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Raman Forward Scattering in Plasma Channels

G. Shvets and X. Li

Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543

Abstract

Raman scattering instability of an intense laser pulse in a plasma channel

proceeds di�erently than in a homogeneous plasma: the growth rate is re-

duced and the scaling with the laser intensity modi�ed. These di�erences,

signi�cant even for shallow plasma channels, arise because of the radial shear

of the plasma frequency and the existence of the weakly damped hybrid (elec-

trostatic/electromagnetic) modes of the radially inhomogeneous plasma. The

interplay of these two e�ects produces double-peaked spectra for the direct

forward scattering in a channel.

PACS: 52.40.Nk, 41.75.Jv, 52.35.Mw, 42.65.Wi
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Stimulated Raman scattering (SRS) in the plasma is one of the fundamental and well

researched parametric instabilities of intense laser pulses. The physical mechanism of the

SRS in a transversely uniform plasma is well understood: the ponderomotive beatwave

between the pump (!0) and its Stokes/anti-Stokes sidebands (!0� !p) drive a plasma wave

(!p), which then acts as a grating, scattering the pump and re-enforcing the sidebands. In

this Letter we demonstrate that the SRS is strongly modi�ed in a plasma channel, where the

plasma frequency !p =
q
4�e2n0=m is radially sheared through the radial dependence of the

plasma density n0(r) (here �e and m are the electron charge and mass). From the practical

standpoint, the stability of the laser propagation in channels needs to be understood as the

plasma channels are increasingly used for the uninhibited by di�raction guiding of intense

laser pulses over extended distances [1,2], with applications including X-ray lasers [3],

inertial con�nement fusion (ICF) [4], and laser-plasma accelerators [5,6].

From the physics standpoint, two novel e�ects modify the SRS spectrum. The �rst e�ect,

plasma wave localization, is caused by the radial shear of the plasma frequency. Indeed, the

low-frequency beatwave with ! � !0 eÆciently excites the plasma wave only in the vicinity

of a speci�c radius r, where !p(r) = !. This reduces the overlap between the lasers and

the plasma wave and, consequently, the SRS growth rate. The second (electromagnetic)

e�ect occurs because the low-frequency plasma wave, which is purely electrostatic in a

homogeneous plasma, acquires an electromagnetic component in a plasma channel, turning

into a weakly damped quasi-mode [7,8]. The SRS growth rate is then further modi�ed by

the quasi-mode's participation.

The �rst e�ect is important whenever the SRS growth rate is smaller than the de�ned be-

low variation of the plasma frequency across the channel �!p. In several physical situations

this is indeed the case. Raman backscattering (RBS) in the plasma has recently been pro-

posed as a technique for compressing low-intensity laser pulses [9] with the normalized vector

potential a0 = eA0=mc
2 � 1. Since the growth rate of the RBS 
rbs = 0:5

p
!0!pa0 � !p,

even a shallow plasma channel can modify the instability. At higher laser intensities, Ra-

man Forward Scattering (RFS) can produce energetic electrons [10] for ICF target ignition
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or high-energy physics. It's growth rate 
rfs = a0!
2
p1=
p
8!0 [11,12] will also be modi�ed by

the plasma channel. In addition, in the case of the RFS instability, the electromagnetic

e�ect becomes equally important. The interplay of these two e�ects produces a peculiar

double-humped gain pro�le of the Raman Forward Scattering RFS in the channel, shown as

a solid line in Fig.1 (b).

