

2In the body electronics domain, the applications are modeled with single-rate chains whereas

in the control systems domain the applications are modeled with multi-rate chains.

16 Chapter 2. Research Plan

2.4 Papers Contribution

Table 2.2 shows the relation between the included papers and the RCOs.

Research Contributions

RCO 1 RCO 2 RCO 3

Included papers

A X X

B X X

C X X

D X X

Table 2.2: Included papers in relation to the Research Contributions

2.4.1 Paper A

A Metamodel for the Rubus Component Model: Extensions for Timing

and Model Transformation from EAST-ADL, Alessio Bucaioni, Saad Mu-

been, Federico Ciccozzi, Antonio Cicchetti, Mikael Sjödin.

Abstract –According to the model-driven engineering paradigm, one of the

entry requirements when realizing a seamless tool chain for the development

of software is the definition of metamodels, to regulate the specification of

models, and model transformations, for automating manipulations of models.

In this context, we present the metamodel for an industrial component model,

the Rubus component model, which is used by several international companies

for the development of vehicular embedded systems. The metamodel includes

the definition of structural elements as well as concepts for describing timing

information. In order to show how, using model-driven engineering, the in-

tegration between models can be automatized, we present a model-to-model

transformation between models conforming to the automotive domain-specific

architecture description language EAST-ADL and models described with the

Rubus component model. We also conduct an automotive-application case

study to show the applicability of the Rubus component model metamodel and

the model transformation.

Status. Conditionally accepted at the Journal of Systems and Software (JSS).

Personal Contribution. The research work presented in this paper was done

in collaboration with all the authors. I am the main contributor and driver.

2.4 Papers Contribution 17

2.4.2 Paper B

Exploring Timing Model Extractions at EAST-ADL Design-level Using

Model Transformations, Alessio Bucaioni, Saad Mubeen, Antonio Cicchetti,

Mikael Sjödin, Proceedings of the 12th International Conference Information

Technology: New Generations (ITNG), IEEE, Las Vegas, Nevada (USA), April,

2015.

Abstract – We discuss the problem of extracting control and data flows from ve-

hicular distributed embedded systems at higher abstraction levels during their

development. Unambiguous extraction of control and data flows is vital part of

the end-to-end timing model which is used as input by the end-to-end tim-

ing analysis engines. The goal is to support end-to-end timing analysis at

higher abstraction levels. In order to address the problem, we propose a two-

phase methodology that exploits the principles of model driven engineering

and component based software engineering. Using this methodology, the soft-

ware architecture at a higher level is automatically transformed to all legal

implementation-level models. The end-to-end timing analysis is performed

on each generated implementation-level model and the analysis results are fed

back to the design-level model. This activity supports design space exploration,

model refinement and/or remodeling at higher abstraction levels for tuning the

timing behavior of the system.

Status. Published.

Personal Contribution. The research work presented in this paper was done

in collaboration with all the authors. I am the main contributor and driver.

2.4.3 Paper C

Raising Abstraction in Timing Analysis for Vehicular Embedded Systems

through Model-Driven Engineering, Alessio Bucaioni, Proceedings of the

Doctoral Symposium at Software Technologies: Applications and Foundations

(STAF), L’Aquila, Italy, July, 2015. Best paper award.

Abstract – The complexity of vehicular embedded systems is continuously

increasing and this can negatively affect their development cost and time to

market. One way to alleviate these issues is to anticipate analysis of system

properties at design time for early architectural refinements. In this paper, we

18 Chapter 2. Research Plan

present a licentiate work which aims at contributing to this effort. In particular,

considering the importance of timing constraints typical of vehicular embed-

ded systems, we leverage model-driven engineering for realizing an automatic

approach which allows the developer to perform timing analysis on design

models, without having to manually specify timing elements. The proposed

approach, starting from a high-level model of the vehicular embedded appli-

cation, generates a set of candidate models enriched with timing elements in a

semi-automatic manner. Timing analysis is run on the generated models and,

based on its results, the approach supports the selection of the best candidate

model for a specific, non-empty, set of timing constraints.

Status. Published.

Personal Contribution. I am the main contributor and driver.

2.4.4 Paper D

Anticipating Implementation-Level Timing Analysis for Driving Design-

Level Decisions in EAST-ADL, Alessio Bucaioni, Antonio Cicchetti, Federico

Ciccozzi, Romina Eramo, Saad Mubeen, Mikael Sjödin, Proceedings of the

1st International Workshop on Modelling in Automotive Software Engineering

(MASE) at ACM/IEEE 18th International Conference on Model Driven Engi-

neering Languages and Systems (Models), Ottawa, Canada, September, 2015.

Abstract – The adoption of model-driven engineering in the automotive domain

resulted in the standardization of a layered architectural description language,

namely EAST-ADL, which provides means for enforcing abstraction and sepa-

ration of concerns, but no support for automation among its abstraction levels.

This support is particularly helpful when manual transitions among levels are

tedious and error-prone. This is the case of design and implementation levels.

Certain fundamental analyses (e.g., timing), which have a significant impact

on design decisions, give precise results only if performed on implementation-

level models, which are currently created manually by the developer. Dealing

with complex systems, this task becomes soon overwhelming leading to the

creation of a subset of models based on the developer?s experience; relevant

implementation-level models may therefore be missed. In this work, we de-

scribe means for automation between EAST-ADL design and implementation

levels to anticipate end-to-end delay analysis at design level for driving design

decisions.

2.5 Research Methodology 19

Status. Published.

Personal Contribution. The research work presented in this paper was done

in collaboration with all the authors. I am the main contributor and driver.

2.5 Research Methodology

Software engineering research is often stimulated by problems arising from the

development and usage of software in the real-life [17]. Collaborative research

between industry and academia is a great example of this phenomenon. The

Figure 2.3: Research Methodology

research methodology applied to this licentiate thesis follows the definition of

the engineering method given in [18]. That is, “observe existing solutions,

propose better solutions, build/develop, measure and analyze, and repeat the

process until no more improvements appear possible”.

Figure 2.3 shows a refinement of this engineering method, adopted for this

licentiate thesis work. The industrial demands coming from our industrial part-

ners were used for driving an initial investigation of the related state-of-the-art

and the state-of-the-practice. The underlying goal of such an investigation was

the definition of a clear research goal. Eventually, starting from the elicited re-

20 Chapter 2. Research Plan

search goal, we defined a set of set of research challenges. For each of them, we

conducted an investigation of the related state-of-the-art and the state-of-the-

practice with the aim of proposing a possible solution if none existed. After

a solution was developed, we evaluated its applicability upon industrial case

studies (or case studies mimicking industrial scenarios). Based on the evalua-

tion results, the proposed solution could be refined. This was the case of the

model transformation described in RCO 2. In fact, the initial model transfor-

mation presented in Paper B (Section 5) has been enhanced in Paper C (Sec-

tion 7) and Paper E (Section 7), considering the collected results. Eventually,

the findings acquired during the elicitation, implementation and evaluation of

the solutions, were used for refining the set of research challenges. An example

of this iterative process is the selection mechanism described in RC 3. Such a

challenge arose only when the enhanced version of the model transformation

was developed. In fact, the need of a selection mechanism would be negligible

if the model transformation would produce only one single RCM model per

design model.

Chapter 3

Conclusions and Future

Works

The complexity of software running on embedded systems is constantly in-

creasing, negatively affecting its development costs and time to market. Among

the many software development methodologies advocating i) abstraction, ii)

separation of concerns, and iii) automation, when dealing with the software

development, MDE has progressively gained academic and industrial recog-

nition. Within the automotive domain, the adoption of MDE resulted in the

standardization of the layered architecture description language EAST-ADL.

While EAST-ADL provides means for abstraction and separation of concerns

it does not support automation for transformation between its abstraction lev-

els.

With this licentiate thesis, we introduced an approach which provides au-

tomation means for seamlessly linking EAST-ADL design and implementation

levels. The underlying goal is to leverage timing analysis at design level such

that analysis results can drive design decisions. The overall contribution of the

thesis can be broken down into three main research contributions: i) a meta-

model definition for the Rubus Component Model (RCM) which is one posis-

ble implementation model for EAST-ADL, ii) automated model transformation

from design model to RCM implementation models (called DL2RCM) and

iii) a mechanism for the selection of the RCM implementation model which

better meets a specific set of timing requirements. The formalization of the

RCM metamodel serves as base for leveraging the proposed approach. The

DL2RCM transformation provides automation means for seamlessly linking

21

22 Chapter 3. Conclusions and Future Works

design and implementation levels, avoiding error-prone and time-consuming

activities. By doing so, it allows to leverage timing analysis at design level

avoiding the problem of manually identifying a suitable RCM implementation

models, in terms of timing characteristics. Eventually, the selection mechanism

serves as last step for automatically identifying the best RCM implementation

model (or set of models) and propagating back the corresponding analysis re-

sults.

Leveraging timing analysis at design level can bring multiple advantages.

First of all, it helps the designer in taking design decisions based on much more

precise feedback than common design level analysis, which often provides just

estimations based on guessed values. We believe that, through our approach it

is possible to disclose the opportunity of employing expensive software devel-

opment resources (e.g., developers, timing experts) more efficiently, therefore

to reduce software development costs and time to market. In fact, the proposed

approach allows the developer to focus only on design activities exploiting tim-

ing analysis without having to investigate nor manually edit implementation

models.

The DL2RCM may suffer from scalability issues when dealing with com-

plex design models. Therefore, as a possible continuation of this research work

towards a doctoral thesis, we plan to improve the scalability of the generation

process. In particular, we will investigate the definition of smarter transfor-

mation rules which could avoid the generation of less relevant RCM imple-

mentation models by considering preliminary/run time knowledge. Also, we

are planning to improve the Janus Transformation Language such that it could

consider heuristics for the generation of classes of models. Our experience has

shown that, besides timing, other relevant system properties need to be dealt

with at design level. Therefore, another interesting research direction could be

to investigate the possibility to leverage our approach to combine the optimiza-

tion of multiple system properties, e.g., memory demands. Eventually, together

with our industrial partners we will investigate challenges as well as possible

benefits and drawbacks of extending the proposed approach to higher abstrac-

tion levels in EAST-ADL. We would also like to conduct empirical evaluations

of the proposed technique in a real industrial context.

Bibliography

[1] Bas Graaf, Marco Lormans, and Hans Toetenel. Embedded software en-

gineering: the state of the practice. Software, IEEE, 20(6):61–69, 2003.

[2] Stuart Kent. Model driven engineering. In Integrated formal methods,

pages 286–298. Springer, 2002.

[3] Jean Bézivin and Olivier Gerbé. Towards a precise definition of the

omg/mda framework. In Proceedings of the 16th IEEE International

Conference on Automated Software Engineering, 2001.

[4] Shane Sendall and Wojtek Kozaczynski. Model transformation: The

heart and soul of model-driven software development. Software, IEEE,

20(5):42–45, 2003.

[5] EAST-ADL Domain Model Specification, Deliverable D4.1.1, 2010.

http://www.atesst.org/home/liblocal/docs/ATESST2 D4.1.1 EAST-

ADL2-Specification 2010-06-02.pdf.

[6] George T. Heineman and William T Councill. Component-based software

engineering: putting the pieces together. Component-based software en-

gineering: putting the pieces together, pages 33–48, 2001.

[7] Kaj Hänninen, Jukka Mäki-Turja, Mikael Sjödin, Mats Lindberg, John

Lundbäck, and Kurt-Lennart Lundbäck. The rubus component model

for resource constrained real-time systems. In 3rd IEEE International

Symposium on Industrial Embedded Systems, June 2008.

[8] Bran Selic and Leo Motus. Using models in real-time software design.

Control Systems, IEEE, 23(3):31–42, June 2003.

23

[9] Philippe Cuenot, Patrick Frey, Rolf Johansson, Henrik Lönn, Mark-

Oliver Reiser, David Servat, R Tavakoli Koligari, and DeJiu Chen. De-

veloping automotive products using the east-adl2, an autosar compliant

architecture description language. In Embedded Real-Time Software Con-

ference. Citeseer, 2008.

[10] Nico Feiertag, Kai Richter, Johan Nordlander, and Jan Jonsson. A Com-

positional Framework for End-to-End Path Delay Calculation of Automo-

tive Systems under Different Path Semantics. In Proceedings of the IEEE

Real-Time System Symposium ? Workshop on Compositional Theory and

Technology for Real-Time Embedded Systems,, 2008.

[11] Ken Tindell and John Clark. Holistic schedulability analysis for dis-

tributed hard real-time systems. Microprocessing and microprogram-

ming, 40(2):117–134, 1994.

[12] Ian Sommerville, Wendy Boggs, Michael Boggs, Bernd Bruegge,

Allen H Dutoit, Wendy Boggs, and Michael Boggs. Software engineering

7 th ed. 2002.

[13] Alessio Bucaioni and Romina Eramo. Understanding bidirectional trans-

formations with tggs and jtl. In Second International Workshop on Bidi-

rectional Transformations, March 2013.

[14] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso

Pierantonio. Jtl: A bidirectional and change propagating transformation

language. In Software Language Engineering, volume 6563, pages 183–

202. 2011.

[15] Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT).

OMG Group.

[16] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for

logic programming. volume 88, pages 1070–1080. MIT Press, 1988.

[17] Mary Shaw. The coming-of-age of software architecture research. In Pro-

ceedings of the 23rd International Conference on Software Engineering,

page 656. IEEE Computer Society, 2001.

[18] Victor R. Basili. The experimental paradigm in software engineering.

In Experimental Software Engineering Issues: Critical Assessment and

Future Directions, pages 1–12. Springer, 1993.

II

Included Papers

25

Chapter 4

Paper A:

A Metamodel for the Rubus

Component Model:

Extensions for Timing and

Model Transformation from

EAST-ADL

Alessio Bucaioni, Saad Mubeen, Federico Ciccozzi, Antonio Cicchetti and Mi-

kael Sjödin

Conditionally accepted at the Journal of Systems and Software (JSS)

27

Abstract

According to the Model-Driven Engineering paradigm, one of the entry re-

quirements when realizing a seamless tool chain for the development of soft-

ware is the definition of metamodels, to regulate the specification of models,

and model transformations, for automating manipulations of models. In this

context, we present the metamodel for an industrial component model, the

Rubus Component Model, which is used by several international companies

for the development of vehicular embedded systems. The metamodel includes

the definition of structural elements as well as elements for describing tim-

ing information. In order to show how, using Model-Driven Engineering, the

integration between models can be automate, we present a model-to-model

transformation between models conforming to the automotive domain-specific

architecture description language EAST-ADL and models described with the

Rubus Component Model. We also conduct an automotive-application case

study to show the applicability of the Rubus Component Model metamodel

and the model transformation.

4.1 Introduction 29

4.1 Introduction

During the last decades, industrial demands on vehicular embedded systems

have been constantly evolving causing an increment of the related software

complexity. It has been estimated that current vehicles can have more than 70

embedded systems running up to 100 million lines of code [1]. On the one

hand, industry needs efficient processes to cope with the size of these systems

for optimizing software development cost and time-to-market. On the other

hand, most of vehicular embedded systems have extra-functional properties,

e.g., timing requirements and constraints, which have to be taken into account

from the early stages of the development. In fact vehicular embedded systems

are real-time systems [2], meaning that they must deliver their functionality

within their timing deadlines. Consequently, timing requirements are crucial

for these systems. In this context, traditional software development processes

have shown strong limitations.

Component Based Software Engineering (CBSE) has been acknowledged

as an effective practice to deal with the increasing complexity of modern em-

bedded software [3] by promoting software development at a higher level of

abstraction relying on the definition and reuse of atomic units of composition,

i.e., software components. Additionally, CBSE allows to express timing prop-

erties, e.g., by annotating the software components with properties and con-

straints (e.g., worst-case execution time) thus enabling timing analysis, e.g.,

end-to-end response time and delay analysis [4].

AUTOSAR [5] and the Rubus Component Model (RCM) [6], to name a

few, are examples of component models (CMs) used within the vehicular do-

main. Lately, AUTOSAR has become part of the EAST-ADL initiative [7].

EAST-ADL is an architecture description language (ADL) which provides con-

cepts and methods for managing and organizing the various artifacts produced

along the software development of vehicular embedded systems [8]. It pro-

motes the separation of concerns through a top-down software development

process relying on four different abstraction levels, i.e., vehicle, analysis, de-

sign and implementation level. In the latter level, EAST-ADL makes use of

AUTOSAR. Both EAST-ADL and AUTOSAR, embracing the Model-Driven

Engineering (MDE), have been provided with metamodel definitions. MDE

is a paradigm that intends software development as the process of designing

and refining models, starting from higher and moving towards lower levels of

abstraction, via the so-called model transformations.

While EAST-ADL has been proven successful in coping with the soft-

ware complexity and size of industrial embedded software, it still provides

30 Paper A

limited support for dealing with timing requirements. In fact, by employing

AUTOSAR at implementation level, most of the timing, implementation and

communication details are neglected. This information is necessary for build-

ing software timing models used for verifying timing requirements.

In this context, an increasing number of vehicular manufacturers are us-

ing RCM as a complementary technology in EAST-ADL based processes. In

this case, in order to allow a smooth interplay between different languages in

these processes, proper automation is needed for the translation among the var-

ious artifacts specified using, e.g., RCM and EAST-ADL. This aspect is even

more crucial when considering that, in practice, manual translations are not

only tedious, time consuming and error-prone, but even unfeasible in most of

the cases due to the size and complexity of the models involved. To this end,

MDE has been proven effective in reducing the software development cost and

time to market [9] while automating the whole development process. In order

to embrace the MDE paradigm and benefit from its advantages, it is neces-

sary to define proper metamodels for any modeling language (e.g., component

models) involved in the development process together with proper model trans-

formations devoted manipulations of models, taking into account the need of

modeling both functional and extra-functional concepts.

