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Abstract—There is a wide range of applications of rational
function systems. Including in system, control theories and signal
processing. A special class of rational functions, the so-called
Blaschke functions and the orthonormal Malmquist–Takenaka
(MT) systems are effectively used for representing signals espe-
cially electrocardiograms.

We present our project on a general MATLAB library for
rational function systems and their applications. It contains
Blaschke functions, MT systems and biorthogonal systems. We
implemented not only the continuous but the discrete versions
as well, since in applications the latter one is needed. The
complex and real interpretations are both available. We also
built in methods for finding the poles automatically. Also, some
interactive GUIs were implemented for visual demonstration that
help the users in understanding the roles of certain parameters
such as poles, multiplicity etc.

Keywords—Complex rational function systems, Digital signal
processing, Discretization, Malmquist–Takenaka system, Matlab
toolbox.

I. INTRODUCTION

Rational function systems play an important role in signal
processing [1], for instance there is a wide range of their
application in system and control theories, see [2]. These
systems proved to be appropriate for system identification,
furthermore they can be used for denoising and compression.
In a wide variety of problems the may also provide a nice
and compact representation of the given signal [3]. We have
applied our tools mostly for analyzing electrocardiograms
(ECG signals).

We present our toolbox for Mathworks MATLAB environ-
ment. Our aim was to construct a toolbox that is independent
of the particular problem and can be used for processing
signals generally.

Many methods and related theoretical results incorporated
and implemented in this project. It contains Blaschke func-
tions, Malmquist–Takenaka systems, and also biorthogonal
systems to some elementary rational bases [4]. We imple-
mented not only the continuous but the discrete versions as
well [5]. Complex and real interpretations are both available.
The used systems depend on some parameters, or ’inverse
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poles’. The Nelder–Mead simplex method can be used for
finding these parameters automatically [6]. Also, some interac-
tive graphical user interfaces (GUI) have been designed. They
help the users in understanding how these function systems
and methods work, and one can see the effects of certain
parameters in action. So the toolbox is also fit for educational
purposes.

The toolbox can be downloaded from

http://numanal.inf.elte.hu/∼locsi/rait/

The outline of this article is as follows. In Section II we
summarise the mathematical methods, and rational function
systems used in our tools: Blaschke functions, Malmquist–
Takenaka systems, discretization properties, biorthogonal sys-
tems and the Nelder–Mead simplex method. In Section III
we give a list of possible applications in signal processing.
We provide a short reference for the available programs and
commands in Section IV, the GUI is demonstrated in Section
V. Finally we show two examples for the applications of these
tools in the case of real world signals in Section VI.

II. MATHEMATICAL BACKGROUND

In this Section we outline the mathematical concepts behind
our toolbox.

Let us denote the set of complex numbers by C, the
open unit disc by D := { z ∈ C : |z| < 1 }, and the unit
circle (or torus) by T := { z ∈ C : |z| = 1 }. Furthermore let
N := { 1, 2, 3, . . . }.

A. Blaschke functions and products

In this construction the Blaschke functions play an impor-
tant role. Blaschke functions are complex valued functions of
one complex variable, depending on the parameter a ∈ D.
They are defined as follows:

Ba(z) :=
z − a
1− az

(z ∈ C \ { 1/a }) .

Blaschke functions have many interesting properties. They
are bijections of both D and T. Furthermore they can be
interpreted as the congruencies of the hyperbolic plane in the
Poincaré disc model.

http://numanal.inf.elte.hu/~locsi/rait/


Blaschke products are finite products of Blaschke functions.
For given 1 < m ∈ N and a1, . . . , am ∈ D the Blaschke
product of order m is defined as follows:

Ba1,...,am :=

m∏
j=1

Baj (z) .

A Blaschke product of order m is an m-fold map on T, i.e.
for all w ∈ T there exist exactly m values, z1, . . . , zm ∈ T,
that are mapped to w .

The Blaschke functions appear (in connection with the
below) when we need to calculate an appropriate discretiza-
tion on T, and also in the product form of the orthogonal
Malmquist–Takenaka functions.