To examine both e�ects, we focus on the Raman Forward Scattering (RFS) in a single-

mode 
at plasma channel, in which the plasma density n0(x) is a function of a single trans-

verse coordinate, and the plasma frequency varies between !p1 =
q
!2
p2 ��!2

p
=2 at x = 0

and !p2 at jxj ! 1 according to

!2
p
= !2

p2 �
�!2

p

2 cosh2 (x=�)
; (1)

The single-mode assumption enables neglecting side-scattering instabilities. In order to

quantitatively describe the plasma wave localization in the channel, we neglect the self-

modulation instability (SMI) [13{15] which, undoubtedly, is also modi�ed. Dispersion rela-

tion for a circularly polarized pump ~a0 = a0=2(~ex + i~ey)e
i�0 + c:c: with �0 = (k0z � !0t) can

be derived by solving the eigenvalue equation L0a0 = �0a0, where �0 = !2
0=c

2 � k20 and

L0 = �
@2

@x2
+
!2
p
(x)

c2

 
1 � ja

2
0j
2

!
: (2)

In deriving Eq. (2) ja20j � 1 is assumed (weakly-relativistic pump), and the density depres-

sion created by the ponderomotive pressure of the laser pulse is neglected. Relativistically

modi�ed plasma density U0(x) = k2
p
(1 � ja20j=2) plays the role of the self-consistent con-

�ning potential with a minimum at x = 0 (here and elsewhere kp = !p=c). Assuming a

shallow channel with �!2
p
< !2

p2 and neglecting the second-order �!2
p
u20=!

2
p2 term, the am-

plitude u0 of a single bound (fundamental) mode a0(x) = u0 0 � u0 cosh
�1 (x=�) is found

to be related to the laser spotsize through (�k2
p
+ k2

p2u
2
0)�

2 = 4, resulting in the weakly-

nonlinear pump dispersion relation !2
0=c

2 � k20 = k2
p2 � ��2. The con�ning potential is then

U0 � k2
p2 � (�k2

p
+ k2

p2u
2
0)=2 cosh

2 (x=�), and the eigenmodes  q of the transverse operator

L0 are found by solving the eigenvalue equation in y � tanh (x=�):

3



@

@y

"
(1 � y2)@ q

@y

#
+

"
s(s+ 1) � �2

1 � y2

#
 q = 0; (3)

where  q's are de�ned inside the �1 < y < 1 interval, 2s(s + 1) = (�k2
p
+ k2

p2u
2
0)�

2, and

�2 = (k2
p2��q)�2. The solutions of this equation are the associated Legendre functions P �

s
(y)

[16], and the spectrum contains s discrete energy levels with �2 > 0 (in our case s = 1) and

a continuum of modes with �2 = �q2�2 < 0, where q labels the continuum modes which

behave / exp (�iqx) at in�nity. In the remainder of this paper we assume that focusing is

primarily provided by the pre-formed channel, k2
p2u

2
0�

2 � 4, which is equivalent to assuming

that the laser power is below the relativistic focusing threshold in the slab geometry.

We proceed by Fourier-Laplace transforming the envelope of the perturbed laser �eld

and separating the Stokes/anti-Stokes components ~a
�
according to

Æ~a =
X
!;k

�
~a+e

i(kz�!t) + ~a
�
e�i(kz�!

�
t)
�
+ c: c: (4)

Wave equation for for a+ (tildes are dropped for compactness) becomes (L0 � �+)a+ =

a20k
2
p
(a+ + a�

�
)=2� k2

p
(Æn=n0)a0, where ��

= (!0 � !)2=c2 � (k0 � k)2, and the equation for

the ponderomotively-driven density perturbation Æn=n0 is derived shortly. For ! close to

!p (Raman process), the �rst term in the right-hand side (RHS) of the wave equation (due

to the relativistic mass increase) is smaller than the second (due to the resonant excitation

of the plasma wave). Plasma wave is driven by the intensity modulation of the laser �eld

given by jaj2 = a20 + a0(a+ + a�
�
)ei(kz�!t) + c: c:, where the perturbed laser �eld is expanded

as a
�

= a
(0)
�
 0(x) +

P
a
(q)
�
 q(x). Inserting Eq. (4) into the wave equation, multiplying

its both sides by  0(x), and integrating over x, obtain (using the orthogonality condition

<  0;  q >= 0, <  q;  q0 >= Æqq0)