In this paper, we define a metamodel for RCM, that is used for the soft-

ware development of vehicular real-time embedded systems. The metamodel

is defining according to the following main goals:

backward compatibility: the metamodel should allow an easy migration of

legacy RCM artifacts into the new modeling environment;

maintainability: the metamodel should enable a better management of RCM

updates and refinements;

extensibility: the metamodel should disclose the opportunity to integrate in a

smooth way RCM modeling environment in a typical automotive appli-

cation development chain.

To this end, we first present the definition of metamodeling elements repre-

senting the software architecture. Then, we extend the metamodel with con-

cepts representing timing constraints and properties for different type of delays

in event chains. Instead of discussing the complete timing package in RCM,

we focus on the elements representing the latest timing constraints (and cor-

responding timing information and analyses) introduced and practically used

within the automotive industrial domain, i.e., the age and reaction delays [10,

7, 11, 4]. Moreover, we show how the integration between EAST-ADL and

4.2 Background and related work 31

RCM can be automated using the MDE paradigm, by presenting a model-to-

model transformation from the EAST-ADL Design level to RCM (DL2RCM)

together with a case study which mimics a typical industrial scenario.

The rest of the article is organized as follows. Section 4.2 presents the

context of this work together with its related works. Section 4.3 introduces

the RCM metamodel and extensions for timing elements. Section 4.4 shows

the DL2RCM transformation while Section 4.5 discusses its applicability on

a case study. Finally, Section 4.6 highlights the benefits of having a proper

metamodel for RCM while Section 4.7 draws conclusions and discusses future

works.

4.2 Background and related work

4.2.1 MDE and CBSE in the Automotive Domain

MDE is a paradigm which aims at raising the level of abstraction of software

development by focusing on modeling activities rather than coding. In this

context, MDE promotes models and model transformations as first-class citi-

zens.

Models represents an abstraction of the system under development, from

a particular point of view [12]. The set of rules and constraints needed for

building a valid model is specified in the so-called metamodel. Formally, a

metamodel defines the abstract syntax of a given model, or set of models; the

relation between metamodel and models is called conformance. Model trans-

formations represent the means of refinement by which models are manipu-

lated [13]. In fact, model transformations translate a source model into a target

model keeping their conformance to the respective metamodel intact.

According to the MDE paradigm, starting from a model and by means of

model transformations it is possible to automatically obtain a variety of arti-

facts, such as new models, code, etc. In this context, the entire software de-

velopment can be seen as a transformation process where low level abstraction

models are automatically obtained by means of model transformations from

higher-level abstraction models.

Within the automotive domain, the adoption of MDE and CBSE paradigms

led to the standardization of an architectural description language, namely

EAST-ADL [7]. EAST-ADL proposes a view over the development process

composed by four different abstraction levels. Figure 4.1 shows the abstraction

levels together with methodologies and languages used at each one of them.

32 Paper A

Figure 4.1: EAST-ADL abstraction levels

The vehicle level is the highest abstraction level and captures information

regarding the system’s functionality. In this level, feature models can be used

for showing what the system provides in terms of functionality. Also, these

models are decorated with requirements. The vehicle level is also known as

end-to-end level as it serves to capture requirements and features on the end-

to-end vehicle functionality.

At the analysis level, vehicle functions are expressed, using formal nota-

tions, in terms of behaviors and interfaces. Yet, design and implementation

details are omitted. The artifact developed at this level is called Functional

Analysis Architecture. At this stage, high level analysis for functional verifica-

tion can be performed.

At the design level, the analysis-level artifacts are refined with design-

oriented details: while the analysis level does not differentiate among software,

middleware and hardware, the design level explicitly separates them. Alloca-

tion of software functions to hardware nodes is expressed at this level too. The

artifacts developed at this level include Functional Design Architecture and

Hardware Design Architecture.

At the implementation level, artifacts introduced at the design level are re-

fined with implementation details. The output of this level is a complete soft-

ware architecture which can be used for code generation. At this stage compo-

nent models, e.g., RCM, AUTOSAR, are used to model the system in terms of

components and interactions among them.

AUTOSAR is an industrial initiative to provide standardized software ar-

chitecture for the software development of vehicular embedded systems. Within

AUTOSAR, the software architecture is defined in terms of software compo-

4.2 Background and related work 33

nents (SWCs) and Virtual Function Bus (VFB). VFB handles the virtual in-

tegration and communication among SWCs, hiding low-level implementation

details. AUTOSAR describes the software at a high level of abstraction focus-

ing on the functional and structural aspects of the architecture. Also, it does

not distinguish between data and control flow, as well as between inter- and

intra-node communication.

Lately, AUTOSAR has been provided with a timing model within the two

EU research projects TIMMO [14] and TIMMO-2-USE [15], respectively. To

this end, TIMMO provides a predictable methodology and language, called

TADL [16] for expressing timing requirements and constraints. TADL is in-

spired by MARTE [17], which is a UML profile for modeling and analysis

of real-time and embedded systems. The TIMMO methodology makes use

of EAST-ADL and AUTOSAR interplay, where the former is used for the

software structural modeling, while the latter is used for the implementation.

TIMMO-2-USE [15], a follow up project, presents a major redefinition of

TADL in TADL2 [10]. The purpose of this project is to include new func-

tionality for supporting the AUTOSAR extensions regarding timing model.

Although both TIMMO and TIMMO-2-USE attempt to annotate AUTOSAR

with a timing model, AUTOSAR is still not expressive enough for represent-

ing timing, implementation and communication information of the software

architecture.

In this context, an increasing number of vehicular manufacturers are con-

sidering RCM as an alternative to AUTOSAR within the EAST-ADL based

methodology. RCM supports both model- and component-based development.

The main goal of RCM is to express the software architecture in terms of soft-

ware functions and interactions among them. In RCM, the basic entity is the

so-called software circuit (SWC) which represents the lowest-level hierarchical

element in RCM and encapsulates basic software functions. Each SWC is de-

fined by its behavior and interface. Interfaces manage the interactions among

SWCs via ports. RCM distinguishes between data and control flow. Therefore,

the interfaces have two types of ports: data ports for the data flow and trigger

ports for the control flow. The SWC is characterized by run-to-completion se-

mantics meaning that, upon triggering, it reads data from the data input ports,

executes its behavior and writes data on the data output ports.

SWCs can be grouped and organized in assemblies, decomposing the sys-

tem in a hierarchical manner. Modes are used to represent different configura-

tions of the software architecture. Target entities are used for grouping modes

that are deployed on the same Electronic Control Unit (ECU). Moreover, they

provide details regarding hardware and operating system. Node is a hardware

34 Paper A

and operating-system independent abstraction of a target entity. Finally, Sys-

tem is the top-level hierarchical entity, which describes software architecture

for the complete vehicular system.

RCM facilitates analysis and reuse of components in different contexts by

separating functional code from the infrastructure that implements the execu-

tion environment. Compared to AUTOSAR, RCM allows the developer to

specify and handle timing information at design time. It also distinguishes be-

tween data and control flow as well as inter- and intra-node communication.

To this end, RCM has been recently extended with special network interface

components for modeling the inter-node communication [18]. The RCM pipe-

and-filter communication mechanism is very similar to the AUTOSAR sender-

receiver communication mechanism. In short, RCM was specifically designed

for expressing all the low-level information needed for extracting the timing

model from the software architecture.

4.2.2 End-to-end timing models and analyses

End-to-end timing analysis is a key activity for the verification and validation

of vehicular real-time systems. Therefore, a tool chain that is used for the

model- and component-based development of vehicular systems shall support

such an analysis. In turn, to support timing analysis an appropriate system

view, called end-to-end timing model, should be extracted from the software

architecture. In particular, an end-to-end timing model comprises of timing

properties, requirements, dependencies and linking information concerning all

tasks, messages and task chains in a distributed embedded system under anal-

ysis1. It is mainly composed of two models namely a timing model and a

linking model. In order to elaborate this, consider a task chain distributed over

three nodes connected by a network as shown in Figure 4.2. The system timing

model captures all the timing information about the three nodes and the net-

work. Whereas the linking model includes all the linking information in the

task chains, including the control and data flows.

The analysis engines use these models for performing end-to-end timing

analyses. We refer the reader to [4] for further details about the end-to-end

timing analyses. The analysis results consist of response time of tasks and

messages as well as system utilization. Also, the analysis calculates end-to-

end response times and delays. The end-to-end response time of a task chain is

equal to the elapsed time between the arrival of a stimulus, e.g., the brake pedal

1We refer the reader to [18] for details about the timing model.

4.2 Background and related work 35

Task1 Task2 Task3 Task4

Network

Sensor Node Computation Node Actuation Node

End-to-end Response Time

Brake

Pedal

Sensor

Brake

Actuator

Figure 4.2: Example showing end-to-end response time

sensor input in the sensor node, and the response to it, e.g., the brake actuation

signal in the actuation node as shown in Figure 4.2.

Reg-1 τ1

Period = 25

Reg-2 Reg-3τ2

Period = 5

WCET = 2 WCET = 1

Figure 4.3: A task chain with independent activation of tasks

Within a task chain, if the tasks are triggered by independent sources, then

it is important to calculate different types of delays such as age and reaction.

An age delay corresponds to the freshness of data. It finds its importance in

control systems used in the vehicles. Whereas, the reaction delay corresponds

to the first reaction for a given stimulus. This delay finds its application in body

electronics in the vehicles.

In order to explain these delays, consider a task chain in a single-node

system as shown in Figure 4.3. There are two tasks in the chain denoted by

τ1 and τ2. The tasks are triggered by independent clocks of periods 25ms and

5ms respectively. Let the Worst-Case Execution Times (WCETs) of these tasks

be 2ms and 1ms respectively. τ1 reads data from the register Reg-1 and writes

data to Reg-2. Similarly, τ2 reads data from the Reg-2 and writes data to Reg-

3. Since, the tasks are activated independently with different clocks, there can

be multiple outputs (Reg-3) corresponding to one input (Reg-1) to the chain as

shown by several uni-directional arrows in Figure 4.4. The age and reaction

delays are also identified in Figure 4.4. These delays are equally important in

distributed embedded systems.

We consider the end-to-end timing model that corresponds to the holis-

tic schedulability analysis for distributed embedded systems [19]. Stappert et

36 Paper A

5
10 15 20 25

Task τ1 PERIOD1 = 25,

WCET1 = 2
0

Age delay

30

Reaction delay

5 10 15 20 25

Task τ2

0 30

PERIOD2 = 5,

WCET2 = 1

Figure 4.4: Example showing end-to-end delays

al. [20] described end-to-end timing constrains for multi-rate automotive em-

bedded systems. In [11], Feiertag et al. presented a framework (developed as

part of the TIMMO project) for the calculations of end-to-end delays. A scal-

able technique, based on model checking, for the computation of end-to-end

latencies is described in [21].

4.2.3 Paper contributions

Compared with RCM, AUTOSAR describes the software architecture at higher

level of abstraction; it focuses on the functional and structural aspects of the

software architecture hiding low-level timing information, such as control flow.

Neglect timing, implementation and communication information hampers end-

to-end timing analysis. In [22] we propose RCM as an alternative to AU-

TOSAR in an EAST-ADL based methodology and we discuss its use for en-

abling end-to-end timing analysis. Moreover, in [4], we provide a method for

extracting timing models and perform end-to-end timing analysis of component-

based vehicular embedded systems.

This paper extends our previous work [23] where we present the metamodel

definition of the architectural elements in RCM and discusses the transforma-

tion process from RCM to AUTOSAR [5]. However, the definition of meta-

modeling elements for representing timing properties and constrains is miss-

ing. In this paper we complement our previous work by including metamodel-

ing elements representing timing properties and constraints for different types

of delays that can be specified in single-node as well as distributed embedded

systems. We provide a model-to-model transformation from the design-level

models described using EAST-ADL to RCM model exploiting the extended

metamodel. In addition, we conduct an automotive application case study to

show the applicability of the extended metamodel as well as the transforma-

4.3 Providing a metamodel for RCM 37

tion process. Eventually, we validate the metamodel expressiveness by means

of several real-life automotive use-cases.

4.3 Providing a metamodel for RCM

In this section, we describe the RCM metamodel. For the sake of readability,

we divide and present the metamodel in four fragments. However, the four

fragments can be combined for an holistic view of the metamodel by matching

metaclasses with the same names.

Figure 4.5 shows the metamodel’s backbone. The top metaclass is System,

which acts as a container for the whole architecture. System, as all the meta-

classes in the metamodel, inherits from the abstract metaclass NamedElement.

A System element contains one or more elements of type Node. A Node ele-

ment is a hardware and operating-system independent abstraction of a Target

element; it groups all the software architecture elements which realize a spe-

cific function. Its reference activeTarget defines which target, among those

specified, is active for a certain node. Target is a hardware and operating-

system specific instance of a Node; it serves for modeling the deployment of

the software architecture. This means that, it contains all the functions to be

deployed on the same ECU. Consequently, a Node can be realized by different

Target elements, depending on the hardware and the operating system used for

the deployment, for example, PowerPC with Rubus Operating System, Simu-

lated target with Windows operating system.

A Target element contains one or more elements of type Mode. A Mode

represents a specific application of the software architecture as, for instance,

start-up or low-power mode. A Mode element might contain elements of type

Circuit and Assembly. A Circuit is the lowest-level hierarchical element which

encapsulates basic functions. It contains an element of type Interface and one

or more elements of type Behavior. An Interface groups all the data and con-

trol ports of a certain circuit while a Behavior contains the code to be executed

from the specific Circuit. The reference activeBehavior is used for specifying

which behavior is active for the related circuit. Assembly elements do not add

any semantics to the architecture: they are used for grouping and organizing

circuits and assemblies in a hierarchical fashion. Both the metaclasses Connec-

torData and ConnectorTrig inherit from the abstract metaclass Connector. A

Connector realizes the actual communication between two ports. Connector-

Data and ConnectorTrig metaclasses are used for modeling the communication

between data ports and control ports, respectively.

38 Paper A

Figure 4.5: Fragment of the RCM metamodel representing the backbone ele-

ments

4.3 Providing a metamodel for RCM 39

Figure 4.6: Fragment of the RCM metamodel representing the data flow ele-

ments

RCM explicitly separates data and control flow. Figure 4.6 shows the meta-

model fragment containing the concepts used for modeling the data flow. The

40 Paper A

abstract metaclass PortData models a generic data port. It has three attributes:

dataPassingMethod specifies how data is passed to the port, dimension ex-

presses the size of the port while initialValue specifies its initial value. The

metaclass PortData is specialized by the metaclasses PortDataIn and Port-

DataOut, which model an input and output data port, respectively. They are

contained in the Interface and the Assembly metaclasses for modeling the data

communication among circuits and assemblies, respectively. As aforesaid, the

metaclass ConnectorData is used for modeling the actual communication be-

tween two data ports. In this respect, the references sourcePort and targetPort

are used for specifying the ports involved in the communication.

Figure 4.8 shows the metamodel fragment containing the concepts that can

be used to represent the control flow. The metaclasses PortTrigIn and Port-

TrigOut describe an input trigger port and an output trigger port, respectively.

They both inherit from the metaclass PortTrig, which describes a generic trig-

ger port. Modes, assemblies and interfaces are composed of input and output

trigger ports for modeling the control flow among modes, assemblies and cir-

cuits, respectively. The ConnectorTrig metaclass inherits from the abstract

metaclass Connector. It has two references, sourcePort and targetPort, used

for modeling the actual communication between trigger ports. Clock and Sink

elements are responsible to start and end the execution of a software circuit,

respectively.

Figure 4.8 depicts an excerpt of the RCM metamodel containing the met-

alements representing timing constraints and properties for different types of

delays in event chains. The notion of different delay types is meaningful in

multi-rate systems where components in the event chain can be triggered with

independent clocks. Hence, there can be multiple occurrences of response cor-

responding to a single occurrence of stimulus in the chain. In RCM, these con-

straints are specified by means of two model elements placed at the beginning

and at the end of the event chain.

The metaclasses which represent the data reaction constraint are DataRe-

actionStart and DataReactionEnd, while the metaclasses which model the data

age constraint are the DataAgeStart and DataAgeEnd. DataAgeStart and DataRe-

actionStart inherit from the abstract metaclass DataStart, while DataAgeEnd

and DataReactionEnd inherit form the abstract metaclass DataEnd. The dead-

line attribute of the DataEnd metaclass specifies the maximum value for the

related reaction along the enclosed chain. DataStart and DataEnd inherit from

the abstract metaclass Data, which models a generic delay constraint. It con-

tains a data input port and a data output port, meaning that the data traveling

along the data chain must traverse the delay constraint for activating it.