B. Basic rational functions

The elementary building blocks in the toolbox are the
complex rational functions of the form

ra,k(z) =
1

(1− az)k
,

with a ∈ D, k ∈ N . The parameter a is sometimes referred
to as an inverse pole (because 1/a is a pole in the standard
sence), rk is said to be a basic function of order k. Using a
terminology similar to the trigonometric case, the value k = 1
corresponds to the fundamental tone and k > 1 the overtones.

Usually we take the restriction of the functions on the unit
circle, which we identify with the [−π, π) real interval, in our
toolbox. To this order we apply the map t 7→ eit ∈ T. Then
the real part and the imaginary part can both be used for signal
processing purposes.

Applying this process to basic rational functions the gener-
ated real valued functions shows similarities to certain types
of signals. For instance they fit very well to different parts of
an ECG signal. We note that this process is very adaptive.

The linear combinations of the ra,k functions can be applied
to more general signals. They are of the form

n∑
k=1

ckrak,k (ck ∈ C) .

In our model a signal will be represented as such a linear
combination. In order to do that we should find proper inverse
poles and coefficients. In the following subsections we will
discuss our approach (also implemented in the toolbox) to
these problems.

We also mention that in some cases the so-called ’modified’
basic rational functions are more appropriate. They are of the
form

zk−1

(1− az)k
(a ∈ D, k ∈ N) .

They span the same subspace of the functions analytic on D
as the corresponding basic rational functions.

C. Malmquist–Takenaka systems

Both the basic rational functions and their modified versions
form a linearly independent set of functions. An orthogonal
system however would be more useful in applications, since
the coefficients are easy to calculate in this case.

The Malmquist–Takenaka (MT) systems are orthogonal
systems of functions. We generate these systems by the Gram–
Schmidt orthogonalization applied to a finite set or to a
sequence of basic rational functions. The corresponding scalar
product used on T is:

〈F,G〉 =
1

2π

∫ π

−π
F (eit)G(eit) dt (F,G ∈ H2(D)) . (1)

Naturally we use a discrete approximation of this integral in
the toolbox.

A handy property of the MT systems is that their elements
can be expressed as Blaschke products. Namely, taking the
basic functions for a given m ∈ N and a1, . . . , am ∈ D the
orthogonalized MT system can be written as:

Φk(z) =

√
1− |ak|2

1− akz

k−1∏
j=1

Baj (z) ,

with 1 ≤ k ≤ m.

D. Discretization

In practice the discrete orthogonal systems are very useful.
It is known that in the trigonometric case the discrete system is
generated by uniform discretization of T . For the MT system
we had to find a proper non-uniform sampling of T and a
weight function in the discrete scalar product to obtain a
discrete orthogonal system.

In the definition of the set of discrete points, again, Blaschke
products play an important role. In this respect the key fact
is that Ba is a T→ T bijection. This led us to the definition
of the argument function associated to the Blaschke function
Ba (a ∈ D) :

βa : [−π, π)→ R βa(t) := argBa(eit) .

In calculations it is useful to have an explicit form for βa

βa(t) = (δ + ϕ) + 2 arctan

(
1 + r

1− r
tan

t− ϕ
2

)
,

where a = reiϕ .
One can think of δ ∈ [−π, π) as a correction term: we can
make sure that βa will map the interval [−π, π) onto itself.
The function βa is strictly increasing and invertible.

For Blaschke products we define the argument function in
the following way:

βa1,...,am(t) :=
1

m
arg

m∏
j=1

Baj (z) =
1

m

m∑
j=1

βaj (t) .

The 1/m factor is applied to maintain the [−π, π) bijection
property.

Let us consider the set of N ∈ N equidistant points

DN
0 :=

{
−π + k · 2π

N
: 0 ≤ k ≤ N − 1

}
⊂ [−π, π) .



Then for given 1 ≤ m ∈ N, and a1, . . . , am ∈ D parameters
the set

DN
a1,...,am :=

{
β−1a1,...,am(t) : t ∈ DN

0

}
⊂ [−π, π) (2)

is a non-equidistant N point discretization of the interval
[−π, π) .

