
• NASA-CR-192906

RAMA: A FILESYSTEM FOR MASSIVELY PARALLEL COMPUTERS

Ethan L. Miller and Randy H. Katz /N - _,,,,2_ - ¢.F-_

University of California, Berkeley
Berkeley,California /,_',D° _'_ /

ABSTRACT

This paper describes a file system design for massively
parallel computers which makes very efficient use of a
few disks per processor. This overcomes the traditional
I/O bottleneck of massively parallel machines by
storing the data on disks within the high-speed
interconnection network. In addition, the file system,
called RAMA, requires little inter-node
synchronization, removing another corn mon
bottleneck in parallel processor file systems. Support
for a large tertiary storage system can easily be
integrated into the file system; in fact, RAMA runs
most efficiently when tertiary storage is used.

INTRODUCTION

Disk-based file systems are nothing new; they have
been used for over thirty years. However, two
developments in the past few years have changed the
way computers use file systems--massive parallelism
and robotically-controlled tertiary storage. It is now
possible to have a multi-terabyte file system being
accessed by hundreds of processors concurrently.
Current disk file systems are not suited well to this
environment. They make many speed, capacity, and
erasability assumptions about the characteristics of the
file storage medium and about the stream of requests
to the file system. These assumptions held with
increases in disk speed and processor speed. However,
massively parallel machines may have hundreds of
processors accessing a single file in different places,
and will require data to come from a multi-terabyte
store too large to cost-effectively fit on disk. The
changes in access patterns to the file system and
response times of tertiary storage media require a new
approach to designing file systems.

i [

The RAMA ('Rapid Access to Massive Archive) file
system differs from a standard file system in that it
treats the disk as merely a cache for the tertiary storage
system. Because it relies on optical disk, tape, and
other mass storage devices to hold the "true" copies of
each file, the disk file system may use different, more
efficient methods of arranging data.

This paper describes the design of the RAMA file
system. The first section provides some background

on relevant file systems. Next, we detail the design of
the disk-based portion of the file system. We then
discuss the advantages of the system, and some/9.
possible drawbacks. We conclude with future
directions for research.

PREVIOUS WORK

There have been few file systems maly designed for
parallel machines. While there have been many
massively parallel processors, most of them have used
uniprocessor-based file systems. These computers
generally perform file I/0 through special I/0
interfaces and employ a front-end CPU to manage the
file system. This method has the major advantage that
it uses well-understood uniprocessor file systems;
little additional effort is needed to support a parallel
processor. The disadvantage, however, is that
bandwidth to the parallel processor is generally low, as
there is only a single CPU managing the f'de system.
Bandwidth is limited by this CPU's ability to handle
requests and by the single channel into the parallel
processor. Nonetheless, systems such as the CM-2 use
this method.

Some parallel processors do use multiprocessor file
systems. Generally, though, these systems make a
distinction between computing nodes and file
processing nodes. This is certainly a step inthe right
direction, as file operations are no longer limited by a
single CPU. These systems, however, ate often
bottlenecked by centralized control. Additionally, there
is often a strict division between I/O nodes and
processing nodes. This unnecessarily wastes CPU
cycles, as the I/O nodes are idle during periods of
heavy computation and the processing nodes are idle
during high I/O periods. The CM-5 is an example of
this type of file system architecture [1]. The Intel
iPSC/2 also uses this arrangement of computation and
I/O nodes [2]. In the iPSC/2, data was distributed
among many I/O nodes. However, I/O serviees ran
only on I/O nodes, scaling performance by just that
number. This arrangement works well if IX) needs are
modest, but costs too much for a large system with
thousands of computation nodes. Such a system would
need hundreds or thousands of distlnct 1/O nodes as
well, requiring additional processors and a larger
interconnection network, and increasing the machine'r
cost.