4.4 DL2RCM model transformation 41

Figure 4.7: Fragment of the RCM metamodel representing the control flow

elements

4.4 DL2RCM model transformation

In this section we present DL2RCM, a model-to-model transformation from

the EAST-ADL Design Level metamodel to RCM. The intent is to show how,

42 Paper A

Figure 4.8: Fragment of the RCM metamodel representing the timing con-

straints and properties for different types of delay in event chains

having a proper metamodel for RCM, it is possible to realize a seamless thus

complement EAST-ADL with the RCM’s timing analysis capabilities. In Sec-

tion 4.2, we showed how the EAST-ADL methodology (EAST-ADL comple-

mented by AUTOSAR at the implementation level) uses the four abstraction

levels for implementing a top-down development process. In this respect, we

presented RCM and AUTOSAR to be technologies used at the last abstraction

level, i.e., implementation level. In our previous work we proposed RCM as an

alternative to AUTOSAR within an EAST-ADL development methodology. To

this end, we believe it is crucial to show that RCM fully integrates within the

EAST-ADL methodology. That is, considering the EAST-ADL four abstrac-

4.4 DL2RCM model transformation 43

tion levels, it is possible to synthesize an EAST-ADL Design Level model to a

RCM model.

The DL2RCM transformation is used for performing such an integration

automatically. The benefits of realizing this in an automatic manner become

more visible when considering that the involved technologies, EAST-ADL and

RCM, are used for representing complex architectures, for which manual trans-

lations are not only tedious, time consuming and error-prone, but they might

even become unfeasible.

The DL2RCM transformation is a unidirectional model-to-model transfor-

mation from the EAST-ADL Design Level metamodel to the RCM metamodel.

The latter has been presented in Section 4.3. The former has been described

in [7] and implemented as a UML profile within the Eclipse Papyrus project
2. Figure 4.9 shows the extract of the EAST-ADL metamodel containing the

concepts entailed by the DL2RCM transformation3.

The relation underneath the transformation is non-bijective meaning that

the involved metamodels do not have the same expressiveness. In this respect,

in order to preserve as much information as possible, assumptions are needed

when defining the relations composing the transformations. Table 4.1 summa-

rizes the main relations together with their assumptions. The interested reader

can find a detailed discussion on the assumptions and the constraints used for

defining the DL2RCM transformation in [22].

Algorithm 1 shows the DL2RCM transformation in pseudocode. The MOD-

EL2SYSTEM function is the starting function of the transformation. It is

responsible for translating an EAST-ADL Model element into a hierarchy of

RCM elements consisting of System, Node, Target and Mode elements (line 2).

This step can be skipped when considering all EAST-ADL abstraction levels,

since the RCM elements would be translated from the equivalent EAST-ADL

elements. In our case, since we are considering just the EAST-ADL design

level, this step is needed to build a correct hierarchy in the RCM model, con-

forming to the RCM metamodel.

One of the major difficulties in defining the DL2RCM transformation is that

EAST-ADL implements the type-prototype pattern: a DesignFunctionProto-

type element is considered to be a specific instance of the DesignFunctionType

element which in turn might contain other prototypes and connectors realizing

its inner architecture (see Figure 4.9). This means that the inner architecture

of a prototype is defined through its related type. Such a pattern, not lever-

2http://eclipse.org/papyrus/
3The explanation of theEAST-ADL metamodel is outside the scope of this work. The interested

reader may refer to [7]

44 Paper A

Figure 4.9: Fragment of the EAST-ADL metamodel for Function Modeling at

the design level

aged in RCM, required additional effort in designing the transformation, as

each DesignFunctionPrototype has to be checked against its type before to be

transformed. These negligible low-level details are omitted from the pseu-

docode in Algorithm 1 for the sake of readability. For the same reason, in the

pseudocode we make use of helper functions (e.g., CREATEHIERARCHY,

4.4 DL2RCM model transformation 45

EAST-ADL elements RCM elements Conditions/Assumptions

Model
(hierarchy of) System, Node,

Target, Mode

If we consider all the EAST-ADL

abstraction levels then the

hierarchy is not necessary

DesignFunctionPrototype Assembly
If the associated DesignFunctionType

is not elementary

DesignFunctionPrototype
(hierarchy of) Circuit,

Interface

If the associated DesignFunctionType

is not elementary

FunctionConnector ConnectorData

FunctionFlowPort PortData

AgeConstraint DataAgeStart, DataAgeEnd

ReactionConstraint
DataReactionStart,

DataReactionEnd

ConnectorTrig, PortTrig,

Clock, Sink

EAST-ADL does not explicitly model

the control flow. Therefore these RCM elements

are deducted considering the whole architecture

Table 4.1: Main relations holding in the DL2RCM transformation

CREATEASSEMBLY) which are responsible for the creation of the related

elements and their inner architecture.

The FDP function is responsible for translating an EAST-ADL Design-

FunctionPrototype element into a RCM Assembly or Circuit element depend-

ing on whether its related DesignFunctionType is an elementary element, mean-

ing that it does not contain any other DesignFunctionProtype element. In the

case it is not an elementary element (line 14), all the contained DesignFunc-

tionProtype elements are transformed too. This translation is performed in two

steps. First, FDP calls the C2C function on all its FunctionConnector elements

(lines 10-12), for the translation of the elements connected via connectors. Af-

terwards, the FDP function calls DP2A or DP2C on its spare DesignFunction-

Protype elements; if they are elementary elements then they are transformed

into circuits by the DP2C function (line 17), otherwise they are transformed

into assemblies through the DP2A function (line 15).

The C2C function translates an EAST-ADL FunctionConnector element

into a RCM DataConnector element. More precisely, for each FunctionCon-

nector element, the C2C function creates a DataConnector element (line 26)

together with the connected Assembly/Circuit elements by calling the functions

DP2A (line 29) and DP2C (line 41), respectively. Port elements are created and

connected accordingly (lines 33, 36, 45, 48). Control flow information is not

explicitly modeled at EAST-ADL design level. Therefore, we assume that each

SWC is triggered independently. To this end, the C2C function generates the

needed Clock (lines 32, 44) and Sink (lines 35, 47) elements together with the

46 Paper A

Algorithm 1 DL2RCM transformation

1: function MODEL2SYSTEM(Model m)

2: Mode mo = CREATEHIERARCHY(m);

3: FDP(m.functionalDesignPrototype,mo)

4: TC2TC(fdp,mo)

5: end function

6:

7: function FDP(FunctionalDesignPrototype fdp, Mode mo)

8: if fdp is not elementary then

9: Assembly a = CREATEASSEMBLY(fdp,mo);

10: for connector in fdp do

11: C2C(connector , a)

12: end for

13: for part in fdp do

14: if part is not elementary then

15: Assembly as = DP2A(part , a);

16: else

17: Circuit ci = DP2C(part , a);

18: end if

19: end for

20: else

21: Circuit c = CREATECIRCUIT(fdp,mo);

22: end if

23: end function

24:

25: function C2C(FunctionConnector fc, Assembly a)

26: ConnectorData con = CREATECONNECTORDATA(fc, a);

27: for end in fc do

28: if end .functionPrototype is not elementary then

ConnectorTrig elements.

With a logic similar to FDP, functions DP2C and DP2A translate an EAST-

ADL DesignFunctionPrototype into RCM Circuit and RCM Assembly, respec-

tively.

The function TC2TC is responsible for translating the timing (age and reac-

tion) constraints. Starting from the outer DesignFunctionPrototype, it iterates

on all the specified timing constraints (line 78). For each of them, it uses the

start and end events (stimulus and response in Figure 4.9) for searching, within

4.4 DL2RCM model transformation 47

Algorithm 1 DL2RCM transformation

29: Assembly as = DP2A(end .functionPrototype, a);

30: if end .functionPort is FunctionFlowPort then

31: if e.functionPort is in then

32: ConnectorTrig conTC =

33: CREATECONTROLFLOWIN(fc, a);

34: PortDataIn pdi =

35: CREATEPORTDATAIN(fc.functionPort , as);

36: else

37: ConnectorTrig conTS =

38: CREATECONTROLFLOWOUT(fc, a);

39: PortDataOut pdo =

40: CREATEPORTDATAOUT(fc.functionPort , as);

41: end if

42: else

43: end if

44: else

45: Circuit c = DP2C(e.functionPrototype, as);

46: if end .functionPort is FunctionFlowPort then

47: if end .functionPort is in then

48: ConnectorTrig conTC =

49: CREATECONTROLFLOWIN(fc, a);

50: PortDataIn pdi =

51: CREATEPORTDATAIN(fc.functionPort , c);

52: else

53: ConnectorTrig conTS =

54: CREATECONTROLFLOWOUT(fc, a);

55: PortDataOut pdo =

56: CREATEPORTDATAOUT(fc.functionPort , c);

57: end if

the RCM model, the connector attached to the port and specified by the stim-

ulus or response events (lines 79-82). After DataAgeStart, DataReactionStart,

DataAgeEnd andDataReactionEnd elements are created (lines 84, 85, 90, 91),

they are connected to the related data ports (lines 86, 92).

48 Paper A

Algorithm 1 DL2RCM transformation

58: else

59: end if

60: end if

61: end for

62: end function

63: function DP2A(DesignFunctionPrototype dfp, Assembly a)

64: Assembly as = CREATEASSEMBLY(dfp, a);

65: for connector in dfp do

66: C2C(connector , a)

67: end for

68: for part in dfp do

69: if part is not elementary then

70: Assembly as1 = DP2A(part , as);

71: else

72: Circuit c1 = DP2C(part , as);

73: end if

74: end for

75: return as;

76: end function

77:

78: function DP2C(DesignFunctionPrototype dfp, Assembly a)

79: Circuit c = CREATECIRCUIT(dfp, a);

80: ConnectorTrig conTC = CREATECONTROLFLOWIN(dfp, c, a);

81: ConnectorTrig conTS = CREATECONTROLFLOWOUT(dfp, c, a);

82: return c;

83: end function

4.5 Application to the steer-by-wire system

In order to show the applicability of the DL2RCM transformation, we provide

a part of the Steer-By-Wire (SBW) system case study. It is a vehicular fea-

ture that substitutes most of the mechanical and hydraulic components with

electronic components in the steering system of a vehicle.

A partial architecture of the SBW system is shown in Figure 4.10. There are

two ECUs (rest of the ECUs are not shown for simplicity) that are connected

to a single Controller Area Network (CAN) bus. The Steering Control (SC)

ECU receives inputs from steering angle, steering torque and vehicle speed

4.5 Application to the steer-by-wire system 49

Algorithm 1 DL2RCM transformation

84: function TC2TC(FunctionalDesignPrototype fdp, Mode mo)

85: for tc in fdp do

86: Event startTC = tc.scope.stimulus;

87: Event endTC = tc.scope.response;

88: ConnectorData conS = FIND(mo.assembly , startTC);

89: ConnectorData conE = FIND(mo.assembly , endTC);

90: if tc is AgeConstarint then

91: DataAgeStart startA = CREATEDATAAGESTART(tc);

92: DataAgeEnd endA = CREATEDATAAGEEND(tc);

93: ASSIGNPORTS(startA, endA, conS , conE)

94: else

95: end if

96: if tc is ReactionConstarint then

97: DataReactionStart startR = CREATEDATAREACTION-

START(tc);

98: DataReactionEnd endR = CREATEDATAREACTIO-

NEND(tc);

99: ASSIGNPORTS(startR, endR, conS , conE)

100: else

101: end if

102: end for

103: for part in fdp do

104: TC2TC(part ,mo.assembly)

105: end for

106: end function

sensors. It also receives a CAN message from the Wheel Control (WC) ECU.

It sends two CAN messages: one carries steer angle and torque signal; while

the other carries feedback signals. Based on all the inputs, it calculates the

feedback steering torque and sends it to the feedback torque actuator which is

responsible for producing the turning effect of the steering. Similarly, the WC

ECU receives inputs from wheel angle and torque sensors. Depending upon

these signals and CAN messages received from the SC ECU, it calculates the

wheel torque and produces actuation signals for the wheel actuators. It also

sends one CAN message carrying wheel torque signal.

For the sake of simplicity and intuitive presentation of the transforma-

tion, the simplified internal software architecture of WC ECU is modeled with

50 Paper A

Controller Area Network (CAN)

Feedback

Steering

Torque

Steer

angle

Steer

torque

Steer

Control

ECU
Vehicle

speed

Wheel

Actuation

Signal

Wheel

angle

Wheel

torque

Wheel

Control

ECU

Figure 4.10: Architecture of the steer-by-wire system

EAST-ADL using EAST-ADL Rubus Designer4 as shown in Figure 4.11.

There are four Software Components (SWCs)5 in the simplified software

architecture. We specify two timing constraints, namely age and reaction using

TADL2. These constraints put a restriction of 20 ms on the time between the

acquisition of sensor signals at the WC ECU and the production of wheel actu-

ation signals by the actuator SWC. These constraints are internally referenced

to the components on which they are specified. For convenience, the start and

end points for these constraints are identified using the solid-line arrow, as

shown in Figure 4.11.

SWC: Sensor

signals

SWC: wheel

controller

SWC: actuatorSWC: signals

filter

Age and Reaction Constraints

Software

Component (SWC)
Actuator

Component

Figure 4.11: Software architecture of WC ECU modeled with EAST-ADL and

TADL2

Figure 4.12 shows the Ecore model conforming to the EAST-ADL design

level metamodel depicted in Figure 4.9. By applying the DL2RCM transfor-

mation presented in Section 4.4, the Ecore model in Figure 4.13 is obtained.

4http://www.arcticus-systems.com
5An SWC corresponds to a Software Component and a Software Circuit in EAST-ADL and

RCM respectively.

4.5 Application to the steer-by-wire system 51

Please note that, the model in Figure 4.13 is conforming to the RCM meta-

model. Without going into the details of the transformation process, it can be

easily noted how the RCM elements were translated from the related EAST-

ADL elements. For instance, the RCM SWC SFN FT it has been translated

from the EAST-ADL DesignFunctionType SFN FT by means of the C2C func-

tion. The same applies to all the RCM elements.

Figure 4.12: Serialized model of the EAST-ADL WC ECU architecture

A representation, given in Rubus Designer concrete syntax, of the model

showed in Figure 4.13, is presented in Figure 4.14. The specified TADL2 tim-

ing constraints (i.e., Age and Reaction) in Figure 4.11 are also translated to

RCM timing constraints shown by “Age Start”, “Age End”, “DR Start” and

“DR End” objects in Figure 4.14.

We assume that all tasks corresponding to the four SWCs in Figure 4.14

have equal priorities. Moreover, we consider these tasks to be the highest prior-

ity tasks in the WC ECU. The worst-case execution times of these components

are selected between the range 60 µs - 2000 µs. The analysis engines calculate

the age and reaction delays for only those component chains (represented by

task chains at runtime) on which the timing constraints are specified (there is

only one component chain in Figure 4.14 on which these delays are specified).

The calculated age and reaction delays are 5360 µs and 15360 µs respectively.

A comparison between the specified constraints and calculated delays shows

the system satisfies the specified timing constraints.

52 Paper A

Figure 4.13: Serialized model of the RCM WC ECU architecture

4.6 Evaluation and discussion

The work discussed in this article finds its motivation and application context

within the modernization efforts done by Articus Systems AB devoted to port

RUBUS toolset into a proper model-driven development environment. In this

respect, as mentioned so far, defining appropriate metamodels is a fundamen-

tal step towards enabling the implementation of MDE techniques. As a conse-

quence, the RCM metamodel has been developed with precise goals in mind,

4.6 Evaluation and discussion 53

S
W

C
:

S
en

so
r

si
g

n
al

s
S

W
C

:
w

h
ee

l

co
n

tr
o

ll
er

S
W

C
:

ac
tu

at
o

r
S

W
C

:
si

g
n

al
s

fi
lt

er

S
o

ft
w

ar
e

ci
rc

u
it

C
lo

ck

T
ri

g
g
er

 s
in

k
5

 m
s

1
0

 m
s

5
 m

s
5

 m
s

Figure 4.14: Translated software architecture of WC ECU in RCM

54 Paper A

as follows:

backward compatibility: the metamodel should allow an easy migration of

legacy RUBUS artifacts into the new modeling environment;

maintainability: the metamodel should enable a better management of RCM

updates and refinements;

extensibility: the metamodel should disclose the opportunity to integrate in

a smooth way RUBUS modeling environment in a typical automotive

application development chain.

The first requirement has been addressed by reverse engineering the in-

ternal representation of RCM into the RUBUS tool, where the metamodeling

activity both polished some redundancies due to the lower level of abstrac-

tion representation of modeling entities and optimized model traversals. These

activities resulted in the addition of 6 elements and the refinement of 5 ele-

ments hierarchies. The metamodel illustrated in this paper has been tested and

validated against several existing industrial system designs, e.g., modeling of

i) Autonomous Cruise Control System that consists of 4 nodes (ECUs), 17

assemblies and 36 SWCs [4]; and ii) Intelligent Parking Assist System that

consists of 2 nodes and 42 SWCs [24]. Moreover, ongoing work is addressing

the incremental substitution of current features with replacements implemented

through model-based mechanisms. In the long run, this migration will produce

a new RUBUS modeling environment entirely based on metamodels, appropri-

ate rendering of model entities, and model transformations.

With respect to the maintainability aspect, by building-up the development

environment on the RCM metamodel allows to decouple modeling concepts

from their rendering and the automated features provided as part of the tool.

This means that extensions/refinements of RCM cause modifications of the

current metamodel, which in turn trigger co-evolutions of interconnected arte-

facts [25]. Despite managing metamodel evolutions is not always straightfor-

ward, having an explicit link between RCM changes and metamodel manip-

ulations allows to perform an impact analysis of the refinements and to pre-

cisely locate where changes will affect existing artefacts. Notably, especially

in industrial contexts it is not unfrequent the need for local customisations of

tools requiring ad hoc adaptations. On the one hand by using a higher level of

abstraction approach allows e.g. to un/hide modelling elements, augment/re-

duce the number of modelling views, and so on. On the other hand, the need

4.6 Evaluation and discussion 55

for metamodel modifications limits the dangerous practice of hardcoding cus-

tomisation directly on the implementation code of the modelling environment,

which hinders its maintainability in the long run.