We note that when m = N the Malmquist–Takenaka system
is also orthogonal with respect to the discrete scalar product
on the above defined discretization points:

[F,G]N :=
∑

t∈DN
a1,...,am

F (eit)G(eit)ρN (eit) , (3)

with the weight function ρN (eit) = 1/β′a1,...,am(t).
In the case of the discrete complex MT system real valued

functions have to be extended with its imaginary parts before
the MT expansions has been calculated. We should use the
discrete real MT systems if we want to compute the MT
coefficients directly. Now, let insert a zero pole into the
pole vector a = {0, a1, . . . , am} and consider the following
discretization

DRN0 =
{
−π + k · π

N
: 0 ≤ k ≤ 2N − 2

}
∈ [−π π) .

Then for a given pole vector we can define the discretization
set on the analogy of (2):

DRN0,a1,...,am =
{
β−10,a1,...,am

(t) : t ∈ DRN0
}
∈ [−π π) .

The real valued MT system that corresponds to the pole vector
a is defined as follows

U0 = 1, V0 = 0, Un = Re(Φn), Vn = Im(Φn) (n ∈ N) .

It can be proved that in the case of m = N − 1 the real MT
system (Un, Vn, 0 ≤ n ≤ m) is also orthonormed system with
respect to the discrete real scalar product

[F,G]
R
N =

∑
t∈DRN

0,a1,...,am

F (eit)G(eit)ρRN (eit) ,

where ρRN denotes the discrete real weight function

ρRN (eit) = 1/(2 Reβ′0,a1,...,am(t)− 1) .

E. Biorthogonal systems

As it was mentioned above, signals can be easily represented
by using MT systems. We only need to calculate the coeffi-
cients of the MT expansions by computing continuous or the
discrete scalar products. However in some special cases it can
be beneficial to work with the original rational base functions
instead of the orthonormal MT systems. For instance, this
is the case of system identification when a partial fraction
representation of the transfer function is taken, and the poles
should be determined [7]. Furthermore, in contrast with the
MT systems (Fig. 1), the biorthogonal systems (Fig. 2) are
independent from the order of the poles. We take n + 1
different poles a0, . . . , an with multiplicities m0, . . . ,mn and
the corresponding base functions

φk,i(z) =
zi−1

(1− akz)i
(k = 0, . . . , n, i = 1, . . . ,mk) .
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Fig. 1. MT system defined by the same poles but in different order.

For the definition of the biorthogonal system we will need the
following functions

Ω`n(z) =
1

(1− a`z)m`

n∏
i=0,i6=`

Bmi
ai (z) ,

ω`n(z) =
Ω`n(a`)

Ω`n(z)

where (0 ≤ ` ≤ n) .
By Theorem 1 in [4] the functions

Ψ`,j(z) =
Ω`n(z)(z − a`)j−1

Ω`n(a`)

m`−j∑
s=0

ω
(s)
`n (a`)

s!
(z − a`)s

(0 ≤ ` ≤ n, 1 ≤ j ≤ m`) are biorthogonal to φk,i with
respect to the scalar product defined by (1). As a result the
biorthogonal expansion of an f ∈ < function can be easily
calculated as follows

PNf =

n∑
k=0

mk∑
i=1

〈f,Ψki〉φki ,

where N = m0 +m1 + · · ·+mn .
Moreover it was shown in Theorem 2 in [4] that the systems

φk,i and Ψ`,j are also biorthogonal with respect to the
discrete scalar product defined by (3),

[Ψ`r, φks]N = δk`δrs ,

where (1 ≤ r ≤ m`, 1 ≤ s ≤ mk, 0 ≤ k, ` ≤ n) .

F. Optimization method

If the poles and the multiplicities, and so the basic rational
functions are given then the orthogonal and the biorthogonal
expansion can be calculated as described above. The next issue
is the choice of the best possible poles and multiplicities.
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Fig. 2. Biorthogonal system.
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Fig. 3. The steps of the Nelder–Mead simplex algorithm minimizing a
quadratic function of two variables.