J

(NASA-CR-192906) RAMA: A FILE

SYSTEM FOR MASSIVELY PARALLEL

COMPUTERS (California Univ.) 7 p

N93-25297

Unclas



The Bridge fde system [3] is one example of a truly
parallel file system. In it, each processor has a disk,
distributing the file system across the entire parallel
computer. Bridge showed good performance, but it
required that computation move to where the data
actually resided for optimal performance. This
approach does not work well for supercomputing
applications such as climate models. For these
problems, data layout is critical, as interprocessor
communication must be optimized. Additionally, this
arrangement fails when a single fide system must be
accessed by both workstations and high-performance
computers. The authors reported little speedup for
"naive" use of the file system, but such use is
necessary if workstations are to share a file system
with a parallel computer.

In [4], the authors describe a hashed-index file system
for a computer with many diskful nodes. They note
that the lack of a centralized index structure removes a
major bottleneck, and found that they got nearly linear
speedup as they increased the number of nodes with
disks. The file system is aimed primarily at database-
type workloads, however, as it does not consider
sequential reads. Their idea is sound, though, and
similar to the RAMA design presented in this paper.

RAMA FILE SYSTEM DESIGN

The RAMA file system is designed to provide high-
bandwidth access for large files while not overly
degrading performance for small files. It is thus best
used for scientific computing environments, which
require many files tens or hundreds of megabytes long
[5]. The file system scales well to multiprocessors
with hundreds of CPU nodes, each with one or more
disks. Because little synchronization between file
system CPUs is necessary, there will be little
performance falloff as more CPUs are added. Figure l
shows what hardware running the RAMA file system
might look like.

without encountering a bottleneck as long as the parts
of the file are on different disks. This scheme will be

explained shortly.

Figure 1. Typical hardware configuration for
running the RAMA file system.

Tertiary storage is integrated into RAMA via user-
level storage managers. Whenever a block of data is
not found on disk, one of these processes is queried to
find the data on tertiary storage. Clearly, this method
introduces longer latency than a kernel_ storage
manager would. However, latency to tertiary storage is
already well over a second; the additional few
milliseconds will make little difference in overall
request latency. Additionally, user-level storage
managers can be changed more easily to aczommodate
new devices and new algorithms for managing f'de
migration, as the kernel need not be recompiled.

RAMA fits well into the Mass Storage Systems
Reference Model [6]. RAMA itself acts as a bitt'de
server and storage server for magnetic disk. The user-
level tertiary storage managers are big'de servers for
tertiary storage devices; however, they do not
necessarily act as storage servers for these devices.

The file system may span as many different disks and
processors as desired. There are no inmnsic limitations
on how large the file system may get, since RAMA
keeps very little system-wide state. Each node must
know how to convert a (bioqle identifier, offset) pair
into a destination node, and nothing more. All other
state information is kept locally on each node, and
obtained by other nodes only when needed. A node
may cache data and state that does not pertain to its
local disk; the node that owns the data manages the
consistency using any scheme for keeping distributed
data consistent. This creates a bottleneck if many
nodes share a single piece of data, but it allows many
concurrent requests for different data. In particular,
different nodes can share distinct parts of the same file

Data layout

In RAMA, the disk acts as a cache for tertiary storage.
Unlike many file system caches, RAMA's disk is a
set-associative cache. As a result, any fde block can
only be placed in a subset of all the disk blocks in the
system. This subset is found using a hashing
algorithm based solely on the file's unique identifi_
and the block's offset within the file. Since this is a
simple algorithm that does not depend on any
dynamically-changing global information, each node
can have its own independent copy of the algorithm.
No interprocessor synchronization is necessary to
decide where on disk a needed file block is located.



Thisholdstrue regardless of the size of the fide, and
regardless of the size of the RAMA fde system.

R FileI _ File2 E File3

Diskline

File blocks

Line descriptor

Figure 2. Structure of a disk line in RAMA.

Data blocks in RAMA are stored in disk lines, which
consist of one or more file blocks. Each disk line has
a line descriptor describing the data in the line's
blocks, acting as a "table of contents" for the disk
line. The line descriptor keeps the file identifier, block
number, last access time, last modification time, and
several flags for each file block in the disk line. Figure
2 shows the structure of a disk line and line descriptor.
Typically, a disk line will have hundreds to a few
thousand file blocks in it; performance implications of
this choice will be discussed later. Since f'de blocks
are 4-8 KB, each disk line is several megabytes long;
thus, a single disk has multiple disk lines on it.

