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Abstract. We present an adaptive learning Intelligent Tutoring System,
which uses model-based reinforcement learning in the form of contextual ban-
dits to assign learning activities to students. The model is trained on the trajec-
tories of thousands of students in order to maximize their exercise completion
rates and continues to learn online, automatically adjusting itself to new
activities. A randomized controlled trial with students shows that our model
leads to superior completion rates and significantly improved student engage-
ment when compared to other approaches. Our approach is fully-automated
unlocking new opportunities for learning experience personalization.
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1 Introduction

Intelligent Tutoring Systems (ITS) aim to provide personalized tutoring in a computer-
based environment and are capable of selecting problems on an individual basis [14].
Many ITS consider the development of personalized curricula: a recommended se-
quence of learning activities adapted in real-time to the needs of each individual student
[1,16]. Investigating novel methods for developing personalized curricula that can
adapt to millions of students and thousands of courses or domains in real-time is key
to further improvements in the learning experience of students interacting with ITS.

We present Korbit, an adaptive learning ITS leveraging reinforcement learning
(RL) in order to automatically assign learning activities to students. Korbit is
an online learning platform, where students follow a blended-learning framework
combining problem-solving activities, lecture videos, Socratic tutoring and project-
based learning [17]. We focus on ordering the text-based problem-solving activities,
which students can answer in free-form text or as multiple-choice questions (MCQs). If
the student answers correctly, they move on to a different exercise; otherwise, they are
given feedback and may try again or skip the activity and move on. The ordering of
exercises and all other activities within the same continuous topic (called learning unit)
is determined by a model-based RL system employing the LinUCB algorithm [10].

The main contributions of this paper are two-fold: (1) we present the design and
implementation of a model-based RL system for ordering learning activities based on
the LinUCB algorithm; (2) we evaluate this model in a randomized controlled trial
and show that it attains superior completion rates and improved student engagement
when compared to alternative approaches.
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2 Background

Personalization is key to effective learning [2,4]. In computer-based learning envi-
ronments (CBLEs), ITS have been shown to dramatically improve student learning
outcomes and engagement [8,18] due to their ability to address individual needs and
develop personalized feedback [1,5,13]. One of the most powerful families of algo-
rithms deployed in CBLEs are RL algorithms,which have been successfully applied
to personalize the curriculum and learning activities [7,9,12] and to assess different
educational interventions through the use of multi-armed bandits [11,19,20].

In multi-armed bandit problems, an agent sequentially selects an action and ob-
serves a reward from it, with the ultimate goal of maximizing cumulative reward over
the long term. Since actions taken by the agent at any particular time may be subop-
timal, a mix between exploration (trying out new strategies) and exploitation (picking
the action deemed optimal at the time) is required in practice to maximize observed
long-term reward. Agents are evaluated using regret, which is defined as the cumulative
expected difference between the rewards of the optimal action and the selected actions.

The contextual bandit model presents an agent with information about the current
context that it can use to inform its decision. The LinUCB algorithm [10], which we use
in this work, achieves the theoretical regret bound of O(

√
T) (where T is the number of

timesteps), while being relatively easy to implement and less prone to numerical insta-
bility issues throughout its runtime than alternatives [3]. At each timestep t=1,...,T ,
the LinUCB agent observes the current user ut, a set At of actions, and a feature vec-
tor xt,a for each a∈At. Each feature vector contains information about both the user
ut and its corresponding action a, and is referred to as a context. The algorithm then
computes a score pt,a for each action, based on its expected reward and uncertainty
determined by the context vectors and its internal parameters. It receives a reward
rt and uses it to update its internal parameters, thus improving its selection strategy.

The approach proposed here combines the LinUCB algorithm with model-based
RL, where an internal model of the environment is learned by the RL agent. By
learning an internal environment model the agent may be able to reduce the amount
of trial-and-error learning and better generalize across states and actions. In partic-
ular, the internal environment model may be learned from historical data, if such is
available. Several researchers have also investigated the application of model-based re-
inforcement learning for ITS, including learning effective pedagogical policies, selecting
effective instructional sequences and personalizing curricula for students [6,7,15].