In other words we want to minimize the distance of the
subspace spanned by the basic rational functions with the given
parameters from the original signal. For the solution of this
optimization problem we have implemented the Nelder–Mead
simplex method [8].

This algorithm is an iterative method for the minimization
of an arbitrary real valued function of several variables. It
is widely used in natural and engineering sciences and it
is also mathematically studied. Its basic idea is a step-by-
step improvement by means of geometric transformations of
a simplex (i.e. in 2 dimensions a triangle). For a detailed
description we refer to the original article [8], and for a recent
application [6].

Fig. 3 shows a simple example for the application of the
Nelder–Mead method.

An additional difficulty is that the original Nelder–Mead
method is defined in Rn, but in our case the parameters must
stay within D. Therefore we used a Rn → D bijective map to
adjust the algorithm for our case.

We note that different versions of this algorithm have been
implemented according to the function systems, i.e. discrete,
continuous, complex, real.

III. APPLICATION IN SIGNAL PROCESSING

We provide procedures to handle discrete datasets and
signals. If the discrete versions of the systems are used then
the values of the signal must be evaluated at non-equidistant
discretization points. It means that we have to resample the
signal as well. We have implemented this method by using
linear interpolation between uniform sampling points.
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Fig. 4. Approximating real signals by taking lead 3 of record s0301lre from
ptbdb database of Physionet [9].

In order to improve the accuracy of the approximation
we had to transform the signals to 2π periodic functions. In
particular we had to make sure that the values at the end points
are equal. In our implementation we wanted to avoid using
such filters that distort the original signal. The preprocessing
steps were carried out as follows. First we applied Savitzky–
Golay FIR smoothing filter by using second order polynomials
and width frame size equal to 11 samples. We used this
smoothed data to predict the sign of the slopes of the original
signal. Then the signal was extended at the two endpoints
by keeping the slopes and used vertical shift. Then a Tukey
window was applied to generate a 2π periodic signal. The
parameters of the window were set so that the constant one
part of the window corresponded to the original signal and
the transition part must be equal with the length of extension.
Fig. 4. shows the difference between the approximations by
using the original and the periodized signals. The effect of
jump discontinuity at the endpoints can be seen as the red
colored function starts to oscillate near to the ends of the
interval.

IV. FUNCTION REFERENCE

In this section we introduce the main parts and the programs
of the RAIT toolbox. Our functions can be divided into 6
classes which are enumerated in Table I.

We have three types of rational function systems, namely
the biorthogonal, the basic rational and the MT systems. Three
functions were implemented for all types of these systems to
compute the values, the coefficients and the projection onto
<N . The names of the functions include the name and the
type of the system and the operation that we want to execute.
For instance, if we want to calculate the coefficients of a
function with respect to the discrete complex MT system,
then the abbreviation mtdr_coeffs should be used. We
introduce the parameterization of these procedures along with
the continuous MT system. All functions in the first three
classes can be called the same way.
• mt_system(len,poles). Calculates the values of

the Malmquist–Takenaka system defined by the poles
vector at len number of uniformly distributed points in
the interval [−π, π].

• mt_coeffs(v,poles). Computes the Fourier coeffi-
cients of v with respect to the MT system defined by
poles.



• mt_generate(len,poles,coeffs). Generates a
function in the space spanned by the MT system.

The Blaschke class includes the procedures that compute
and visualize the values of the Blaschke functions. Addition-
ally, the derivatives and the inverse of the argument function
also belong to this directory. Let us consider the most impor-
tant procedures of this class:
• arg_fun(a,t). Calculate the values of the argument

function of a Blaschke product at t defined by the pole
vector a.

• arg_inv(a,b,eps). Compute the inverse images of
the argument function at the elements of b. In this case,
the poles of the Blaschke product is defined by a and the
accuracy is determined by the variable eps.

• blaschkes_img(image,a,show). Transforms an
image by applying the Blaschke function defined by
poles a. In addition, the absolute values and the argu-
ments of the projection are also calculated. E.g. Fig. 5
was generated by this procedure.