The last requirement targets the general trend of incrementally adopting

higher abstraction level approaches to deal with the development of industrial

systems (see also the discussion that follows in the remainder of this section).

In particular, it requires RUBUS to be open enough to be integrated in a tool

chain. The proposed metamodel-based solution supports tool integration con-

texts by permitting the definition of model transformations acting as import/-

export utilities from a tool to another. The transformation from EAST-ADL to

RCM and its application illustrated in Section 4.4 and 4.5, respectively, are a

practical demonstration about the tool integration potentials disclosed by the

adoption of a model-driven approach. Writing and testing the tool integration

transformation is a one time effort; then the translation can be used for all the

models produced by means of the same tools, as long as the metamodels are not

modified. Also from a performance perspective, the transformation operates in

negligible time. In fact, the transformation operates in 40ms, where 39ms are

due to the loading of the involved models and 1ms is due to the transformation

execution.

From a broader perspective, introducing higher level of abstraction ap-

proaches to the development of complex systems is an indisputable trend in

modern software engineering practice. In this respect, industry is very often

facing the issue of integrating new, task-specific tools, with the rest of legacy

systems and development environments. In particular, if the constellation of

adopted tools does not integrate in a seamless chain, manual effort is required

to close the gap between tools and perform needed translations. Even if feasi-

ble, this practice can reveal as time-consuming and error-prone in the long run,

especially when the size of the system grows and there are semantics aspects

involved in the mapping. On the one hand, model transformations allow to au-

tomate the translation process; on the other hand, by using a transformation as

tool integration solution provides traceability of translations. Traces not only

allow to explicitly represent the correspondences between one tool and another,

but they also enable the propagation of information from one domain-specific

perspective to another. Notably, in the case study presented in Section 4.5 the

forward transformation allows to get an RCM model from EAST-ADL, and

carries by the rationale underlying the mapping across these two languages.

Moreover, the trace links created during the transformation process allow, for

example, to map timing analysis results back to EAST-ADL models.

56 Paper A

4.7 Conclusions and future work

In the last twenty years, CBSE has enhanced the software development for

vehicular embedded systems. Nevertheless, industry needs to move further to-

wards a seamless development chain for reducing software development costs

and time-to-market. Intertwining of MDE and CBSE has been proven to be

effective towards this goal.

In this work, by exploiting the interplay between MDE and CBSE, we

took initial steps towards the realization of the aforesaid seamless develop-

ment chain. In details, we i) motivated the usage of RCM within the vehicular

domain, by highlighting its unique features against existing CMs, ii) formal-

ized a metamodel based on RCM comprising the concepts able to represent

both the software architecture and the related timing constraints,, iii) presented

a model-to-model transformation between EAST-ADL Design level and RCM

and iv) discussed a case study which mimics a typical industrial scenario.

The formalization of the metamodel serves as base for embracing the MDE

vision as well as for restoring the separation of concerns which has been lost

during the evolution of the RCM. Due to space limitations, we did not dis-

cuss the complete RCM timing package, but we rather focused on the elements

representing the most recent timing constraints, information and analyses in-

troduced and practically used within the industrial automotive domain.

The DL2RCM transformation outlines the potential benefits gained in hav-

ing a proper metamodel for RCM, in terms of compliance with the EASTADL

based methodology.

As future works, we plan to minimize the assumptions needed in perform-

ing the transformation, by using model transformation languages able to fully

and practically support non-bijective model transformations. Additionally, we

will consider the possibility of using these non-bijective model transformations

for design-space exploration. Finally we will, together with our industrial part-

ners, cover the identification of additional languages used along the software

development for the vehicular embedded systems, with the aim of formaliz-

ing their metamodels and hence enable model transformations for supporting a

more extensive tool chain. The work in this paper is supported by the Swedish

Knowledge Foundation (KKS) and Swedish Research Council (VR) within the

projects FEMMVA and SynthSoft. We thank our industrial partners Arcticus

Systems AB and Volvo CE, Sweden.

Bibliography

[1] R. N. Charette. This car runs on code. IEEE Spectrum, 46(3):3, 2009.

[2] F. Liu, A. Narayanan, and Q. Bai. Real-time systems, 2000.

[3] I. Crnkovic and M. Larsson. Building Reliable Component-Based Soft-

ware Systems. Artech House, Inc., Norwood, MA, USA, 2002.

[4] S. Mubeen, J. Mäki-Turja, and M. Sjödin. Support for end-to-end

response-time and delay analysis in the industrial tool suite: Issues, ex-

periences and a case study. Computer Science and Information Systems,

10(1), 2013.

[5] AUTOSAR Techincal Overview, Release 4.1, Rev. 2, Ver. 1.1.0., The

AUTOSAR Consortium, Oct., 2013. http://autosar.org.

[6] K. Hänninen, J. Mäki-Turja, M. Nolin, M. Lindberg, J Lundback, and K.-

L. Lundback. The Rubus Component Model for Resource Constrained

Real-Time Systems. In 3rd IEEE International Symposium on Industrial

Embedded Systems, 2008, Jun. 2008.

[7] EAST-ADL Domain Model Specification, Deliverable D4.1.1, 2010.

http://www.atesst.org/home/liblocal/docs/ATESST2 D4.1.1 EAST-

ADL2-Specification 2010-06-02.pdf.

[8] P. Cuenot, P. Frey, R. Johansson, H. Lönn, Y. Papadopoulos, M. O. Reiser,

A. Sandberg, D. Servat, R. T. Kolagari, M. Törngren, et al. 11 the east-adl

architecture description language for automotive embedded software. In

Model-Based Engineering of Embedded Real-Time Systems, pages 297–

307. Springer, 2011.

57

58 Bibliography

[9] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson. Assessing the

state-of-practice of model-based engineering in the embedded systems

domain. In Model-Driven Engineering Languages and Systems, pages

166–182. Springer, 2014.

[10] Timing Augmented Description Language (TADL2) syntax, semantics,

metamodel Ver. 2, Deliverable 11, Aug. 2012.

[11] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson. A Compositional

Framework for End-to-End Path Delay Calculation of Automotive Sys-

tems under Different Path Semantics. In Workshop on Compositional

Theory and Technology for Real-Time Embedded Systems (CRTS), dec.

2008.

[12] J. Bézivin and O. Gerbé. Towards a precise definition of the omg/mda

framework. In Proceedings of the 16th IEEE International Conference

on Automated Software Engineering, 2001.

[13] S. Sendall and W. Kozaczynski. Model transformation: The heart and

soul of model-driven software development. IEEE Softw., 20(5):42–45,

2003.

[14] TIMMO Methodology, Version 2, Deliverable 7, Oct. 2009.

[15] TIMMO-2-USE. https://itea3.org/project/timmo-2-use.html.

[16] TADL: Timing Augmented Description Language, Version 2, Deliverable

6, Oct. 2009. The TIMMO Consortium.

[17] The UML Profile for MARTE: Modeling and Analysis of Real-Time and

Embedded Systems, 2010. OMG Group, January 2010.

[18] S. Mubeen, J. Mäki-Turja, and M. Sjödin. Communications-Oriented De-

velopment of Component- Based Vehicular Distributed Real-Time Em-

bedded Systems. Journal of Systems Architecture, 60(2):207–220, 2014.

[19] K. Tindell and J. Clark. Holistic schedulability analysis for distributed

hard real-time systems. Microprocess. Microprogram., 40:117–134,

April 1994.

[20] F. Stappert, J. Jonsson, M. Jürgen, and J. Rolf. A Design Framework for

End-To-End Timing Constrained Automotive Applications. In Embedded

Real-Time Software and Systems (ERTS), 2010.

[21] A. C. Rajeev, S. Mohalik, M. G. Dixit, D. B. Chokshi, and S. Ramesh.

Schedulability and end-to-end latency in distributed ecu networks: formal

modeling and precise estimation. In Proceedings of the tenth ACM inter-

national conference on Embedded software, EMSOFT ’10, pages 129–

138. ACM, 2010.

[22] Alessio Bucaioni, Saad Mubeen, Antonio Cicchetti, and Mikael Sjödin.

Exploring Timing Model Extractions at EAST-ADL Design-level Us-

ing Model Transformations. In International Conference on Information

Technology: New Generations (ITNG), April 2015.

[23] A. Bucaioni, A. Cicchetti, and M. Sjödin. Towards a metamodel for the

rubus component model. In 1st International Workshop on Model-Driven

Engineering for Component-Based Software Systems, ModComp 2014,

29 September 2014, pages 46–56, 2014.

[24] Alessio Bucaioni, Saad Mubeen, John Lundbäck, Kurt-Lennart

Lundbäck, Jukka Mäki-Turja, and Mikael Sjödin. From modeling to de-

ployment of component-based vehicular distributed real-time systems. In

International Conference on Information Technology: New Generations

(ITNG), April 2014.

[25] Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio. What is

needed for managing co-evolution in mde? In Proceedings of the 2Nd

International Workshop on Model Comparison in Practice, pages 30–38,

2011.

Chapter 5

Paper B:

Exploring Timing Model

Extractions at EAST-ADL

Design-level Using Model

Transformations

Alessio Bucaioni, Saad Mubeen, Antonio Cicchetti and Mikael Sjödin

In Proceedings of the 12th International Conference Information Technology:

New Generations (ITNG), IEEE, Las Vegas, Nevada (USA), April, 2015

61

Abstract

We discuss the problem of extracting control and data flows from vehicular

distributed embedded systems at higher abstraction levels during their devel-

opment. Unambiguous extraction of control and data flows is vital part of the

end-to-end timing model which is used as input by the end-to-end timing analy-

sis engines. The goal is to support end-to-end timing analysis at higher abstrac-

tion levels. In order to address the problem, we propose a two-phase methodol-

ogy that exploits the principles of Model Driven Engineering and Component

Based Software Engineering. Using this methodology, the software architec-

ture at a higher level is automatically transformed to all legal implementation-

level models. The end-to-end timing analysis is performed on each generated

implementation-level model and the analysis results are fed back to the design-

level model. This activity supports design space exploration, model refinement

and/or remodeling at higher abstraction levels for tuning the timing behavior

of the system.

5.1 Introduction 63

5.1 Introduction

The intrinsic complexity of vehicular embedded systems demands for devel-

opment methodologies and technologies that are able to cope with it. In the

last decades, Component-Based Software Engineering (CBSE) [1, 2], Model-

Driven Engineering (MDE) [3] and their crosplay have gained acceptance due

to their ability to both reduce the development complexity, by raising the ab-

straction level, and to cope with the most arduous aspects of these systems such

as timing and safety requirements [2].

EAST-ADL [3] together with its development methodology has been get-

ting closer and closer towards the status of de-facto standard within the automo-

tive domain. It defines a top down development process promoting the separa-

tion of concerns through a four-level architecture, where each level is designed

for hiding details pertaining to higher or lower levels. At the lowest level, i.e.,

implementation level, EAST-ADL makes use of AUTOSAR [5], which is an

industrial initiative to provide standardized software architecture for the de-

velopment of vehicular embedded systems. While EAST-ADL methodology

has been successful in raising the software development abstraction level, it

provides few means for coping with the timing requirements of such software

systems. In the past few years, several initiatives such as TIMMO [4] and

TIMMO2USE [5] and their outcomes including TADL [6] and TADL2 [10]

languages, tried to provide AUTOSAR with a timing model. Nevertheless,

they did not fully succeed with this goal at various abstraction levels because

AUTOSAR explicitly hides some implementation-level information which is

necessary for building a timing model from the software architecture.

Nowadays, automotive industry needs development methodologies and tech-

nologies able to cope with the timing requirements of such software systems.

Nevertheless, current industrial needs push for having such end-to-end tim-

ing analysis earlier during the development process, i.e., at the design level.

Industry is currently reusing most of the software architecture from previous

projects, that means, some crude software architecture is already available in

the early stages of the software development. In this context, it is beneficial to

perform early timing analysis for Design Space Exploration (DSE) and soft-

ware architecture refinements.

5.1.1 Paper Contribution

We target core challenges that are faced when end-to-end timing models are

extracted to support end-to-end timing analysis at higher abstraction levels and

64 Paper B

earlier stages of the software development of vehicular distributed embedded

systems. These challenges include extraction of data and control paths at the

implementation level from the design-level models; transformation of multiple

implementation-level models from a single design-level model; and dealing

with these transformed models from the timing analysis point of view. In or-

der to deal with these challenges, we propose a two-phase methodology that

exploits the principles of MDE and CBSE. In the first phase, the software ar-

chitecture of the system at the EAST-ADL design level is automatically trans-

formed to all legal implementation-level models, e.g., models that are build us-

ing the Rubus Component Model (RCM) [7]. Whereas in the second phase, the

end-to-end timing analyses are performed on each generated implementation-

level model. The analysis results of all or selected implementation-level mod-

els are fed back to the design-level model. Thus, the methodology provides a

support for DSE and models refinement. Moreover, it supports remodeling at

higher abstraction levels for the purpose of tuning the timing behavior of the

system.

5.1.2 Relation with Authors’ Previous Works

In [8], we provide a method to extract timing models and perform end-to-end

timing analysis of component-based distributed embedded systems. In [9],

RCM is presented as an alternative to AUTOSAR in the EAST-ADL develop-

ment methodology and its usage is discussed for enabling end-to-end timing

analysis at the lowest EAST-ADL abstraction level, i.e., implementation level.

In [10], RCM is extended with a concrete meta-model definition. In [11], the

translation of timing constraints from the design- to the implementation-level

models is provided. However, the translation is done manually and is limited

by the constraint such that it only considers that implementation-level model

which results in worst-case response times and delays. In comparison with

above works, this paper presents a novel two-phase methodology to automati-

cally transform the software architecture of the system at the EAST-ADL de-

sign level to all legal implementation-level models (RCM models). The exist-

ing analysis engines in the Rubus analysis framework perform timing analysis

on each generated implementation-level model. The analysis results are then

fed back to the design-level model to support DSE and models refinement.

5.2 Background and Related Works 65

5.2 Background and Related Works

5.2.1 EAST-ADL Development Methodology

EAST-ADL defines a top-down development methodology that promotes the

separation of concerns through the usage of four different abstraction levels,

where each level provides a complete definition of the system under develop-

ment for a specific perspective. Figure 5.1 shows the abstraction levels archi-

tecture together with the methodologies, models and languages used at each

level.

Figure 5.1: EAST-ADL abstraction levels

Vehicle level

The vehicle level, also known as end-to-end level, serves for capturing all the

information regarding what the system is supposed to do, i.e., requirements and

features on the end-to-end functionality of the vehicle. Feature models and re-

quirements can be used for showing what the system provides and, eventually,

how the product line is organized in terms of available assets.

Analysis level

At this level, the end-to-end functionalities are expressed using formal nota-

tions. Behaviors and interfaces are specified for each functionality. Yet, design

and implementation details are omitted. At this stage, high-level analysis for

functional verification can be performed.

66 Paper B

Design level

At this level, the analysis-level artifacts are refined with more design-oriented

details. The architecture of the system is redefined in terms of software, hard-

ware and middleware architectures. Also, software functions to hardware allo-

cation is expressed.

Implementation level

The design-level artifacts are enriched with implementation details. Compo-

nent models are used to model the system in terms of components and their

interconnections. The code for vehicle functions can be synthesized from the

software component architecture.

5.2.2 The Rubus Component Model (RCM)

Rubus 1 is a collection of methods, theories and tools for model- and component-

based development of resource-constrained embedded real-time systems. It is

developed by Arcticus Systems in collaboration with Mälardalen University.

Rubus is mainly used for development of vehicles control functionality by

several international companies. The Rubus concept comprises of RCM and

its development environment Rubus-ICE (Integrated Component development

Environment), which includes modeling tools, code generators, analysis tools

and run-time infrastructure. RCM has been recently extended with a concrete

meta-model definition [10] for embracing the MDE vision and streamlining the

modeling language.

RCM is used for expressing the software architecture in terms of software

components and interconnections. A software component in RCM is called

Software Circuit (SWC) and represents the lowest-level hierarchical element.

Its purpose is to encapsulate basic functions. RCM distinguishes the SWCs

interactions by separating the data flow from the control flow. The latter is

defined by triggering objects, i.e., clocks and events. SWCs communicate with

each other via data ports. RCM facilitates analysis and reuse of components

in different contexts by separating functional code from the infrastructure that

implements the execution environment. Within the context of above-mentioned

abstraction levels in Figure 5.1, RCM is used at the implementation level.

1http://www.arcticus-systems.com

5.2 Background and Related Works 67

5.2.3 End-to-end Timing Models and Analyses

An end-to-end timing model consists of timing properties, requirements, de-

pendencies and linking information of all tasks, messages and task chains in

the distributed embedded system under analysis2. It can be divided into tim-

ing and linking models. For instance, consider a task chain distributed over

three nodes connected by a network as shown in Figure 5.2. The system timing

model contains all the timing information about the three nodes and the net-

work. Whereas the system linking model contains all the linking information

in the task chains, including the control and data paths.