Data placement in RAMA

One major innovation in the RAMA design was
motivated by a simple observation--file met,adam in
UNIX falls into two categories, both of which are
stored in the inode and indirect blocks in standard
UNIX file systems. The first type of metadata,
intrinsic metadata, is information that describes the
data in the file. This data includes file modification and
access times, owner and protection, and file size.
Because it describes the data itself and not its

placement, this type of metadata must be kept with
the file regardless of the medium the file is physically
stored on. Positional metadata is the second type of
metadata. This information tells the operating system
where to find the bits contained in the file. In a UNIX
system, this metadata is contained in the direct block
pointers in the inode and in indirect blocks. RAMA
treats and stores the two types of metadata differently,
unlike UNIX systems which store both types of
metadata in the inode.

In RAMA, intrinsic metadata is stored at the startof a
file's data. Thus, the CPU responsible for the first few

blocks of the file also manages the file's timestamps
and other information about it. This arrangement has
the disadvantage of slowingdown directoryscanssuch
as ].s, but has little effect during the time when a t'de
is actually being read or written. Since high-
performance computers spend far more time accessing
file data than looking for the ides, this is a good
tradeoff for a massively parallel fde system.

As already discussed, positional metadata for file
blocks on disk is contained in the hashing algorithm
and the line descriptors. Each t'de block resident on
disk requires about 4 words of data in a line descriptor.
If file blocks are 8 KB long, 0.2% of the disk space in
the file system will be occupied by positional
metadata--an acceptable overhead.

RAMA's arrangement of metadata provides sevezal
advantages for massively parallel systems. FirsL
positional metadata is guaranteed to be near the data it
describes, since disk lines occupy logically contiguous
disk sectors. Thus, little or no seek time is necessary
between accessing a file block's positional metadata
and reading or writing the actual file data. This is not a
new idea, though. The BSD 4.3 file system [7], for
example, uses the same concept and keeps inodes near
the f'des they describe.

This arrangementof metadata has another advantage.
Blocks of a file are independent from each other and
can be read and written by different CPUs with little
interprocessor synchronization. Most file operations
update little file-intrinsic metadata. Reads only change
timestamps, while writes may also change file length.
File length changes, however, do not require
synchronization; the node responsible for keeping
track of the file length simply remembers the largest
size it has been told. As-a result, different CPUs in a
massively parallel computer may read or write two
different sections of the same file without sexializing
their request.

Agowing each block to be _ independendy
providesexcellent parallelism;however, large
sequentialreadsand writesmustbe broken up. Most
file systemsoptimize dataplacement so large fdo
accesses can be done with few seeks. This can be done
in RAMA as well by adjusting the hashing algorithm.
Instead of assigning each file block to a different disk
line, the algorithm can be adjusted to map several
consecutive blocks of the same file to the same line.
This "sequentiality parameter" can be adjusted to trade
off between faster sequential access and conflict
problems. If too many consecutive blocks from a
single file go to the same disk line, the line will be
unable to hold much other data that hashes to the same
line, degrading performance by forcing the use of



tertiary storage. On the other hand, too few sequential
blocks in the same line degrades performance by
requiring more seeks. Simulation will determine the
relationship between these two effects.

Another factor in data placement is the arrangementof
data blocks within a disk line. Sequential blocks from
the same file might be scauered around within the disk
line, which holds hundreds of data blocks. This will
provide suboptimal performance, as reading sequential
blocks from a file would require rotational and head
switch delays. However, this can easily be remedied.
Recall that only the processor directly attached to the
disk actually knows where an individual file block is
actually stored on disk. If the disk is idle for even a
short period of time, its disk lines may be cleaned up.
This process is similar to cleaning in a log-structured
file system [8], but it is not necessary for operation.
Unlike an LFS, RAMA can run without cleaning, as
cleaning only optimizes file block placement within a
disk line. There are data integrity issues involved with
reorganizing a disk line; however, these may be solved
by having few spare disk lines on each disk. Instead of
overwriting a disk line in place, write it to a different
disk line and mark the original as the new spare.

Tertiary storage and RAMA

RAMA is designed to be used in high-performance
computing environments requiring many terabytes of
storage. File migration to and from slower, cheaper
media must be well integrated into the file system.
RAMA's data layout on disk facilitates such
migration.