The problem of calculating the projection onto <N is
twofold. On one hand, we need to find the best poles for
the selected rational system to minimize the approximation
error. On the other, hand we need to calculate the projection.
The latter can be easily computed by using functions of the
first three classes. The former can be solved by applying
different types of simplex algorithms. We have implemented
this method for the five types of rational systems so we can
choose the one which is the best suited to the given problem.
• simplex_mt(f,mul,period,init,show,eps).

Gives the poles of the continuous MT system that best
fit the approximation of the function f. The parameters
mul and period determine the multiplicities and the
periodicity of the pole vector. Initial values are defined
by the init variable. Furthermore, the predicted poles
can be displayed at each steps by setting true the value
of the show parameter. We can control the accuracy
of the process through the eps variable. All types of
simplex algorithm are called consistently by using the
right rational system abbreviation, such as mtdc, mtdr,
biort etc.

• coords2params(k). It is an important function that
maps coordinates in R2 to parameters in D. The (x, y)
coordinates are given sequentially in the vector k.

There are several other procedures that implement operators
in H2(D), perform conversations between systems, visualize
rational functions etc. We present some of the most important
methods below, but additional examples can be also found in
Section VI.
• addimag(v). Calculates the imaginary part of the func-

tion v using FFT. It should be used to compute the
expansion of v with respect to the complex versions of
the systems, such as mt, mtdc, biort etc.

• coeff_conv(l,poles,coeffs,base1,base2).
It converts the coefficients coeffs between the
continuous systems base1 and base2. Parameters l
and poles define both of the systems. Furthermore, a
similar function called coeffd_conv is also available

TABLE I
FUNCTION REFERENCE

Biort sys Rat sys MT sys
biort system lf system mt system
biort coeffs lf generate mt coeffs
biort generate mlf system mt generate
biortdc system mlf coeffs mtdc system
biortdc coeffs mlf generate mtdc coeffs
biortdc generate mlfdc system mtdc generate

mlfdc coeffs mtdr system
mlfdc generate mtdr coeffs

mtdr generate

Blaschke Simplex Other
arg der simplex mt addimag
arg fun simplex mtdc bisection order
arg inv simplex mtdr coeff conv
arg inv anim simplex biort coeffd conv
argdr inv simplex biortdc discretize dc
blaschkes coords2params discretize dr
blaschkes img coords2params all dotdc

multiply poles dotdr
periodize poles kernel

multiplicity
rshow
subsample
periodize

to perform conversations between the discrete versions
of the systems.

• discretize_dc(poles,eps). Computes the non-
equidistant complex discretization on the unit disc that
refers to the given poles. The accuracy of the method
can be set by the variable eps.

V. MATLAB GUI

Our aim was to construct a toolbox that is appropriate to a
wide range of applications. Furthermore, we also want to help
the users in understanding the effects of certain parameters of
the systems. Accordingly two additional interactive MATLAB
GUIs were implemented to demonstrate the role of poles,
multiplicities etc.

The first GUI is called blaschke_tool. It can be used
to visualize the connection between the position of the pole
and the values of the argument function. It is also possible to
display grayscale images that are projected onto the unit disc
by Blaschke functions. E.g. Fig. 5(a) and Fig. 5(b) show that
how the Blaschke functions transform the unit disc and how it
depend from the poles. Furthermore, the absolute values and
the arguments of the Blaschke function from Fig. 5(b) also
can be seen on Fig. 5(c) and on Fig. 5(d).

Additional GUI called malmquist_tool were imple-
mented to introduce and to describe the properties of the MT
systems. We can determine the positions, the number and the
multiplicities of the selected poles. The argument function is
also displayed on the unit disc. Furthermore, all the members
of the MT system can be visualized related to the defined
poles. Additionally, not only the complex case, but the real
type of MT expansions were implemented as well. It means
that both real and complex discretization can be used for
interpolation purposes. In addition, the results and the weight
function of the two types of discrete scalar product can be



(a) Original image. (b) Transformed image.

(c) Absolute values of a
Blaschke function.