Task1 Task2 Task3 Task4

Network

Sensor Node Computation Node Actuation Node

End-to-end Response Time

Brake

Pedal

Sensor

Brake

Actuator

Figure 5.2: Example demonstrating end-to-end response time

The analysis engines [8] use these models for performing end-to-end timing

analyses. The analyses results include response-time of tasks and messages as

well as system utilization. Also, the analysis engines calculate the end-to-end

response times and delays. The end-to-end response time of a task chain is

equal to the elapsed time between the arrival of an event, e.g., the brake pedal

sensor input in the sensor node and the response time of task, e.g., the brake

actuation signal in the actuation node as shown in Figure 5.2.

Within a task chain, if the tasks are triggered by independent sources, then

it is important to calculate different types of delays such as age and reaction.

Such delays are crucial in control systems and body electronics domains, re-

spectively. An age delay corresponds to the freshness of data, while the re-

action delay corresponds to the first reaction for a given stimulus. In order

to explain the meaning of reaction and age delays, consider a task chain in a

single-node system as shown in Figure 5.3. There are two tasks in the chain

denoted by τ1 and τ2 and triggered by independent clocks of periods 25ms and

5ms respectively. Let the Worst-Case Execution Times (WCETs) of these tasks

be 2ms and 1ms respectively. τ1 reads data from the register Reg-1 and writes

data to Reg-2. Similarly, τ2 reads data from the Reg-2 and writes data to Reg-

3. Since, the tasks are activated independently with different clocks, there can

be multiple outputs (Reg-3) corresponding to one input (Reg-1) to the chain as

2We refer the reader to [9] for details about the timing model.

68 Paper B

shown by several uni-directional arrows in Figure 5.4. The age and reaction

delays are also identified in the figure. These delays are equally important in

distributed embedded systems.

Reg-1 τ1

Period = 25

Reg-2 Reg-3τ1

Period = 5

WCET = 2 WCET = 1

Figure 5.3: A task chain with independent activations of tasks

5
10 15 20 25

Task τ1 PERIOD1 = 25,

WCET1 = 2
0

Age delay

30

Reaction delay

5 10 15 20 25

Task τ2

0 30

PERIOD2 = 5,

WCET2 = 1

Figure 5.4: Example demonstrating end-to-end delays

5.2.4 Model Driven Engineering (MDE) and Janus Trans-

formation Language (JTL)

MDE is a discipline which aims to abstract software development from the im-

plementation technology by shifting the focus from the coding to the modeling

phase. In this context, MDE promotes models and model transformations as

first-class citizens. Models are seen as an abstraction of a real systems, built for

a specific purpose [3]. Whereas, model transformations can be seen as a gluing

mechanism among models [4]. Rules and constraints for the models’ construc-

tion are specified in the so-called metamodels, i.e., a language definition to

which a correct model must conform.

JTL [14] is a declarative model transformation language tailored to support

bidirectionality and change propagation. The JTL transformation engine is

implemented by means of the Answer Set Programming (ASP) [12], that is

a form of declarative programming oriented towards difficult search problems

and based on the stable model (answer set) semantics of logic programming. In

JTL, a model transformation between a source and a target model, is specified

5.3 Problem Statement 69

as a set of relations among models, which must hold for the transformation

to be successful. The transformation engine considers such mapping rules for

generating the set of all possible solutions. Then, it can refine the generated

set by applying constraints on the generated target models, i.e., meta-model

conformance rules.

5.2.5 MDE for DSE

During the last decades, MDE has been successfully employed for DSE. In

[13], the author exploit JTL for implementing an automatic deployment ex-

ploration technique based on refinement transformations and platform-based

design. The technique is validated upon an automotive case study using an

AUTOSAR-like metamodel. [14] presents a pattern catalog for categorizing

different MDE approaches for DSE. It demonstrates the usage of the identi-

fied patterns with a literature survey. The work in [15] defines a guided DSE

approach based on selection and cut-off criteria defined using dependency anal-

ysis of transformation rules and an algebraic abstraction. Cutt-off criteria are

used to identify dead-end states, while selection criteria are used to order ap-

plicable rules in a given state. The methodology has been effectively evaluated

upon a cloud configuration problem.

5.3 Problem Statement

In order to support the end-to-end timing analysis at the design level, the end-

to-end timing model should be extracted from the design-level model of the

application. Consider the design-level model of a component chain consist-

ing of three software components shown in Figure 5.5. Among other param-

eters, complete control (trigger) and data paths along component chains (task

chains at run-time) must be unambiguously captured in the timing model. Un-

ambiguous extraction of control and data paths from the system are vital for

performing its timing analysis.

A control path captures the flow of triggers along the components chain,

e.g., control path of the chain in Figure 5.6(b) can be expressed as {{Sensor

→ Controller}, {Actuator}}. This means that Controller SWC is triggered

by Sensor SWC, while Actuator SWC is triggered independently. Similarly,

control paths of the chains shown in Figure 5.6(a) and Figure 5.6(c) can be ex-

pressed as {{Sensor → Controller → Actuator}} and {{Sensor}, {Controller},

{Actuator}} respectively. It should be noted that the three component chains

70 Paper B

shown in Figure 5.6 are modeled at the implementation level using the Rubus-

ICE tool suite.

Sensor

software component

Controller

software component

Actuator

software component

Figure 5.5: Design-level model of a component chain

The main challenge faced during the extraction of end-to-end timing mod-

els at the design level is the lack of clear separation between control and data

paths. Although TADL2 augments EAST-ADL with some timing information

at the design level, the support for clear separation and unambiguous extraction

of control and data flows is still missing. At the implementation level, e.g. in

RCM, these paths are clearly separated from each other by means of trigger

and data ports as shown in Figure 5.6. A trigger output port of an SWC can

only be connected to the trigger input port(s) of other SWC(s). Similarly, a

data output port of an SWC can only be connected to the data input port(s) of

other SWC(s). Hence, the trigger and data paths can be clearly identified and

extracted in the timing model. Whereas at the design level, the components

communicate by means of flow ports as shown in Figure 5.5. A flow port is

an EAST-ADL object that is used to transfer data between components. It has

a single buffer. The data contained in the port is non-consumable and over-

writable. Since there is no other explicit information available about this ob-

ject, it can be interpreted as a data or a trigger port at the implementation level.

There is no support to specify explicit trigger paths at the design level. More-

over, a component can be triggered via specified timing constraints on events,

modes, or internal behavior of the component. For example, consider again the

design-level model of a component chain shown in Figure 5.5. Assume there is

a periodic constraint of 10ms specified on this chain. There can be three model

interpretations of this chain at the implementation level as shown in Figure 5.6.

Consequently, there are three different control flows in these models. The data

flow and control flow should be clearly and separately captured in the end-to-

end timing model because the type of the timing analysis depends upon it. For

example, it is not meaningful to perform end-to-end delay analysis on a trigger

chain as shown in Figure 5.6(a) [8].

We have considered a very small part of a large system in the above ex-

ample. In reality, distributed embedded systems may contain hundreds of soft-

5.4 Proposed Solution and Methodology 71

10 ms

Sensor

SWC
Actuator

SWC

Controller

SWC

Data sink

Sensor

Input

Trigger sink

(a)

10 ms
10 ms

Sensor

SWC
Actuator

SWC

Controller

SWC

Data sink

Sensor

Input

Trigger sink

Trigger port

Data port

Software Circuit (SWC)

(b)
10 ms 10 ms 10 ms

Sensor

SWC
Actuator

SWC

Controller

SWC

Data sink

Sensor

Input

Trigger sink

(c)

Figure 5.6: Implementation-level models of the design-level model of the com-

ponent chain in Figure 5.5

ware components and component chains. The component chains, in turn, may

be distributed over several nodes or Electronic Control Units (ECUs). Intu-

itively, there can be a large number of implementation-level model interpre-

tations of the design-level model of a single distributed chain. To the best of

our knowledge, RCM is the only model that intends to support high-precision

end-to-end timing analysis at the design level3. However, it considers only

that implementation-level model interpretation of the design-level model which

produces worst-case response-times and delays. As a result, the calculated

response-times and delays may be very pessimistic (considerably large com-

pared to actual response times and delays). In order to be less pessimistic with

the analysis results, the end-to-end timing analysis should be performed on all

possible implementation-level model interpretations of a design-level model.

The analysis results of all these models should be presented to the user. The

user should be able to select the model with respect to the analysis results. This

activity also helps in doing DSE and performing model refinements earlier dur-

ing the development. There is a need for a methodology and corresponding

automated model transformations to deal with this problem.

5.4 Proposed Solution and Methodology

In order to address the problem discussed in the previous section, we propose

a solution methodology as shown in Figure 5.7. The input to the methodology

is the EAST-ADL design-level software architecture of the system under de-

velopment. Whereas, the output of the methodology consists of the end-to-end

3The solution is being prototyped.

72 Paper B

Figure 5.7: Methodology of the proposed solution

timing analysis results that are fed back to the design-level software archi-

tecture. The methodology comprises of two major phases (A) transformation

phase and (B) timing analysis phase.

5.4 Proposed Solution and Methodology 73

5.4.1 Transformation phase

The transformation phase is realized as a model-to-model transformation be-

tween EAST-ADL design-level and RCM models. The mapping relation be-

tween the related metamodels is a non-surjective relation. We select JTL to im-

plement the transformation because it is able to deal with partial information,

information loss and uncertainty [14]. To the best of our knowledge, JTL is the

only transformation language with such characteristics. The JTL transforma-

tion requires the EAST-ADL design-level model and metamodel as well as the

RCM metamodel as inputs. Exploiting the ASP engine, JTL produces, with

a single execution, all the possible RCM models for the specified EAST-ADL

design-level model. The transformation assumes a one-to-one mapping be-

tween each design- and implementation-level component. Although a design-

level component can be mapped to more than one implementation-level com-

ponents, our assumption of one-to-one mapping is based on common practice

in industry, especially in the segment of construction-equipment vehicles do-

main. All the generated implementation-level models have same data flows but

different control flows. For instance, consider that the EAST-ADL design-level

model shown in Figure 5.5 along with the EAST-ADL and RCM metamodels

are provided as input to the JTL framework. The corresponding transformation

results into three implementation-level models as shown in Figure 5.6. For a

complex embedded application, there can be many such transformations of a

design-level model.

5.4.2 Timing analysis phase

In the timing analysis phase, our methodology exploits the end-to-end timing

analysis framework of Rubus-ICE [8]. All the generated implementation-level

models from the previous phase are provided as inputs to the analysis frame-

work. It should be noted that the timing analysis framework operates on the

implementation-level models which are annotated with complete timing infor-

mation. However, in the generated models derived from the previous phase,

some of the timing information required to do the timing analysis may be

missing. In this respect, we make assumptions to compensate for the miss-

ing timing information. For example, if worst-, best- and average-case exe-

cution times are not specified at the design level, they can be estimated at the

implementation level either using estimations by experts, reusing them from

other projects or from previous iterations during the model refinement process.

Further, we assume that the execution order of design-level components in a

74 Paper B

chain is specified, otherwise we make implicit assumption about it. That is,

each component is assumed to execute only after successful execution of pre-

ceding component in the chain, unless specified otherwise. This means, a data

provider component is assumed to be always executed before the data receiver

component. Since this assumption fixes the execution order, it is safe to assume

the priorities of the components are equal within the component chain.

Eventually, the analysis framework performs end-to-end response-time and

delay analyses on each implementation-level model separately. Once again,

consider the three generated implementation-level models shown in Figure 5.6.

We assume the WCET of each component to be equal to 1ms. Here we are in-

terested in the end-to-end response times, reaction and age delays among all

timing analysis results. These times for the three component chains are (a)

3ms, 3ms, 3ms; (b) 3ms, 10ms, 10ms; and (c) 3ms, 29ms, 19ms respectively.

These analysis results are provided to the filter module which selects optimal

result(s) depending upon the specified constraints (e.g. constraints on timing or

constraints on activation of individual components in a chain, i.e., dependent

or independent triggering). The filter can be considered as the designer who

selects optimal implementation-level model interpretation of the design-level

model based on the analysis results. The filter can also be a logical block mak-

ing such decisions based on the specified constraints (the process of automating

the filter is a future work).

The translation from the design- to the implementation-level models is au-

tomatic. Moreover, the translation is not limited by the constraint of consid-

ering that implementation-level model which results in worst-case timing be-

havior. For example, in the case of constrained translation, the design-level

model in Figure 5.5 is only translated to implementation-level model of Fig-

ure 5.6 (c) because that chain results in worst-case delays. On the other hand,

the timing analysis phase in our current methodology provides all possible

implementation-level model interpretations of the design-level model. For ex-

ample, the filter module can select the chain in Figure 5.6(a) or Figure 5.6(b)

as optimal because of lower end-to-end delays and provide the correspond-

ing analysis results back to the design level. Based on this feedback, better

decisions can be made during DSE or the refinement of the system model.

Moreover, the system can be remodeled or decisions can be made such that the

timing analysis results in the next iteration are less pessimistic. This can help

in fine tuning the timing behavior of the system.

5.5 Conclusion 75

5.4.3 Proof of concept

As a proof of concept we instantiate the above presented methodology within

Rubus-ICE as depicted in Figure 5.8. In Rubus-ICE tool suite, Rubus-EAST

tool supports modeling of applications with EAST-ADL. There are two options

to start the modeling at the design level: i) model directly in Rubus-EAST, or ii)

import XMI formats of EAST-ADL models of the application from any other

EAST-ADL designer. The transformation phase of the methodology can be im-

plemented as a plug-in for Rubus-ICE denoted as DL-JTL plug-in, where DL

stands for Design Level. According to the proposed methodology, this plug-in

calls the JTL framework that generates all feasible RCM models corresponding

to the design-level model and provides them back to the plug-in. Consequently,

the DL-JTL plug-in calls the HRTA and E2EDA plug-ins [8] and provides all

generated implementation-level models to them. The HRTA and E2EDA plug-

ins, in turn, perform end-to-end response time and delay analyses of all the

input models and provide their analysis results back to the DL-JTL plug-in.

Finally, the DL-JTL plug-in selects the optimal analysis results and feeds them

back to the design-level model of the application in the Rubus-EAST tool. The

sequence of above mentioned steps are identified in Figure 5.8.

Figure 5.8: Methodology instantiated within Rubus-ICE

5.5 Conclusion

In this work we target core challenges arising when end-to-end timing mod-

els are extracted to support end-to-end timing analysis at the design level of

the EAST-ADL development methodology. Towards such goal we propose a

two-phase methodology that exploits MDE, CBSE and their crossplay. Within

the proposed methodology, the design-level model of the system under de-

velopment is automatically transformed to all possible implementation-level

76 Paper B

models. Further, End-to-end timing analyses are performed on each generated

implementation-level model; analyses results are filtered based on specified

constraints and eventually the analysis results are fed back to the design-level

model. Due to lack of needed information, timing model(s) can not be unam-

biguously extracted from a design-level model. More precisely, more than one

timing model may correspond to a single design-level model, as shown in Sec-

tion 5.3. One way to deal with this issue might be to consider a priori mapping

between the design-level model and one of the feasible implementation-level

model. In contrast, the proposed methodology is able to generate and manage

all the feasible implementation-models (transformation phase) and it is able to

choose the implementation-model which better meets the timing requirements,

based on the timing analysis results (timing analysis phase). Such methodol-

ogy naturally supports DSE and model refinements. As a proof of concept,

we instantiate the proposed methodology within the Rubus-ICE industrial tool

suite. As a future investigation direction, we will, together with our industrial

partners, validate, and possibly refine, such methodology upon real industrial

design-level models. In this context, it is important to evaluate the performance

and scalability of the proposed methodology when the number of alternatives

may grow remarkably.

Acknowledgement

This work is supported by the Swedish Research Council (VR) and the Swedish

Knowledge Foundation (KKS) within the projects SynthSoft and FEMMVA

respectively. The authors would like to thank the industrial partners Arcticus

Systems and Volvo Construction Equipment, Sweden.

Bibliography

[1] Thomas A. Henzinger and Joseph Sifakis. The Embedded Systems De-

sign Challenge. In Proceedings of the 14th International Symposium on

Formal Methods (FM), Lecture Notes in Computer Science, pages 1–15.

Springer, 2006.

[2] Ivica Crnkovic and Magnus Larsson. Building Reliable Component-

Based Software Systems. Artech House, Inc., Norwood, MA, USA, 2002.

[3] EAST-ADL Domain Model Specification, Deliverable D4.1.1, 2010.

http://www.atesst.org/home/liblocal/docs/ATESST2 D4.1.1 EAST-

ADL2-Specification 2010-06-02.pdf.

[4] TIMMO Methodology, Version 2, Deliverable 7, Oct. 2009.

[5] TIMMO-2-USE. http://www.timmo-2-use.org/.

[6] TADL: Timing Augmented Description Language, Version 2, Deliverable

6, October 2009. The TIMMO Consortium.

[7] K. Hänninen et.al. The Rubus Component Model for Resource Con-

strained Real-Time Systems. In 3rd IEEE International Symposium on

Industrial Embedded Systems, 2008, June 2008.

[8] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Support for end-to-

end response-time and delay analysis in the industrial tool suite: Issues,

experiences and a case study. In Computer Science and Information Sys-

tems, vol. 10, no. 1, pp 453-482, January 2013. ISSN: 1361-1384.

[9] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Towards extrac-

tion of interoperable timing models from component-based vehicular dis-

tributed embedded systems. In International Conference on Information

Technology: New Generations. IEEE, April 2014.

77

[10] Alessio Bucaioni, Antonio Cicchetti, and Mikael Sjödin. Towards a meta-

model for the rubus component model. In 1st International Workshop

on Model-Driven Engineering for Component-Based Software Systems,

September 2014.