3 Methodology

We train a model that can predict a student’s performance on an exercise and then use
it to simulate student trajectories to pre-train the LinUCB exercise selection model.
Dataset: We first extract all previous solution attempts across all 1,977 students that
created their accounts between November 2020 and July 2021 and that have attempted
at least one exercise. We retrieve 129,000 exercise attempts across 971 unique exercises
and 61 learning units. The majority of students on the platform at the time were
free users, so we separate the free users and the customers in further experiments.
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Exercise Affinity Model: The five possible outcomes for an interaction between
a student and an exercise on our platform are defined as follows:

• Instant success: The student solved the exercise correctly on the first try.
• Eventual success: It took the student multiple attempts to get to a correct
solution.
• Eventual failure: The exercise was attempted unsuccessfully until a solution
was provided to the student.
• Instant skip: The exercise was skipped without any attempt.
• Eventual skip: The exercise was attempted but eventually skipped.

First, we build a logistic regression model that uses exercise features and students’
performance on previous exercises to predict the outcome on future exercises. This
model will act as the “world model" in the context of model-based RL, and will provide
the agent with the outcomes when it offers an exercise to a student.We train this model
by first extracting a student’s exercise attempt history, which contains all of a student’s
attempts at solving the exercises they were presented with (both successful and
unsuccessful).We then mask out an attempt on an exercise, and have the model predict
the outcome of the student’s attempt on this exercise. The model’s input features relate
to the student behavior and skills (including the student’s performance on the previous
exercise in the learning unit, the student’s skip rate in the learning unit, and whether
or not the student has watched the video that covers the learning unit), exercise
difficulty (the historic success rate across all students on the exercise), and the exercise
type (a one-hot encoding of the expected solution form and the context in which the
exercise could be applied). We show an example of a free-form question in Figure 1.

Fig. 1: Example of a free-form question on our platform.

We train the model on approximately 129,000 examples and evaluate it using
5-fold cross-validation, observing an accuracy of 66%. A baseline model that selects
the majority class 100% of the time achieves an accuracy of 60%. Although the
prediction model can be refined and improved, we believe that it is good enough to be
used in the context of pre-training a bandit model. We then use this model to predict
students’ performance on all unattempted exercises on topics that they have started.
This prediction takes the form of a probability vector across the 5 possible outcomes.
A total of 165,000 exercise attempts are predicted. These predictions allow us to
simulate what would happen if the student receives an exercise that we have no record
of them attempting. To train the bandit model, we draw samples from the predictions.
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Bandit Model: Using the dataset of student trajectories and attempt predictions,
we train a bandit model with LinUCB. At each timestep, it selects which exercise to
present to the student and whether it should be a MCQ or a free-form question. For
each action, we compute a feature vector that encodes information about both the
student and the exercise using the same features as the exercise prediction model. To
simulate students’ progressing through various learning units, for each unit a student
has started we let the model sequentially select exercises to present to them. We
define our reward function such that more desirable outcomes receive higher rewards,
with the ultimate goal of maximizing average success rate for the students in the
dataset, while restricting the frequency of MCQs. While doing a grid search, we
observed that rewarding instant success higher than eventual success led to a higher
average completion rate on the dataset. Our final reward function is as follows: 1.5 for
instant success, 1 for eventual success, 0.5 for eventual failure, and 0 for instant and
eventual skips. To discourage the model from always presenting an MCQ, we penalize
the observed reward for MCQs by reducing it by 0.4. Since students are more likely to
correctly answer such questions, the model is more likely to observe a positive outcome
when presenting them. However, the free-form questions lead to higher learning
outcomes and engagement in students. For a given (student,exercise) pair, we use the
observed outcome if the student has attempted that exercise in our dataset. Otherwise,
we sample an outcome from the probabilities computed by our prediction model.