(d) Arguments of a Blaschke
function.

Fig. 5. Properties of a Blaschke function.
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Fig. 6. Visualization of the MT systems defined by an appropriate pole
vector.

calculated. All of these functions can be animated interactively
by moving the poles in the unit circle. Fig. 6 shows some
illustrations generated by the toolbox. On Fig. 6(a) one can see
the poles and the real discretization on the unit disc determined
by the argument function on Fig. 6(b). It illustrates well the
fact that the points of discretization tends to be more dense
near the pole as it gets closer to the torus. The real and the
complex part of the 6th member of the related MT system is
showed by Fig. 6(c) and Fig. 6(d).

VI. EXAMPLES

In this section we present some MATLAB instructions from
the RAIT toolbox. We will give examples for both continuous
and discrete approximations as well.

First, we start with a real ECG curve from the ptbdb
database of Physionet [9]. Second, the simplex algorithm has
been performed to find the best poles for the continuous
MT system. Finally, we compute the coefficients and the MT
expansion. We note that the original signal was extended by its
imaginary part. As we shall see later, this step can be skipped
if we use the discrete real MT system. This is achieved by the
following code:

>> s=periodize(ecg,0.1,0);
>> s_im=addimag(s);
>> m=[1 2 1];
>> pr=2;
>> init=zeros(1,6);
>> p=simplex_mt(s,m,pr,init,0,1e-6);
>> mp=periodize_poles(multiply_poles(p,m),pr);
>> mtco=mt_coeffs(s_im,mp);
>> s_mt=mt_generate(length(s),mp,mtco);

We can get the reconstructed signal by taking the real part
of the variable s_mt. On Fig. 1(d) one can see the poles of
the MT system and the approximation. We note that the 6.92%
percentage root mean square difference (PRD) was gained by
using only 8 complex coefficients and 3 complex poles. The
original signal contains about 900 samples per heartbeats.

If we convert the coefficients into the basic rational function
system, we can separate the main diagnostic waves of the ECG
curve. Using this method to analyse ECG curves is a very
obvious intention since these waves express real diagnostic
features. On Fig. 9 we can see that the MT basic functions do
not reflect any diagnostic properties in contrast with the basic
rational functions. On Fig. 9(b) the P, T waves and the QRS
complex was generated by sorting the projections of the ECG
curve by using the basic functions which were defined by the
same pole. The following code separates the main waves of
the ECG curve:

>> len=length(s);
>> lfco=coeff_conv(len,mp,mtco,’mt’,’lf’);
>> lfs=lf_system(len,mp);
>> P=real(lfco([1,5])*lfs([1,5],:));
>> QRS=real(lfco([2,3,6,7])*lfs([2,3,6,7],:));
>> T=real(lfco([4,8])*lfs([4,8],:));

Let us consider the interpolation process of the toolbox.
The approximation will be carried out like the continuous
case. Now we use a segment of a central venous pressure
(CVP) signal. After the best poles were found then the discrete
coefficients can be calculated directly. We note that, there is
no need to extend the original signal with its imaginary part.
On Fig. 10(a) and Fig. 10(b) one can see the reconstructed
signal. In the former case the approximation was carried out
on 6 poles. The latter figure was obtained by duplicating the
number of the poles periodically. Hence the same instructions
were executed by setting the variable pr to 2. For instance,
Fig. 10 was obtained as follows:

>> s=periodize(cvp,0.1,0);
>> len=length(s);
>> m=[1 3 2];
>> pr=1;
>> init=[-0.6,-0.6,0.2,0.7,-0.4,-0.6];
>> p=simplex_mtdr(s,m,pr,init,0,1e-6);
>> mp=periodize_poles(multiply_poles(p,m),pr);
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Fig. 7. Approximation steps.
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Fig. 8. MT approximation of the record s0306lrem from ptbdb database of
Physionet.
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Fig. 9. Basic functions of MT and LF systems.
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Fig. 10. Real MT approximation of the record mgh001 from mghdb database
of Physionet.