[11] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Translating tim-

ing constraints during vehicular distributed embedded systems develop-

ment. In 1st International Workshop on Model-Driven Engineering for

Component-Based Software Systems, September 2014.

[12] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for

logic programming. In ICLP/SLP, volume 88, pages 1070–1080, 1988.

[13] Joachim Denil, Antonio Cicchetti, Matthias Biehl, Paul De Meulenaere,

Romina Eramo, Serge Demeyer, and Hans Vangheluwe. Automatic

deployment space exploration using refinement transformations. Elec-

tronic Communications of the EASST, Recent Advances in MPM(50),

Jun. 2012.

[14] Ken Vanherpen, Joachim Denil, Paul De Meulenaere, and Hans

Vangheluwe. Design-space exploration in model driven engineering.

Technical report, SOCS-TR-2014.4, McGill University, 2014.

[15] Abel Hegedus, Akos Horvath, Istvan Rath, and Daniel Varro. A model-

driven framework for guided design space exploration. In Proceedings

of the 26th IEEE/ACM International Conference on Automated Software

Engineering, ASE ’11, 2011.

Chapter 6

Paper C:

Raising Abstraction in

Timing Analysis for

Vehicular Embedded

Systems through

Model-Driven Engineering

Alessio Bucaioni

In Proceedings of the Doctoral Symposium at Software Technologies: Appli-

cations and Foundations (STAF), L’Aquila, Italy, July, 2015.

Best paper award at the Doctoral Symposium track.

79

Abstract

The complexity of vehicular embedded systems is continuously increasing and

this can negatively affect their development cost and time to market. One way

to alleviate these issues is to anticipate analysis of system properties at design

time for early architectural refinements. In this paper, we present a licentiate

work which aims at contributing to this effort. In particular, considering the

importance of timing constraints typical of vehicular embedded systems, we

leverage Model-Driven Engineering for realizing an automatic approach which

allows the developer to perform timing analysis on design models, without

having to manually specify timing elements. The proposed approach, starting

from a high-level model of the vehicular embedded application, generates a

set of candidate models enriched with timing elements in a semi-automatic

manner. Timing analysis is run on the generated models and, based on its

results, the approach supports the selection of the best candidate model for a

specific, non-empty, set of timing constraints.

6.1 Introduction 81

6.1 Introduction

During the last decades, ever-growing complexity of vehicular embedded sys-

tems development negatively affected their development cost and time-to-market

[1]. To mitigate these issues, a common practice is to anticipate analysis of sys-

tems properties at design time to drive early architectural refinements. In this

paper, we present a licentiate work1 which aims at contributing to this effort.

More precisely, we propose an approach to allow the developer to perform

end-to-end and delay timing analysis2 3 on design models without having to

manually specify their timing elements. Starting from a high-level model of a

vehicular embedded application, we provide a semi-automated mechanism for

generating a set of candidate models enriched with timing elements with the

aim of enabling early timing analysis. Leveraging the timing analysis results,

we support the selection of the best candidate model for a specific, non-empty,

set of timing constraints.

6.1.1 Context

One of the first attempts in mitigating the increasing complexity of vehicu-

lar embedded systems development was the establishment of different views

[4], each of which often exploiting a specific language, in the software devel-

opment. As a result, the vehicular software development was characterized

by a plethora of heterogeneous languages each targeting specific aspects re-

lated to a particular view. Nevertheless, the usage of heterogeneous languages

introduced new challenges towards interoperability, e.g., integration between

general purpose languages, e.g., UML, and domain-specific languages, e.g.,

AUTOSAR. In trying to solve to these challenges, the vehicular embedded re-

search community developed a layered architectural language, namely EAST-

ADL [5].

EAST-ADL proposes a top-down development process composed by four

different abstraction levels, i.e., vehicle, analysis, design and implementation

level. Within EAST-ADL, interoperability is ensured by well-defined relation-

ships among elements in the different abstraction levels. Nevertheless, these

relationships are not leveraged in any mechanism supporting the automatic

1Within the Swedish Higher Education Systems, the Degree of Licentiate is a third-cycle qual-

ification formally equivalent to half of the Degree of Doctor.
2In the remainder of the paper we will refer to end-to-end and delay timing analysis simply as

timing analysis.
3We refer the reader to [2] [3] for further details on timing analysis.

82 Paper C

translation of different artifacts through the EAST-ADL abstraction levels. For

this reason, automotive industry is currently pushing for having a closer linkage

among the EAST-ADL abstraction levels for enabling a seamless development

chain that takes into account relationships among different levels. Such a chain

would improve the development of vehicular embedded software by providing

automation of tedious and error-prone activities, e.g., transition from one level

to another. Towards this goal, the vehicular embedded research community is

considering the adoption of Model-Driven Engineering (MDE).

EAST-ADL.

EAST-ADL [5] is an architecture description language for modeling product-

lines of vehicular embedded systems. Currently it is managed by the EAST-

ADL Association together with the European FP7 MAENAD project. EAST-

ADL proposes a view over the development process composed by four different

abstraction levels, which implicitly ensure separation of concerns through the

different engineering phases. Each abstraction level is described by means of

metamodeling constructs. Figure 6.1 shows the abstraction levels together with

methodologies and languages used at each one of them.

Figure 6.1: EAST-ADL abstraction levels

EAST-ADL does not provide modeling constructs for representing the soft-

ware implementation architecture. Instead, for the last abstraction level, i.e.,

implementation level, EAST-ADL suggests the usage of existing modeling lan-

guages, e.g., AUTOSAR, the Rubus Component Model (RCM).

Vehicle Level.The highest abstraction level is represented by the vehicle level,

which captures information regarding the system’s functionality. Feature mod-

6.1 Introduction 83

els can be used for showing what the system provides in terms of functionality.

These models are decorated with requirements. The vehicle level is also known

as end-to-end level as it serves to capture requirements and features on the end-

to-end vehicle functionality.

Analysis level. At the analysis level, vehicle functions are expressed, using

formal notations, in terms of behaviors and interfaces. Yet, design and imple-

mentation details are omitted. At this stage, high level analysis for functional

verification can be performed.

Design level. At this abstraction level, the analysis-level artifacts are refined

with design-oriented details: while the analysis level does not differentiate

among software, middleware and hardware, the design level explicitly sepa-

rates them. Allocation of software functions to hardware nodes is expressed at

this level too.

Implementation level. At the implementation level, artifacts introduced at the

design level are refined with implementation details. At this stage component

models, e.g., RCM, AUTOSAR, can be used to model the system in terms of

components and interactions among them. The output of this level is a com-

plete software architecture which can be used for code generation.

Rubus Component Model

Rubus Component Model (RCM) is a component model for the development of

resource-constrained embedded real-time systems. It is developed by Arcticus

Systems AB in collaboration with Mälardalen University and it is currently

adopted by several companies as alternative to, e.g., AUTOSAR. In fact, in

contrast with its competitors, RCM offers high-precision timing analysis to-

gether with a well-established supporting framework.

In the context of EAST-ADL abstraction levels, RCM is used at the im-

plementation level (Figure 6.1). Its main goal is to express the software archi-

tecture in terms of software functions and interactions among them. In RCM,

the basic entity is the so-called software circuit (SWC) which represents the

lowest-level hierarchical element in RCM and it encapsulates basic software

functions. Each SWC is defined by its behavior and interface. Interfaces man-

age the interactions among SWCs via ports. RCM distinguishes between data

and control flow. Therefore, the interfaces have two types of ports: data ports

for the data flow and trigger ports for the control flow. SWCs are character-

ized by run-to-completion semantics meaning that a SWC, upon triggering,

reads data from the data input ports, executes its behavior and writes data on

the data output ports. SWCs can be grouped and organized in assemblies, for

84 Paper C

decomposing the system in a hierarchical manner. Modes are used to distin-

guish among different states of the system. That is, each mode describes the

architecture of the functions which are relevant for that mode. Target entities

are used for grouping modes that are deployed on the same Electronic Control

Unit (ECU). Moreover, they provide details regarding hardware and operating

system. Node is a hardware and operating-system independent abstraction of a

target entity. Finally, System is the top-level hierarchical entity, which describes

software architecture for the complete vehicular system. RCM facilitates anal-

ysis and reuse of components in different contexts by separating functional

code from the infrastructure that implements the execution environment.

The RCM metamodel definition is part of the intended research contribu-

tions of the Licentiate thesis.

6.1.2 Paper Outline

The rest of the paper is organized as follows. Section 6.2 describes the research

problem. Section 6.3 presents the proposes solution and the related research

contributions. Section 6.4 describes the work-to date and the current status.

Finally, Section 6.5 and Section 6.6 discuss the validation methodologies and

related work, respectively.

6.2 Problem Formulation

In this section, we discuss the research goal for the licentiate work, together

with the research challenges to be tackled towards its achievement.

6.2.1 Research Goal

Given the timing constraints typical of vehicular embedded applications, an-

ticipating timing analysis is a way for mitigating development issues, such as

cost and time-to-market. Within the EAST-ADL development methodology,

the way towards early timing analysis is hampered by the weak linkage be-

tween the modeling language used at the implementation level - where timing

analysis is usually performed - and the design level. The goal of this licenti-

ate research work is to provide a semi-automated support for allowing timing

analysis on design models, without the need of manually adding their timing

elements.

6.2 Problem Formulation 85

6.2.2 Research Challenges

RC 1 – Definition of a metamodeling characterization of RCM.

Although EAST-ADL does not fully embrace the MDE paradigm, the lan-

guages defined for the abstraction levels are formalized by metamodeling. For

this reason we want to leverage MDE for automating the development of the

vehicle embedded software in EAST-ADL. To this end, all the involved lan-

guages have to be provided with a proper metamodel definition. In our case,

the challenge is the definition of a metamodel for RCM, the language used at

implementation level.

RC 2 – Definition of a mapping between EAST-ADL design level meta-

model and RCM metamodel.

Due to the lack of timing information, high-precision timing analysis can not

be performed at the EAST-ADL design level. One way to solve this issue, is

the automatic translation of design level models to implementation level mod-

els, i.e., RCM models, on which timing analysis can be performed. RCM

models contain in fact timing elements, e.g. clocks, control-flow ports, to men-

tion a few, that cannot be modeled at the design level. These elements repre-

sent a variability points in the transition from design to implementation level,

meaning that more than one RCM model can be a valid translation of a given

EAST-ADL design level model. The challenge is to define and implement a

semi-automatic translation such that all the possible RCM models for a given

EAST-ADL design level model are produced without any error-prone and time

consuming manual activity. Semi-automatic in the sense that, while timing

elements (e.g., clock, control flow port) can be fully automatically specified,

their completion with actual timing properties (e.g., clock period, wcet) is still

guided by the developer.

RC 3 – Definition of a mechanism for the selection of the best RCM model

for a set of timing constraints.

Starting from the generated RCM models, the challenge is to define a mecha-

nism able to, based on the analysis results, select the RCM model which better

meets the given set of timing constraints. In fact, at the end of the process,

starting from a design level model, either an RCM model is chosen or refine-

ments of the design level model are needed. This represents the last step for

86 Paper C

exploiting timing analysis results at design level for early enabling software

architecture refinements.

6.3 Proposed Solution and Intended Contributions

The contribution of the licentiate work presented in this paper, is the definition

of a process which, from a design level model, generates a set of candidate

implementation level models enriched with timing elements whose properties

are set at generation time by the developer. That is to say, the developer drives

the automatic generation of all the relevant combinations of timing elements by

inserting timing properties only once per element instead of having to manually

edit all the generated models. At this point timing analysis can be run and

from its results, the best candidate implementation model, for a specific timing

property or a set of them, is selected. Figure 6.2 depicts the proposed approach

and it also provides a breakdown of the overall contribution in specific research

contributions (RCOs).

Figure 6.2: Research Contributions

RCO 1 – RCM metamodel.

This contribution, marked as 1 in Figure 6.2, provides a metamodel definition

for RCM. The metamodel has been realized as an Ecore model, within the

6.3 Proposed Solution and Intended Contributions 87

Eclipse Modeling Framework 4 (EMF). The definition of the metamodel com-

prised the addition of some modeling elements, e.g., connectors, as well as the

refinements of already existing elements relations, e.g., ports and data element

hierarchies.

RCO 2 – DL2RCM transformation.

This contribution, marked with 2 in Figure 6.2, provides a model to model

transformation between EAST-ADL design level metamodel and RCM meta-

model (DL2RCM). The transformation has been implemented by means of

a bidirectional model transformation language, namely Janus Transformation

Language (JTL). To the best of our knowledge, JTL is the only transformation

language able to deal with non-bijective transformations by possibly producing

multiple results. The contribution of the DL2RCM transformation is two-fold.

On the one hand, it allows the automatic translation of EAST-ADL design level

models to RCM models. On the other hand, it does not impose restrictions on

the generation of the RCM models, i.e., it is able to generate all the possible

RCM models for a given EAST-ADL design level model. For instance, given

the EAST-ADL design level model depicted in Figure 6.3a and considering the

generation of clocks in the RCM models, the DL2RCM transformation will

produce the RCM models depicted in Figure 6.3b.

RCO 3 – Mechanism for the best RCM candidate selection.

This contribution, marked as 3 in Figure 6.2, provides a conceptual mechanism

supporting the selection of the best RCM model for a specific, non-empty,

set of timing constraints as the last step in the process of anticipating timing

analysis at design level for enabling early architecture refinements. For each

generated RCM model, timing analysis is applied. Analysis results together

with a non-empty set of timing constraints, are the inputs of the mechanism that

checks analysis results versus timing constraints to identify, possibly the best

RCM candidate implementation model. If the mechanism fails in identifying a

candidate, early architecture refinements at the EAST-ADL design level model

may be needed.

4http://www.eclipse.org

88 Paper C

Sensor

software component

Controller

software component

Actuator

software component

(a) EAST-ADL Design level model of a component chain

10 ms 10 ms 10 ms

(c)

Sensor

SWC
Actuator

SWC

Controller

SWC

Data sink

Sensor

Input

Trigger sink

10 ms
10 ms

(b)

Sensor

SWC
Actuator

SWC

Controller

SWC

Data sink

Sensor

Input

Trigger sink

10 ms

Sensor

SWC
Actuator

SWC

Controller

SWC

Data sink

Sensor

Input

(a)

Trigger sink

Trigger port

Data port

Software Circuit (SWC)

(b) Possible RCM models of the EAST-ADL design level

model of the component chain in Figure 6.3a

Figure 6.3: Source and target model examples for DL2RCM

6.4 Preliminary Work and Current Status

In [6], we present the metamodel definition for RCM which focuses on the

definition of metamodeling elements representing the software architecture.

A work describing an extension of the RCM metamodel including the defi-

nition of new structural elements and elements used for describing timing in-

formation is currently under review at the Journal of Systems and Software5.

In the same work, we also demonstrate the applicability of the RCM meta-

model by conducting an automotive application case study. In [7] we propose

a two-phase methodology which supports the extraction of timing models from

EAST-ADL design-level models with the aim of anticipate timing analysis at

design level. Within the proposed methodology, the software architecture at de-

5http://www.journals.elsevier.com/journal-of-systems-and-software/

6.5 Validation 89

sign level is automatically transformed to all the meaningful implementation-

level models. The end-to-end timing analysis is performed on each generated

implementation-level model and the analysis results are fed back to the design-

level model. The aforesaid methodology is based on a model-to-model trans-

formation between models conforming to the EAST-ADL design-level meta-

model and models conforming to RCM metamodel (DL2RCM). The DL2RCM

transformation has been implemented within the Eclipse Modeling Frame-

work6 using JTL [8]. The proposed methodology is concretely integrated in

an industrial tool used by automotive companies. We are planning to validate

the methodology by means of an industrial case study and submit the results of

this validation to the International Conference on Model Driven Engineering

Languages and Systems7.

6.5 Validation

The works presented in [6], has been evaluated upon an industrial case-study.

In [6], we demonstrate the applicability of the RCM metamodel by defining

a model-to-model transformation between models conforming to the RCM

metamodel and models conforming to AUTOSAR [9]. The models describe

a single-node real time system composed of three components. Similarly, in

[7], in order to prove the applicability of the proposed methodology, we instan-

tiate the methodology within an industrial tool-suite, namely Rubus-ICE8 used

for the development of vehicular embedded systems. Also we are planning

to demonstrate the validity of the methodology with an industrial case-study

mimicking the TIMMO2USE break-by-wire validator [10].

6.6 Related Work

This section discusses some literature related to our problem and contributions.

6.6.1 Modeling Languages for Vehicular Embedded Systems

In this section we discuss modeling languages and methodologies specifically

tailored for the development of vehicular embedded systems.

6http://www.eclipse.org
7http://www.modelsconference.org
8https://www.arcticus-systems.com/products/rubus-ice/

90 Paper C

AUTOSAR.

AUTOSAR [9] is an industrial initiative to provide standardized software ar-

chitecture for the development of vehicular embedded systems. Within AU-

TOSAR, the software architecture is defined in terms of software components

(SWCs) and Virtual Function Bus (VFB). VFB handles the virtual integration

and communication among SWCs, hiding low-level implementation details.

Unlike RCM, no particular focus was directed to specification and handling of

timing-related details.