Each block in a disk line may be in one of three
states----clean, dirty, or free. Free blocks are just that.
They are always available to write new data to. Clean
blocks are those that have not been modified since
they were written to tertiary storage. This includes
both blocks that have been written back to archive and
those that have been retrieved from tertiary storage. If
there are no free blocks, clean blocks may be reclaimed
for new data, in order of last access time. A copy of
data in these blocks exists elsewhere, so it can be
retrieved if it is needed later. A migration manager
may change the last access time of a clean block to
change the order in which valid blocks are reclaimed
(this does not affect a file's last access time, however).
Finally, dirty blocks are immune from overwriting.
As a result, dirty blocks must be converted to clean or
free blocks faster than the overall write rate. This

simply means that migration from disk to tertiary
storage must, on average, be faster than the rate that
long-term data is created.

Migration from secondary to tertiary storage is
managed by user-level processes. There may be more
than one of these processes, but they will likely be
coordinated to avoid duplication of effort. This is noL
however, a requirement. These processes, called
migration managers, direct the copying of files f_3m
secondary to tertiary storage. RAMA has special
hooks into the file system to allow this; in particular,
these processes are allowed to change the state of a file
block, marking dirty blocks as clean. These managers
may also adjust the modification time of a clean block
so it will be more or less likely to be written over if
more disk space is needed.

A typical migration manager searches through every
disk line looking for dirty file blocks older than a
certain time. This finds file identifiers that are good
candidates for migration to a lower level of the
hierarchy. This task is easily parallelizable, using one
low-level migration manager for each disk. Each low-
level process reads and scans all of the line descriptors
on a single disk. This is not a long procedure; a 1 GB
disk has less than 4 MB of line descriptors which may
be read and scanned in a few seconds. The results from
all of the low-level migration managers are combined
by a high-level migration manager. This migration
process decides which files will be sent to tertiary
storage, and manages their layout on tertiary media. It
also optimizes scheduling for the tertiary media
readers, trying to minimize the number of media
switches.

Once a file has been written to tertiary storage, its
blocks become available for reuse. However, these
disk blocks are not immediately freed; instead, they are
marked as clean so they may be reclaimed if necessary.
There is usually no reason to free blocks once they are
safely stored on tertiary media, as they might satisfy a
future file request. However, the blocks' modification
time might be modified. The migration manager
could, for example, decide to preferentially keep blocks
from small files on disk. If so, it would mark clean
file blocks from large files as being older than blocks
of the same age from small files. This will not
confuse the fde system,asa whole file's modification
date remains unchanged, as does the modification date
for dirty blocks. Only clean blocks which need not be
written to tertiary storage may have their last access
dates changed.

A typical file access

To make either a read or a write request for a fde in
RAMA, a node first hashes the (bible ID, block
number) pair to decide which disk line the data will be
found in. The request is then sent to that node, and



the requesting node does nothing further until the
request completes and the data is ready.

Once the node with the data receives the request, it
reads in the line descriptor for the disk line with the
desired data (if the line descriptor is not yet cached in
memory). For a file read, the line descriptor is searched
for an entry that matches the desired bitfile ID and
block number. If it is found, the block is read from
disk and returned to the requesting node. If it is not
found, a message is sent to the tertiary storage
manager requesting the block.

Writes follow a path similar to reads, except that the
procedure for a "miss" is different. Instead of sending a
message to the tertiary storage manager, the file
system writes the data into the disk line and updates
the line descriptor. Blocks marked free are used first; if
none are available, clean blocks are used in order of
desirability as set by the migration manager when the
blocks were written to tertiary storage. If all of the
blocks in a line are dirty, RAMA sends an emergency
message to the migration manager, requesting that the
line be cleaned. The request cannot finish until this is
done. This last resort is similar to thrashing in a CPU
cache, and exhibits poor performance.