>> [cUk,cVk]=mtdr_coeffs(s,mp,1e-6);
>> s_mtdr=mtdr_generate(len,mp,cUk,cVk);

VII. EXPERIMENTS

In this section, we want to emphasize the efficiency of
rational functions by compressing different types of signals.
However, we have already given some examples for the
practical applications of the systems, but comparsions have not

been presented yet. For this reason, we have performed exper-
iments to compare the compression ratio and the accuracy of
different algorithms in biomedical signal processing. We used
the review [10] as a reference of the ECG signal compressing
methods. To assess the quality of the results, we performed
our tests on the two main classes of the ECG compression
algorithms. Namely, we compared the performance of rational
functions with wavelet and polynomial approximation based
methods.

Furthermore, we want to use an objective measure of the
level of compression and distortion rate. For this reason,
synthesized ECG signals [13] were also used to test these
methods. In this case, we can generate electrocardiograms
with different diagnostical and geometrical features, but we
can get the original signals in analytic forms as well. So, both
compression and distortion rate can be measured by using
different types of error measures, such as PRD and the so-
called weighted diagnostic distortion (WDD) [14].

Wavelets are widely used in signal processing for not
only compressing data, but for extracting different features
as well. In our tests, a one dimensional discrete wavelet
transform (DWT) was applied for ECG signals. It means that
we generated 100 different synthetic ECG signals with normal
diagnostic parameters by using the statistics of these features
from [12]. This is a piecewise polynomial model with at most
fifth order segments., therefore we used Daubechies wavelets
having six vanishing moments (D6). These functions can be
applied efficiently to compress our synthetic signals, because
they can supress at least 5 order polynomials. The embedded
MATLAB commands wdencmp and wpdencmp were used
to perform the tests. The former one is a wavelet coefficient
thresholding algorithm. The latter is an efficient implemen-
tation of the wavelet packets (WP) method. In contrast with
the simple wavelet thresholding algorithms, the WP procedure
is an adaptive transformation in the sense of the coefficient
management. It means that both the approximation and the
detailed coefficients are further decomposed at each level of
the multiresulotion analysis. After this step, all the coefficients
will be removed which have high entropy. The remaining terms
are the ’best’ optimal selection in the sense of Shannon entropy
measure. We refer to [11] for details.

Now, let us consider the experiment. The aforementioned
algorithms were applyed to the 100 synthetic ECG signals.
During the compression the thresholds were decreased in each
step until the desired 5% PRD was reached. Finally, the
number of coefficients and the WDD were encountered for
each method. Fig. 11 shows our results. One can see that if
the MT representation was used then generally we need less
number of coefficients than in the D6 wavelet decomposition.
In the former case, the diagnostic distortion is better. As it
was excepted, the WP algorithm has outperformed the simple
wavelet thresholding method. Now, the average number of
coefficients is about 30. However it is slightly better, but it is
still comparable with the performance of the rational functions.
Furthermore, the WDD of the MT approximation is the best
among these there methods.

In our second experiment we used an additional compres-
sion algorithm. It is a polynomial approximation method where
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Fig. 11. Statistics of the tested methods on 100 synthetic beats.

the base functions are b-splines. This is a simple procedure
which starts with an initial spline approximation given by a
large number of knots. The knots are then removed, one by
one, until we reach a certain degree of distortion. The key point
of this algorithm is the prediction of the error at each of the
removed knots. By taking advantage of the fact that the beat to
beat changes in ECG signals are generally not significant, the
compression ratio of this algorithm can be further improved.
But here we will use only the number of coefficients and knots
to determine the related compression ratios for each beat. For
proper algorithms see e.g. [16].

This test contains 14 real ECG signals of the mitdb database
from Physionet [9]. Some preprocessing steps are necessary
to deal with noise, but these algorithms are beyond the scope
of this paper, we just enumerate the applied techniques, see
references for further details. First of all, we segmented
the signals into beats by taking into account the heart rate
variability and the related statistics of the ECG signals from
[12]. Then a simple baseline subtraction algorithm was used
from [17] to deal with baseline wandering. Additionally the
well known KLT transformation was also applied to filter out
high frequency noises. Only the first few KLT basis function
were computed by keeping 90% of the whole energy. The
series of beats in a signal were aligned along with their R
peaks. Furthermore, we calculated the KLT basis by using
the SVD decomposition of 60 successive beats. The running
SVD algorithm [15] were used to improve the speed of the
preprocessing step. For further analysis see Chapters 5 and
Appendix 9A from book [12].