AUTOSAR metamodel describes the software development at a higher

level of abstraction compared to RCM metamodel. Unlike RCM, it does not

separate control and data flows among software components nor differentiate

between the modeling of intra- and inter-node communication. Despite these

differences, there are some similarities between AUTOSAR and RCM, e.g.,

the sender receiver communication mechanism in AUTOSAR is very similar

to the pipe-and-filter communication mechanism in RCM. AUTOSAR is more

focused on the functional and structural abstractions, hiding the implemen-

tation details about execution and communication. Whereas, RCM supports

the modeling, analysis and synthesis of the execution environment of software

functions. Essentially, AUTOSAR hides the details that RCM highlights.

TIMMO/TIMMO-2-USE.

TIMMO [11], a large EU research project, is an initiative to provide AU-

TOSAR with a timing model. To this end, it provides a predictable methodol-

ogy and language, called TADL [12] for expressing timing requirements and

constraints. TADL is inspired by MARTE [13] which is the UML profile for

the model-driven development of real-time and embedded systems. TIMMO

methodology makes use of the EAST-ADL and AUTOSAR interplay. Al-

though the TIMMO project has been evaluated upon prototypes, to the best

of our knowledge, there is no concrete industrial implementation of it.

TIMMO-2-USE [10], a follow up project, presents a major redefinition

of TADL and new functionality for supporting the AUTOSAR extensions re-

garding timing model. Although both TIMMO and TIMMO-2-USE attempt

to annotate AUTOSAR with a timing model, this may be hard to accomplish

as AUTOSAR aims at hiding implementation details of execution environment

and communication using the VFB.

TIMMO-2-USE proposes a methodology for the software development of

vehicular embedded systems solving particular issues related to the timing

modeling. The methodology is based on the EAST-ADL abstraction levels

6.6 Related Work 91

and it introduces, for each level, a set of activities to perform in order to en-

sure the software timing requirements. Compared to the proposed solution,

the TIMMO-2-USE methodology does not provide of automation nor supports

early timing analysis.

6.6.2 Model-Driven Engineering for Vehicular Embedded

Systems

In the last decades, several works investigated how to automatize the inter-

play between EAST-ADL and AUTOSAR through MDE. In this respect, in

[14], the authors investigate the relationship between concepts of EAST-ADL

and AUTOSAR. The authors use three case studies as drivers for the empiri-

cal establishment of these relationships. Nevertheless, the work only considers

behavioral aspects and timing constraints from the control systems develop-

ment view. Thus, it might be considered as a first step towards the automatic

synthesis of an AUTOSAR architecture from EAST-ADL.

Similarly, in [15] the authors present a mapping between EAST-ADL and

AUTOSAR artifacts. Nevertheless the mapping is limited only on few EAST-

ADL elements and events. Furthermore, as EAST-ADL evolved, the mapping

is no longer valid.

The work in [16] aims at achieving model synchronization between SysML

and AUTOSAR using Triple Graph Grammars (TGG) [17]. The proposed ap-

proach is developed in an industrial project. The work represents one of the first

attempts in using MDE for achieving model synchronization within the vehic-

ular embedded domain. Nevertheless, compared to EAST-ADL, the adopted

SysML profile is very generic and it does not cover most of the vehicular as-

pects of the software systems. On the other hand, having a more tailored lan-

guage, such as EAST-ADL, would make the synchronization hard to achieve

due to the underneath non-injective relations [18].

Although the work presented in this paper does not address design space

exploration, the generation of candidate models and their evaluation are two

of the four common steps for design space exploration. The work in [19] de-

scribes a MDE approach which allows the automatic selection of the most ad-

equate modeling solution for application, platform, and mapping between ap-

plication and platform. The approach is based on an iterative algorithm which

evaluates a candidate model per iteration, until the optimum is found. With re-

spect our solution, such an approach does not generate all the candidate models

in a single execution; rather, by means of heuristics, it considers a model per

iteration. Similarly to the work proposed in this paper, in [20], the authors

92 Paper C

exploit JTL, for an automatic deployment exploration technique based on re-

finement transformations and platform-based design. More precisely, JTL is

used for realizing the so-called refinement transformations responsible for the

design space exploration. Differently from our approach, the refinements trans-

formations are endogenous, i.e., the involved source and target metamodels are

the same, as the source and target models both conform to the AUTOSAR

metamodel.

Bibliography

[1] Bas Graaf, Marco Lormans, and Hans Toetenel. Embedded software en-

gineering: the state of the practice. Software, IEEE, 20(6):61–69, 2003.

[2] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson. A Compositional

Framework for End-to-End Path Delay Calculation of Automotive Sys-

tems under Different Path Semantics. In Procs of CRTS, 2008.

[3] S. Mubeen, J. Mäki-Turja, and M. Sjödin. Support for end-to-end

response-time and delay analysis in the industrial tool suite: Issues, ex-

periences and a case study. Computer Science and Information Systems,

10(1), 2013.

[4] Anthony Finkelstein, Jeff Kramer, Bashar Nuseibeh, Ludwik Finkelstein,

and Michael Goedicke. Viewpoints: A framework for integrating mul-

tiple perspectives in system development. International Journal of Soft-

ware Engineering and Knowledge Engineering, 2(01):31–57, 1992.

[5] EAST-ADL Domain Model Specification, Deliverable D4.1.1, 2010.

http://www.atesst.org/home/liblocal/docs/ATESST2 D4.1.1 EAST-

ADL2-Specification 2010-06-02.pdf.

[6] Alessio Bucaioni, Antonio Cicchetti, and Mikael Sjödin. Towards a meta-

model for the rubus component model. In 1st International Workshop

on Model-Driven Engineering for Component-Based Software Systems,

ModComp 2014, 29 September 2014, pages 46–56, 2014.

[7] Alessio Bucaioni, Saad Mubeen, Antonio Cicchetti, and Mikael Sjödin.

Exploring timing model extractions at east-adl design-level using model

transformations. In 12th International Conference on Information Tech-

nology : New Generations, April 2015.

93

94 Bibliography

[8] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso

Pierantonio. Jtl: a bidirectional and change propagating transformation

language. In Software Language Engineering, pages 183–202. Springer,

2011.

[9] AUTOSAR Techincal Overview, Version 2.2.2. AUTOSAR – AUTomo-

tive Open System ARchitecture, Release 3.1, The AUTOSAR Consor-

tium, Aug., 2008. http://autosar.org.

[10] TIMMO-2-USE. https://itea3.org/project/timmo-2-use.html.

[11] TIMMO Methodology, Version 2, Deliverable 7, Oct. 2009.

[12] TADL: Timing Augmented Description Language, Version 2, Deliverable

6, October 2009. The TIMMO Consortium.

[13] The UML Profile for MARTE: Modeling and Analysis of Real-Time and

Embedded Systems, 2010. OMG Group, January 2010.

[14] Tahir Naseer Qureshi, DeJiu Chen, Henrik Lönn, and Martin Törngren.

From east-adl to autosar software architecture: a mapping scheme. In

Software Architecture, pages 328–335. Springer, 2011.

[15] Philippe Cuenot, Patrick Frey, Rolf Johansson, Henrik Lönn, Mark-

Oliver Reiser, David Servat, R Tavakoli Koligari, and DeJiu Chen. De-

veloping automotive products using the east-adl2, an autosar compliant

architecture description language. In Embedded Real-Time Software Con-

ference. Citeseer, 2008.

[16] Holger Giese, Stephan Hildebrandt, and Stefan Neumann. Towards inte-

grating sysml and autosar modeling via bidirectional model synchroniza-

tion. In MBEES, pages 155–164, 2009.

[17] Holger Giese and Robert Wagner. From model transformation to incre-

mental bidirectional model synchronization. Software & Systems Model-

ing, 8(1):21–43, 2009.

[18] Romina Eramo and Alessio Bucaioni. Understanding bidirectional trans-

formations with tggs and jtl. Electronic Communications of the EASST,

57, 2013.

[19] Marcio F. da S. Oliveira, Eduardo W Bri ao, Francisco A. Nascimento,

and Flávio R. Wagner. Model driven engineering for mpsoc design space

exploration. In Proceedings of the 20th Annual Conference on Integrated

Circuits and Systems Design, SBCCI ’07, pages 81–86. ACM, 2007.

[20] Joachim Denil, Antonio Cicchetti, Matthias Biehl, Paul De Meulenaere,

Romina Eramo, Serge Demeyer, and Hans Vangheluwe. Automatic

deployment space exploration using refinement transformations. Elec-

tronic Communications of the EASST, Recent Advances in MPM(50),

Jun. 2012.

Chapter 7

Paper D:

Anticipating

Implementation-Level

Timing Analysis for Driving

Design -Level Decisions in

EAST-ADL

Alessio Bucaioni, Antonio Cicchetti, Federico Ciccozzi, Romina Eramo, Saad

Mubeen, Mikael Sjödin

In Proceedings of the 1st International Workshop on Modelling in Automo-

tive Software Engineering (MASE) at ACM/IEEE 18th International Confer-

ence on Model Driven Engineering Languages and Systems (Models), Ottawa,

Canada, September, 2015

97

Abstract

The adoption of model-driven engineering in the automotive domain resulted

in the standardization of a layered architectural description language, namely

EAST-ADL, which provides means for enforcing abstraction and separation

of concerns, but no support for automation among its abstraction levels. This

support is particularly helpful when manual transitions among levels are te-

dious and error-prone. This is the case of design and implementation levels.

Certain fundamental analyses (e.g., timing), which have a significant impact

on design decisions, give precise results only if performed on implementation

level models, which are currently created manually by the developer. Dealing

with complex systems, this task becomes soon overwhelming leading to the

creation of a subset of models based on the developers experience; relevant

implementation level models may therefore be missed. In this work, we de-

scribe means for automation between EAST-ADL design and implementation

levels to anticipate end-to-end delay analysis at design level for driving design

decisions.

7.1 Introduction 99

7.1 Introduction

The importance of software is growing in practically all industrial sectors. In

the automotive domain, software is used, e.g., for improving the safety of the

vehicle, the driving experience, and the comfort of the passengers. The elec-

tronic system of a modern car can be composed of more than 70 embedded

systems running up to 100 million lines of code [1]. As a consequence, devel-

opment of these systems is a daunting task. Especially painful is to make late

discoveries, during testing, that the software system does not deliver a service

of acceptable quality w.r.t. timing errors and delays that cause suboptimal per-

formance of important systems such as engine- or stability-control. Thus, early

analysis of expected timing-behaviors and feasibility of architectural decisions

w.r.t. timing requirements would be very welcome as support for design deci-

sions. In this paper we propose a technique to achieve early timing1 analysis.

Among the many methodologies advocating abstraction, separation of con-

cerns, and automation as powerful instruments for dealing with complexity of

software development, Model-Driven Engineering (MDE) has progressively

gained industrial attention in the past 15 years [2]. In automotive, the adoption

of MDE resulted in the standardization of a layered architectural description

language, namely EAST-ADL [3].

EAST-ADL proposes a top-down approach relying on four different ab-

straction levels, i.e., vehicle, analysis, design and implementation, and it pro-

vides abstraction and implicitly ensures separation of concerns through the dif-

ferent engineering phases2. Each abstraction level, except implementation, is

equipped with a specific modeling language. At implementation level EAST-

ADL proposes the adoption of existing modeling languages, e.g., AUTOSAR3

or the Rubus Component Model (RCM) [4]. Due to its high precision timing

analysis [5], we consider RCM as the reference modeling language exploited at

implementation level. EAST-ADL provides mediums for achieving abstraction

and separation of concerns, but it does not come with explicit support for au-

tomation among the different abstraction levels. The lack of this crucial means,

imperative for a full-fledged MDE approach, leads to a scattered development

process where consistency among artefacts is a burden for the developer to

bear.

1Although other relevant extra-functional properties and related analyses exist, the focus of this

work is on timing-related properties and analysis.
2In the remainder of the paper we will refer to design level models simply as design models

and to implementation level models as implementation models.
3http://www.autosar.org/

100 Paper D

Due to the lack of detailed timing information (e.g., control flow ports,

clocks, to mention few) [5] at design level, timing analysis cannot be per-

formed on design models, which indeed need to be translated to implemen-

tation models equipped with needed timing details (e.g., clocks). This trans-

lation is usually done manually, driven by the developer’s experience and, due

to size and complexity of the task, it often considers a one-to-one mapping

only. This, besides being tedious and error-prone, may lead to the loss of rel-

evant implementation-model candidates when dealing with complex industrial

systems.

In this work, we discuss a methodology which provides automation means

for seamlessly linking EAST-ADL design and implementation levels to enable

end-to-end delay analysis at design level4 for supporting design decisions. The

importance of exploiting implementation level analysis for taking design de-

cisions resides in the fact that it is more accurate than design level analysis,

which usually provides estimations and does not suffice industrial needs. The

initial idea was introduced in [6], while in this work we focus on its enhance-

ment, concrete implementation and deployment in the automotive context.

The rest of the paper is organized as follows. In Section 7.2 we present

related work documented in the literature. In Section 7.3 we describe a running

example taken from the automotive domain, and in Section 7.4 we apply the

proposed methodology to it. In Section 7.5 we discuss benefits and limitations

of the proposed methodology and conclude the paper in Section 7.6.

7.2 Related Work

Model-based approaches supporting timing analyses can be distinguished be-

tween those detached from design models, e.g. [7], and those deriving (part

of) the necessary information from the design, like [8, 5]. In general, the lat-

ter have the advantage of avoiding discontinuities due to the abstraction gap

between design and analysis [9], even though they have to deal with the in-

trinsic issue of evaluating multiple implementation choices [10, 11]. Some

approaches propose manual mappings to reduce uncertainty between architec-

tural and intermediate models, which is tedious and error-prone when dealing

with hundreds of implementation alternatives. Other approaches introduce au-

tomation by specifying a predefined one-to-one mapping between architectural

and intermediate model elements, like [12] and in a broader way the refinement

4For design level we mean the EAST-ADL design level throughout the paper.

7.3 A Running Example: the Steer-by-wire System 101

process prescribed by the Model-Driven Architecture standard5. Even though

this alleviates time and error-proneness issues of manual approaches, it still

relies on a predefined mapping, while in general different implementation al-

ternatives, for the same design, should be evaluated [11].

Our solution proposes to generate a set of possible implementations, each

of which entailing (possibly) different timing characteristics. Then, end-to-end

delay analysis is run to evaluate them in terms of their timing characteristics

and to select the best candidate(s). In this way, relevant design decisions can be

anticipated before the final implementation is reached. It is worth noting that a

similar mechanism could be realized, notably, by adopting other non-bijective

transformation languages, architectural languages (e.g., AADL [13]), and/or

other model-based timing analyses approaches (e.g., Simulink6 or MARTE7).

However, some preconditions should hold: i) the transformation language sho-

uld fully support non-bijectivitness; ii) the architectural language shall provide

adequate support for timing information at design level of abstraction; iii) the

timing analyses shall keep their reliability by relying on the sole design level

information (plus the alternatives generated during the derivation process).

The mechanism of implementation models generation resembles the gen-

eral concept of design-space exploration (DSE) [14], and in particular rule-

based DSE [15]. Our approach performs an exhaustive generation of imple-

mentation models, enriched with timing details, as derivable from the sys-

tem architecture designed through EAST-ADL, and constrained by domain-

specific rules. Therefore, as opposed to typical DSE, the generation is not

meant to provide optimization hints at architectural level [12], rather it shows

the best (timing configuration) result given a certain system architecture as

input. This procedure is technically identified as quality-driven model trans-

formations [16, 17].

7.3 A Running Example: the Steer-by-wire Sys-

tem

A steering system in a vehicle employs mechanical and hydraulic components

between wheels and steering wheel. The Steer-by-wire (SBW) system, which

we leverage as running example, replaces most of these components with elec-

tronic ones.

5http://www.omg.org/mda/
6http://www.mathworks.com/products/simulink/
7http://www.omg.org/spec/MARTE/

102 Paper D

We model the SBW system at the EAST-ADL design level with the help of

the Rubus-ICE8 tool suite. In the hierarchy of a design model, the leaf element

is the so-called design function prototype (DFP). EAST-ADL implements the

type-prototype mechanism, meaning that a DFP represents a specific instance

of design function type, which defines the type. Within EAST-ADL, DFPs

communicate through function ports, which are linked via function connectors.

It should be noted that one of the main goals of this example is to demon-

strate the validity of the proposed methodology. Therefore, in order to better

understand the transformation and corresponding selection process, we only

consider the internal software architecture of the SC ECU as depicted in Fig-

ure 7.1. The internal software architecture of the SC ECU consists of six DFPs.

Steer Angle is responsible for acquiring the steer angle sensor input.

It passes the acquired values to Steer Angle Preprocessing. The pre-

processed steer angle signal is passed toInput Processing. which also re-

ceives the speed of the vehicle from Vehicle Speed. Input Processing

passes the processed input data to FB Steer Torque Computation, which

in turn produces the feedback steering torque and passes it to Steer Sensa-

tion Actuator, which produces the signals for the steering actuator.

The WCETs specified on Steer Angle, Steer Angle Preproces-

sing, Input Processing, Vehicle Speed, FB Steer Torque Com-

putation and Steer Sensation Actuator are 120, 200, 280, 120,

1200 and 100 µs, respectively. Since the implementation details are not avail-

able at the design level, the WCETs are estimated based on the expert’s judge-

ments. The following timing requirement is specified too:

• “The calculated age and reaction delays shall not exceed 25 ms and

35 ms, respectively.”

Within EAST-ADL, timing requirements are specified by timing constraints [18].