IMPLEMENTATION ISSUES

Hashing algorithm

cylinders, so seeks between sequential blocks in a f'de
are minimized. Additionally, a disk line can be
reorganized to put related blocks together. As noted
above, this can be done without notifying any other
processors or disks. One open question, then, is how
many consecutive blocks from the same t'de to put
into a single disk line. If the number is too small,
interconnecdon network and CPU ovcrhc_ become

too high. However, if the number is too high, there
will be little speedup for large reads since different
requests for the same t'de must go to the same location
and be sei-ialized. A high number may also cause
pollution of a disk line, as a single file's blocks can
occupy a large fraction of an entire line, crowding out
other l'des' blocks.

Interconnectlon network congestion

Our initial design assumes that the interconnection
network will not be the bottleneck for the file system.
We feel that this is a valid assumption because a
typical network will run at over 10 MB/sec, while a
small inexpensive disk transfers data at only 1-2
MB/sec. However, this does not take network
congestion into account. If both requests and data to
fulfill those requests are evenly spread around the
parallel processor, congestion will not be a constant
problem. However, we will examine the effects of
temporary "hot spots" in the l'de system. In the
simulation in [4], hot spots did not present a major
problem.

As [3] and [4] noted, parallel file systems without
bottlenecks can achieve near-linearspeedup if data is
distributed well among all diskful nodes. A file system
for scientific computation introduces additional
problems, however. The first is sequential access.
Most scientific computation involves large sequential
reads and writes to the I/O system 15], so these
requests must run quickly. If each block lives on a
different processor-disk pair, a single half-megabyte
read would need to contact 64 different nodes. Since
there is a per-request overhead for each disk, this
approach is inefficient. Also, it may excessively
congest the interconnection network, as a single I/O
sends messages to many different nodes. The disks,
too, are being used inefficiently if many processes ate
using the file system. Instead of few large requests,
disks see many small requests and spend all their time
seeking to the correct locations.

To fix this problem, we adjust the hashing algorithm
to keep sequential blocks from the same file in the
same disk line. In the ideal case, all of these blocks
could be read without any seeks. This will often not
be the case, though, since the disk line will become
fragmented. Even so, a disk line occupies only a few

Data integrity and availability

As with any new file system, data integrity is a major
issue. The problem is especially acute in RAMA,
since a single file may be spread over many disks run
by many different processors. Similarly, data
availability becomes a problem when parts of a single
file are stored in many different places, as the file is
unavailable if any of those disks or processors is
down.

Data integrity is the more important issue, as • file
system must never lose data entrusted to it. RAMA
must ensure that writing a new block of a file is an
atomic operation. This can present a problem, since
there may be two separate disk I/Os to write a file
block to disk. The line descriptor must be updated, and
the block itself must be written to disk. If only one
operation is completed, the file systemis in an
inconsistent state. In a high-performance computing
environment, losing the last few seconds of file I/O is
not fatal, as long as the application knows that the
loss occurred.



Wehavecome up with several options for insuring
that the file system remains consistent. The fast
writes the line descriptor in two passes, writing any
file blocks between the passes. In the first pass, all
blocks being written are marked as free. The new
blocks themselves are then written to disk. The second
pass writes the descriptor with the new table of
contents. If a crash occurs before the descriptor is
written the second time, all of the new file blocks are
instead marked as free. This means that their data is
lost, but the file system remains consistent. This
method works well, but it requires three separate disk
I/Os to write a file block.

We believe that a beuer option is to use self-
identifying blocks on disk. Each block would reserve a
few words to record the file identifier and block
number that the data in the block corresponds to. This
method has several major advantages. First, crashes no
longer present any problem since the line descriptor
can be rebuilt by scanning the disk line. The line
descriptor is then kept only to make accessing the disk
more efficient. Rebuilding the line descriptor after each
crash may take some time, however. To avoid doing
this, the file system assumes that all descriptors are.
correct, and only rebuilds one when it finds a
disagreement between a line descriptor and the self-
identification for a block in its line. Another advantage
for this method is that line descriptors may be written
back lazily. This _ades off recovery time after a crash
with efficiency during normal operation. All of these
benefits are countered by a few drawbacks, however. A
file block is no longer the same size as a disk block,
and file blocks are no longer a power of 2 bytes long.
Many programs are optimized to take advantage of
specific file block sizes, and it is not clear what effect
changing the size will have. Another minor problem
is the increased amount of metadata the file system
will need. The overhead for metadata would double
with a naive implementation that keeps a copy of all
metadata in the file block as well. Keeping a full copy
is unnecessary, though, and this overhead is only an
additional 0.2% in any ease.