In contrast with our previous experiment, now we fixed the
number of coefficients that can be used by each of the tested
algorithms. On one hand it means that the compression ratio
is the same for all of these procedures. On the other hand
the error of the approximation is different. The final results
can be seen on Fig. 12. The average PRD was assigned to
all of the related methods and records. As we expected, the
b-spline approximation can not keep step with the other three
methods. Otherwise, it is hard to distinguish the average PRDs
in the latter case. So it is difficult to choose the algorithm
that achieved the best scores. However, the red lines are
almost always under the others. Which means that the rational
function representation performed slightly better.

Our primary goal was to demonstrate the feasibility and
applicability of the method. The potential application area can
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Fig. 12. Statistics of the tested methods on 14 real ECG signals.

be extended to other types of datas thats are not necessary to
be biomdecical or physiological signals. Although the rational
functions systems did perform better than wavelets and wavelet
packets on some experiments, but we do not claim that it
generally outperforms them. Further research is required to
answer these questions.

VIII. CONCLUSION

A new MATLAB toolbox has been introduced which can
be useful in a wide range of applications. However, we
proposed some practical applications for signal processing.
For instance, these systems are capable to represent different
types of signals. Taking advantage of approximation and
interpolation properties not only equidistant but non-uniform
discretization can be used as well. Four types of signal
representations are available by using different classes of
rational function systems. It is worth to examine other
properties of these representations, for instance the energy
compaction, compression rate, sense of the coefficients and
the poles etc. A related open question is that of the filtering
property, whether or not we can use these expansions for
denoising signals. Two MATLAB GUIs were implemented
for educational purposes. However, we want to extend the
toolbox with real biorthogonal expansions by analogy with
mtdr functions. In addition, we are working on a GUI
called biort_tool similar to malmquist_tool that
demonstrate the properties of biorthogonal systems.

Further research is required on finding the best poles for a
system. We used the Nelder–Mead algorithm to resolve this
problem, but it can terminate in local optima. An alternative
solution could be applying the simplex algorithm partially.
Another way is to use hyperbolic geometry instead of eucle-
dian. Unfortunately, it is hard to generalize the operations in
higher dimension such as computing bisectors, intersections,
reflections etc. However, Blaschke functions can be useful
to resolve this problem. In the near future, we also want to
implement a similar toolbox involving hyperbolic operations,
simplex algorithm and different models such as Poincaré disk
and Cayley–Klein model.
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[13] P. Kovács, “ECG signal generator based on geometrical features,” An-
nales Univ. Sci. Budapest., Sect. Comp., vol. 37, pp. 247–260, 2012.

[14] Y. Zigel, A. Cohen and A. Katz, “The Weighted Diagnostic Distortion
(WDD) Measure for ECG Signal Compression,” IEEE Transactions on
Biomedical Engineering, vol. 47, pp. 1422–1430, 2000.

[15] D. Chetverikov, A. Axt, “Approximation-free running SVD and its
application to motion detection,” Pattern Recognition Letters, vol. 31,
pp. 891–897, 2010.

[16] M. Karczewicz, M. Gabbouj, “ECG data compression by spline approx-
imation,” Signal Processing, vol. 59, pp. 43–59, 1997.

[17] G.D. Clifford, “Collection of ECG processing algorithms: Filters, ” http:
//www.mit.edu/∼gari/CODE/FILTERS, Feb. 22, 2007 [Oct. 26, 2012].
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cal modelling from Eötvös L. University, Budapest,
Hungary, in 2010. Currently he is writing his PhD
thesis in signal and image processing at the Depart-
ment of Numerical Analysis of Eötvös L. University.
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