Therefore, there are two end-to-end delay constraints, namely age and reaction,

specified on the software architecture of the SC ECU as shown in Figure 7.1.

The values of the age and reaction constraints are 25 ms and 35 ms respec-

tively.

7.4 Applying the methodology

Design models do not contain the timing information (e.g., control flow) needed

for running end-to-end delay analysis. Therefore, in order to leverage this anal-

ysis at design level, we propose to automatically translate design to implemen-

8http://www.arcticus-systems.com

7.4 Applying the methodology 103

Figure 7.1: Internal software architecture of SC ECU at design level.

tation models, which contain the needed timing information. Such a translation

is non-bijective, meaning that multiple implementation models can be valid

translations of a given design model. To this end, the proposed methodology

generates all the meaningful (from an analysis perspective) implementation

models.

The approach, depicted in Figure 7.2, leverages the interplay of model-

driven techniques and model-based analysis and it consists of four main phases,

namely transformation, end-to-end delay analysis, filtering and propagation.

Starting from a design model of an automotive functionality, the approach gen-

erates a set of corresponding meaningful implementation models (transforma-

tion phase, 1 in Figure 7.2) enriched with timing elements whose values are

set at generation time by the developer or via configuration files. At this point,

end-to-end delay analysis is run on the generated models resulting in a set of

analysis results (end-to-end delay analysis phase, 2 in Figure 7.2). These re-

sults are checked against a non-empty set of timing constraints derived from the

timing requirements expressed on the vehicle functionality. The result which

better meets the given timing constraints is selected (filtering phase, 3 in Fig-

ure 7.2); note that multiple results might be equally good and thereby selected.

Eventually, the selected candidates are propagated back to the design level by

means of annotations to the design model (propagation phase, 4 in Figure 7.2).

7.4.1 Transformation Phase

The transformation phase relies on a model-to-model transformation, called

DL2RCM, between the EAST-ADL design level and RCM metamodels. DL-

104 Paper D

Figure 7.2: Methodology supporting delay analysis at design level.

2RCM is a non-bijective transformation realized within the Eclipse Modeling

Framework (EMF)9 using the Janus Transformation Language (JTL) [19].

JTL is a constraint-based bidirectional model transformation language specif-

ically tailored to support non-bijectivity by generating all the possible solu-

tions at once. It adopts a QVTr-like syntax and allows a declarative specifi-

cation of relationships between MOF models. The language supports object

pattern matching, and implicitly creates traces to record what occurred during

a transformation execution. The JTL implementation relies on the Answer Set

Programming (ASP) [20], which is a type of declarative programming able

to address hard (primarily NP-hard) search problems and based on the model

(answer set) semantics of logic programming. The ASP solver finds and gen-

erates, in a single execution, all the possible models which are consistent with

the transformation rules by a deductive process.

The DL2RCM transformation consists of 28 rules mapping design ele-

ments to correspondent implementation elements. In the hierarchy of an RCM

implementation model, which represents the transformation’s output format,

a software circuit (SWC) is the leaf element and encapsulates basic software

functions. RCM distinguishes between data and control flow therefore a SWC

has data port and trigger port. Within RCM, Data connectors link data ports

while Trigger connectors link trigger ports. Clocks and trigger sinks are used

to initiate and terminate the execution of a SWC, respectively.

Listing 7.1 depicts a fragment of the DL2RCM transformation10, which is

expressed in the textual concrete syntax of JTL and applied on models given by

9http://www.eclipse.org/modeling/emf/
10Implementation available at http://jtl.di.univaq.it/downloads/DL2RCM.

zip

7.4 Applying the methodology 105

means of their Ecore representation in EMF. In particular, the following rules

are defined:

– C2C, which maps a function connector to both a data and trigger con-

nectors and triggers the transformation of the connected DFPs;

– E2C, which maps a DFP, connected via a function connector, to a SWC;

– E2CCS, which maps a DFP, connected via a function connector, to a

SWC equipped with a clock and a sink.

The when and where clauses specify conditions on the relation. For instance,

the where clause on Line 17 selects the function ports linked by the considered

function connector and triggers the subsequent rules.

E2C and E2CCS define a non-bijective portion of the transformation. In

fact, a DFP connected via a connector may be mapped to either a SWC or

a SWC equipped with a clock and a sink. This means that, from one single

design model, the transformation is able to generate multiple implementation

models, each of which containing a unique control flow.

1 transformation DL2RCM(dl:designlevel, rcm:RCM) {

2 relation C2C {

3 name, id: String;

4 checkonly domain dl con : designlevel::FunctionConnector

{

5 name=name,

6 id=id

7 };

8 enforce domain rcm a : RCM::Assembly {

9 connectorData = cd:RCM::ConnectorData {

10 name=name,

11 id=id+"_d",

12 sourcePort = RCM::PortDataOut { ... },

13 targetPort = RCM::PortDataIn { ... }

14 },

15 connectorTrig = ...

16 };

17 where { (con.ends->select(end |

end.functionPort.oclIsKindOf(designlevel::

18 FunctionFlowPort) and

19 end.designFunctionPrototype.isOfType.isElementary=true)

20 ->forAll(end | E2C(end,a) and E2CCS(end,a))); }

21 }

22 relation E2CCS {

23 name2, id2: String;

24 checkonly domain dl e :

designlevel::FunctionConnectorInstanceReference {

25

26 designFunctionPrototype = dfp

106 Paper D

:designlevel::DesignFunctionPrototype {

27 name=name2,

28 id=id2

29 }};

30 enforce domain rcm a : RCM::Assembly {

31 clock = clk: RCM::Clock {

32 name=name2+’_clock’,

33 name=id2+’_clock’

34 },

35 sink = snk: RCM::Sink {

36 name=name2+’_sink’,

37 name=id2+’_sink’

38 },

39 circuit = cir :RCM::Circuit {

40 name=name2,

41 id=id2,

42 interface = int :RCM::Interface {

43 name=name2+’_interface’,

44 id=id2+’_interface’

45 }}};

46 where { ... }}

47 relation E2C {

48 ...

49 }}

Listing 7.1: Fragment of the DL2RCM transformation in JTL.

The DL2RCM model transformation, applied to our design model in Fig-

ure 7.1, generates 64 implementation models 11 (one of them is depicted in

Figure 7.3). However, considering the end-to-end delay analysis we want to

perform, we are only interested in the combinations of those DFPs that are

enclosed by the start and end points of the timing constraints.

To this end, we added an OCL logic constraint (shown in Listing 7.2) to

the DL2RCM transformation for reducing the set of generated implementation

models. It imposes the selection of the implementation model alternatives in

which Steer Angle, Vehicle Speed and Steering Sensation Actuator are trans-

formed by the E2CCS rule.

1 Circuit.allInstances()->excluding(self.getConstrainedSWC())

2 ->select(c:Circuit | c.getClock().oclIsUndefined()

3 and c.getSink().oclIsUndefined())

Listing 7.2: Logic constraint applied to the DL2RCM transformation.

11Each SWC can be transformed either via the E2C rule or via the E2CCS rule.

7.4 Applying the methodology 107

Therefore by enforcing the bijectivity on the Steer Angle, Vehicle Speed

and Steering Sensation Actuator, the DL2RCM transformation generates 8 im-

plementation models12.

Figure 7.3: Generated implementation model example.

7.4.2 End-to-end Delay Analysis Phase

In this phase, we predict the timing behavior of each generated implementation

model by performing the end-to-end delay analysis [21, 5]. We are interested

in the calculations of two different delays, namely age and reaction [5]. Age

delay is important in control applications where the interest lies in the freshness

of received data. Reaction delay is used to determine the first reaction time for

a given stimulus. Our focus is on the Controller Area Network (CAN) which

is a event-triggered serial communication bus protocol. We do not use global

time stamps (that require tracking of global chronological time) to predict the

timing behavior. Instead we use response-time analysis and end-to-end delay

analysis. We refer the reader to [21, 5] for the details about the calculations of

age and reaction delays.

Once the analysis has been performed on each generated implementation

model, the analysis results, which include calculated age and reaction delays

for each individual implementation model as shown in Table 7.1, are forwarded

to the filtering phase.

12All the combinations of the Steer Angle Preprocessing, Input Processing and

FB Steering Torque Computation are generated by not enforcing bijectivity.

108 Paper D

Delay Analysis (µs) Delay Analysis (µs)

Age Delay Reaction Delay Age Delay Reaction Delay

Model

(a) 26020 30020

Model

(e) 26020 30020

(b) 26020 42020 (f) 26020 42020

(c) 18020 22010 (g) 18020 18020

(d) 2020 10020 (h) 18020 18020

Table 7.1: Delay Analysis Result for the generated implementation models.

For calculating age and reaction delays, the methodology employs the tim-

ing analysis engines implemented in the Rubus-ICE.

7.4.3 Filtering and Propagation Phases

The filtering phase consists of two cascaded filters: the elimination filter and

the selection filter. The timing analysis results are provided as input to the

elimination filter together with the non-empty set of timing constraints. In our

example, the elimination filter compares the analysis results of each implemen-

tation model with the specified age and reaction constraints of 25 and 35 ms

respectively. The implementation models identified as (a), (b), (e) and (f) in Ta-

ble 7.1 violate one or both timing constraints; hence, they are discarded. The

remaining models, which satisfy the specified timing constraints (i.e., (c), (d),

(g) and (h)), are forwarded to the selection filter.

The selection filter selects the best implementation model based on the re-

quirement concerning the type of application, also received as input. To this

end, an application i) contains only single-rate chains, or ii) contains multi-rate

chains. In our example, the system shall be developed using multi-rate chains.

This means that the implementation models that contain single-rate chains be-

tween start and end points of the specified timing constraints are negligible.

Therefore, the models identified in Table 7.1 as (c), depicted in Figure 7.3, and

(g) are selected13. Finally, the models and their analysis results are propagated

back to the design model (as annotations done by text-to-model transforma-

tions).

13The selection filter selects the implementation model with shorter age and reaction delays. In

our case two models have same analysis results, thus they are both selected.

7.5 Discussion 109

7.5 Discussion

Running and leveraging implementation level analysis at higher abstraction

levels (e.g., design) brings multiple advantages. First of all, it can help the

designer in taking architectural decisions based on much more precise feed-

back than common design level analysis, which, being based on estimated or

guessed properties, are usually just conceived as complementary to implemen-

tation level analysis in industrial settings. Moreover, it allows the developer to

only focus on design activities exploiting implementation level analysis results

without having to investigate nor manually edit implementation models, which

are automatically produced and transparent to the developer.

We employ JTL to generate multiple implementation models from one de-

sign model by providing different combinations of implementation elements,

derived from the design model, and timing elements, added by the transfor-

mation. Clearly, the generation of all possible combinations, besides being

unnecessary in most scenarios, becomes soon unbearable from a scalability

perspective when dealing with complex systems of industrial size. For this

reason, we exploit JTL’s capability of entailing ASP logic constraints for nar-

rowing the generation space.

We provide a set of default constraints to prune solutions that are evidently

meaningless for our analysis. This means that we can enable support for the

generation of different classes of models by providing different default con-

straints. Nonetheless, default constraints do not prevent the generation of dimly

meaningless solutions nor high transformation time in case of very complex de-

sign models. While the first issue can be solved through analysis and filtering

mechanisms, the latter demands additional user-defined constraining based on

the specific modeled functionality.

It is interesting to note that the methodology may propagate more than one

generated implementation model, along with its timing analysis results, to the

design model. This happens only when those results are equally good. In this

case, the designer is given the possibility to select among them.

By considering the general development scenario, through our method-

ology it is possible to disclose the opportunity of shortening time-to-market

and leverage expensive resources (e.g., architects, timing experts) more effi-

ciently. More concretely, the simple software system illustrated in this work

contains more than fifty components, seventeen in the SC ECU and ten in each

of the four WC ECUs. This means that starting from such an architecture a de-

signer willing to manually define a proper implementation model would face

a space of 257 possible alternatives. It becomes evident that having an auto-

110 Paper D

mated mechanism that is able to derive those alternatives and select the best

one(s) brings a gain in terms of time, costs and risks in the construction of the

implementation.

7.6 Conclusion

The approach proposed in this paper tackles the problem of identifying a suit-

able implementation choice, in terms of timing characteristics, starting from

the software architecture. In general this issue requires the consideration of

a number of alternatives that grows exponentially with the number of soft-

ware components in the architecture. We proposed to solve this by adopting

a quality-driven model transformation approach and defining a precise map-

ping between EAST-ADL design and implementation models (defined in terms

of the Rubus Component Model). Since in general the mapping of design to

implementation models equipped with timing elements is non-bijective, we

leveraged the properties of a constraint-based transformation language, JTL,

to automatically derive all the meaningful implementation alternatives. Sub-

sequently, generated implementation models are classified in terms of timing

results enabling the selection of the best implementation model candidate(s)

derivable from the input design model.

The experiment we conducted in collaboration with industrial partners in

automotive showed promising results w.r.t. time gains and reduction of possi-

ble errors in the creation of a suitable implementation model. Despite the gen-

eration and selection processes are transparent to the developer, issues about

scalability remain open. In particular, the size of the problem could reach

a point such that the generation of implementation alternatives would be in-

tractable. In this respect, a main future investigation direction encompasses the

study of smarter generation rules. Another line of research will be devoted to

the study of combining the optimisation of multiple system (especially extra-

functional) properties.

Acknowledgement

This work is supported by ARTEMIS, the Swedish Research Council (VR), the

Swedish Foundation for Strategic Research (SSF), and the Knowledge Founda-

tion (KKS) with the projects CRYSTAL, SynthSoft, PRESS and SMARTCore.

The authors would like to thank the industrial partners Arcticus Systems AB

and Volvo AB, Sweden.

Bibliography

[1] Robert N. Charette. This Car Runs on Code. Spectrum, IEEE, 46(2),

2009.

[2] D.C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering.

Computer, 39:25–31, 2006.

[3] EAST-ADL Domain Model Specification, Deliverable D4.1.1, 2010.

http://www.atesst.org/home/liblocal/docs/ATESST2 D4.1.1 EAST-

ADL2-Specification 2010-06-02.pdf.

[4] K. Hanninen, J. Maki-Turja, M. Nolin, M. Lindberg, J. Lundback, and

K.-L. Lundback. The rubus component model for resource constrained

real-time systems. In Procs of SIES, pages 177–183, June 2008.

[5] S. Mubeen, J. Mäki-Turja, and M. Sjödin. Support for end-to-end

response-time and delay analysis in the industrial tool suite: Issues, ex-

periences and a case study. Computer Science and Information Systems,

10(1), 2013.

[6] A. Bucaioni, S. Mubeen, A. Cicchetti, and M. Sjödin. Exploring timing

model extractions at east-adl design-level using model transformations.

In Procs of ITNG, April 2015.

[7] M. Gonzalez Harbour, J.J. Gutierrez Garcia, J.C. Palencia Gutierrez, and

J.M. Drake Moyano. Mast: Modeling and analysis suite for real time

applications. In Procs of ECRTS, pages 125–134, 2001.

[8] S. Anssi, S. Tucci-Piergiovanni, C. Mraidha, A. Albinet, F. Terrier, and

S. Gérard. Completing east-adl2 with marte for enabling scheduling anal-

ysis for automotive applications. In Procs of ERTS, 2010.

111

112 Bibliography

[9] B. Selic and L. Motus. Using models in real-time software design. Con-

trol Systems, IEEE, 23(3):31–42, June 2003.

[10] B. Schatz, F. Holzl, and T. Lundkvist. Design-space exploration through

constraint-based model-transformation. In Procs of ECBS, pages 173–

182, March 2010.

[11] J. Denil, A. Cicchetti, M. Biehl, P. De Meulenaere, R. Eramo, S. De-

meyer, and H. Vangheluwe. Automatic deployment space exploration

using refinement transformations. EASST, Recent Advances in MPM,

2012.

[12] M. Walker, M.-O. Reiser, S. Tucci-Piergiovanni, Y. Papadopoulos,

H. Lnn, C. Mraidha, D. Parker, D. Chen, and D. Servat. Automatic opti-

misation of system architectures using east-adl. Journal of Systems and

Software, 86(10):2467 – 2487, 2013.

[13] Peter H. Feiler, David P. Gluch, and John J. Hudak. The architecture

analysis & design language (AADL): An introduction. Technical Report

SEI Technical Note CMU/SEI-2006-TN-011, 2006.

[14] M Gries. Methods for evaluating and covering the design space dur-

ing early design development. Integr. VLSI J., 38(2):131–183, December

2004.

[15] A. Hegedus, A. Horvath, I. Rath, and D. Varro. A model-driven frame-

work for guided design space exploration. In Procs of ASE, 2011.

[16] J. Merilinna. A Tool for Quality-Driven Architecture Model Transforma-

tion, 2005.

[17] M.L. Drago, C. Ghezzi, and R. Mirandola. Towards quality driven explo-

ration of model transformation spaces. In Procs of MoDELS, pages 2–16.

2011.

[18] Timing Augmented Description Language (TADL2) syntax, semantics,

metamodel Ver. 2, Deliverable 11, Aug. 2012.

[19] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Jtl: a bidirec-

tional and change propagating transformation language. In Procs of SLE,

pages 183–202. 2011.

[20] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic

Programming. In Procs. of the ICLP 1988, pages 1070–1080, Cambridge,

Massachusetts, 1988. The MIT Press.

[21] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson. A Compositional

Framework for End-to-End Path Delay Calculation of Automotive Sys-

tems under Different Path Semantics. In Procs of CRTS, 2008.