We compare overall success rates of 3 policies on our dataset:
• Random uniformly selects a new non-MCQ exercise from the current topic.
• Heuristic sorts available exercises from easiest to hardest, offers a “medium"

difficulty one at the start, decreases difficulty upon skip or failure and increases it
upon success. If a student fails multiple times in a row, it begins to offer MCQs.
• LinUCB: this policy is learned by our LinUCB model.
For each policy, we simulate every student attempting the exercise presented by

the policy, and keep track of the average success rate. Due to randomness, we do this
20 times. We observe an average success rate of 58% for the Random policy, 60% for
the Heuristic policy, and 64% for LinUCB. These values are consistent throughout
each run, deviating by no more than 0.5%. Both the Heuristic and LinUCB
policies offered a MCQ 12% of the time. In conclusion, in our simulated environment,
LinUCB noticeably improves student success rate compared to the other two policies.

4 Experiments

Following the successful experiments in a simulated environment, we perform a
randomized controlled trial on students that have signed up on the platform between
December 2021 and February 2022. On sign-up, each student is assigned exercises
either by the adaptive Heuristic or by the LinUCB model. We study 2 cohorts of
students: free users, a diverse set of 44 students (21 under LinUCB and 23 under the
heuristic policy) from around the world who signed up on the learning platform for free,
and users from a customer organization (15 assigned to the Heuristic and 11 to
the LinUCB policy) using the platform to upskill in data science as part of a broader
training program. Students from the second cohort have mandated modules they
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must finish and tend to be highly motivated regardless of selection policy. Within each
cohort, we compare completion rates, skip rates, and study time. Completion and skip
rates are local indicators that the exercises we give students are relevant, interesting,
and achievable, while study time is a global indicator that the policy is effective at
engaging students and motivating them to study on the platform for a longer duration.
Completion and Skip Rates: As Table 1 demonstrates, the students from both
cohorts have a substantially higher success rate under LinUCB than the adaptive
Heuristic model. We also observe that for both cohorts, students under the LinUCB
policy have a substantially lower skip rate than under the adaptive heuristic baseline.
These results demonstrate that the LinUCB model improves student outcomes and
thus does a better job offering more relevant, interesting and achievable exercises to
students than the Heuristic model.

Table 1: Exercise outcome rates for various groups of users.
Cohort Policy Skip Fail Success

LinUCB 7.8±0.8% 4.8±0.5% 87.4±1.3%
Heuristic 12.5±1.4% 5.2±0.8% 82.4±1.8%
LinUCB 5.6±0.4% 5.7±0.4% 88.6±0.9%

Heuristic 8.3±0.4% 5.8±0.3% 85.9±0.7%
Customer

Free

Study Time: Finally, we also observe that students under LinUCB across the free
cohort spend noticeably more time on the learning platform: the average study time
under the adaptive Heuristic model is 109 minutes, and the average study time
under the LinUCB policy is 174 minutes. For the students in the customer cohort,
the average study time under the adaptive Heuristic is 265 minutes, and the average
study time under the LinUCB policy is 258 minutes.

5 Conclusions

We have provided a framework for developing a model-based reinforcement learn-
ing agent based on the LinUCB algorithm, which is capable of both learning from
historical student data and online. This approach outperformed competitive models
by achieving significantly higher completion rates, while reducing the rate at which
exercises are skipped in two diverse cohorts of students, while also leading to increased
study time across cohorts. These findings demonstrate that the model leads to sub-
stantially higher engagement in students. In addition, we note that the reinforcement
learning model learns autonomously and is expected to improve automatically as more
and more students sign up, thus ensuring its scalability and continuous improvement.

In the future, we plan to validate our findings with a larger sample size. In addition,
we will address one of the limitations of the this bandit model – the requirement that
all available exercises pertain to the same topic and that sufficient data is available
to reach a point where the bandit can mostly exploit rather than explore. Finally,
we plan to explore application of more sophisticated bandit algorithms, such as those
that incorporate collaborative filtering.
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