File availability is another problem that RAMA must
conquer. Uniprocessor file systems spanning more
than one disk may arrange disks in a RAID [9] to keep
data available even when a disk has failed. It should be
possible to use similar techniques for RAMA.
However, it is not clear how they would be integrated
into the file system, since each node may rearrange its
own disks without notifying other nodes. Under the
current design, then, files are unavailable when a
processor or disk is down. This is a serious problem,
and will be addressed by future research.

FUTURE WORK

RAMA is currently a rough t'desystem design. We are
implementing a simulator to test our ideas and refine
the design. The simulator will show us whethe_
RAMA does indeed provide a linear speedup with more
processors, and whether network congestion is likely
to be a problem.

Once our design has been refined by feedback from
simulation results, we hope to build a real file system
on a parallel processor with a disk at each node. This
will allow us to benchmark our file system using real
applications. Additionally, it will show us whether
there are long-term problems that might not show up
in simulations covering only a few days of simulated
time.

There is also much work to be done integrating
tertiary storage with RAMA. In this paper, we have
said little about the user-level migration managers that
will move data between disk and tertiary storage.
Algorithms for these programs need to be developed,
using data from studies such as [10] and [1 I]. A
RAMA system with a 500 MB disk on each of 256
nodes will have a 125 GB f'de system; this is
somewhat larger than that on most high-performan¢_
computers today. The large disk space may permit new
prefetching algorithms that reduce the number of
requests that stall waiting for data from tertiary
storage.

CONCLUSIONS

This paper has presented the design of RAMA, a
massively parallel file system to support scientific
computation. RAMA's design allows it to provide
high bandwidth to computationally intensive
applications such as climate modeling and
computational fluid dynamics while still providing
efficient support for many workstations. By spreading
data across disks and allowing blocks of a t'de to be
accessed independently, RAMA provides a scalable file
system for the massively parallel computers that will
solve the large problems of the future.

BIBLIOG RAPHY

1. CM-5 Technical Summary. Thinking Machines
Corporation, October 1991.

2. Paul Pierce. "A concurrent file system for a highly
parallel mass storage system." In Proceedings of
the 4th Conference on Hypercubes, 1989. pp. 155-
160.



w

. Peter Dibble, Michael Scott, and Carla Schlauer
Ellis. "Bridge: a high-performance f'de system for
parallel processors." In Proceedings of the 8th
International Conference on Distributed Computing
Systems, June 1988, pp. 154-161.

. Amnon Barak, Bernard Galler and Yaron Farber. "A
holographic file system for a multicomputer with
many disk nodes." Technical Report 88-6, Dept. of
Computer Science, Hebrew University of
Jerusalem, May 1988.

5. Ethan Miller and Randy Katz. "Input/output
behavior of supercomputing applications." In
Proceedings of Supercomputing '91", November
1991, pp. 567-576.

. Sam Coleman and Steve Miller. "Mass storage
system reference model: Version 4." IEEE
Technical Committee on Mass Storage Systems
and Technology, May 1990.

. Marshall Mckusick, William Joy, Samuel Leffler,
and Robert Fabry. "A fast file system for UNIX."
ACM Transactions on Computer Systems,
2(3): 181-197, August 1984.

, Mendel Rosenblum and John OusterhouL "The
LFS storage manager." In USENIX _ Summer
1990, June 1990, Anaheim, CA, pp. 315-324.

. David Patterson, Garth Gibson and Randy Katz. "A
case for redundant arrays of inexpensive disks
(RAID)." In Proceedings ACM SIGMOD, June
1988, pp. 109--116.

10. Ethan Miller and Randy Katz. "An analysis of file
migration in a Unix supercomputing
environment." To appear in USENIX--Winter
1993, January 1993.

11. David Jensen and Daniel Reed. "File archive
activity in a supercomputer environment."
Technical Report UIUCDCS-R-91-1672,
University of Illinois at Urbana-Champaign, April
1991.