(�0 ��+)a
(0)
+ = �u0

hÆk2
p
;  2

0i
h 0;  0i

+
X
q

Nq; (5)

where Æk2
p
= k2

p
Æn=n0 is proportional to the density variation due to the perturbation of the

bound mode a
(0)
�
, and Nq = u0hÆk2(q)p

;  2
0i=2h 0;  0i, where Æk2(q)p

, de�ned by analogy with

Æk2
p
, is the partial contribution of the continuum mode q to the RHS of the wave equation.
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Continuum and bound modes are treated separately because we assume that only the

bound mode becomes unstable. The unbounded modes are not independently unstable

because they describe di�racting radiation which does not overlap with the pump a0 for a

suÆcient time to get signi�cantly ampli�ed by the small-angle Raman scattering [17]. Some

nonlinear coupling to the continuum modes does, however, take place: they are driven by

the exponentially growing bound mode a
(0)
�

[18]. The equation for a
(q)
+ corresponding to

Eq. (5) is given by (�q ��
(q)
+ )a

(q)
+ = �u0hÆk2p;  0 qi, where the q � q0 coupling between the

continuum modes is dropped, and �
(q)
+ is the same as �+, except that ! and k correspond

to the continuum mode q.

If the growth rate 
 is small (2
!0=c
2 < �q � �0, or the growth length is longer

than the Rayleigh length), then a
(q)
�

adiabatically follows the bound mode. The contin-

uum modes can, in e�ect, be eliminated by assuming that �
(q)
+ = �

(0)
+ � �0, resulting in

(�q � �0)a
(q)
+ = �u0hÆk2p;  0 qi. This expression for a

(q)
+ can be used for calculating Æk2(q)

p

and inserted into Nq, resulting in the generalized one-dimensional dispersion relation for

the bound mode which accounts for the coupling to the continuum modes. In particular,

balancing
P

qNq against the �rst terms in the RHS of Eq. (5) provides the rate of the

self-modulation instability in the paraxial approximation [13{15] which is neglected in this

Letter in order to elucidate the modi�cation of the RFS by the plasma wave localization.

Neglecting the continuummodes' correction
P
Nq (which is proportional to a

4
0) in Eq. (5)

results in the familiar from Refs. [11,12] expression

D+D�

D+ +D
�

(a
(0)
+ + a

�(0)
�

) = u0
hÆk2

p
;  2

0i
h 0;  0i

; (6)

where D
�
= �2(!0!=c2 � k0k) + (!2=c2 � k2). The commonly used [15,17,19] simpli�ed

equation (@2
t
+!2

p1)Æn=n = r2jaj2=2c2 for the density perturbation does not correctly describe
the plasma wave localization because it assumes that the plasma wave has a single response

frequency (SRF) !p1. In reality, there is a continuum of plasma frequencies between !p1

and !p2, and the phase-mixing of various plasma waves from this continuum leads to their

spatial localization. More rigorously, Æk2
p
in a channel is given by [8]
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Æk2
p
=

1

2

"
!2
p
(x)

!2
p
� !2

r2 +
�0

�2
@

@x

#
b� �0

�2
eBy

mc2
; (7)

where �(x; !) = 1�!2
p
(x)=!2, the prime denotes a derivative with respect to x, b � a0(a++

a�
�

), and ~B = eyBy is the magnetic �eld which satis�es

B00

y
� �0

�
B0

y
� !2

p
(x) + k2c2 � !2

c2
By = �

m!2�0b

2e�
: (8)

Equation (7) is obtained from Eq. (3) of the Ref. [8] by taking the divergence of ~E. From

Eq. (7), the density perturbation can be broken up into two parts: Æk2
p
= Æk2(L)

p
+ Æk2(B)

p
,

where the �rst contribution (in square brackets) is locally-driven, i. e. Æk2(L)
p

(x) is determined

by the ponderomotive force at the same x. The second contribution Æk2(B)
p

is related to the

magnetic �eld By and is manifestly non-local.

For the Raman backscattering (RBS), ck � !, and the plasma wave is predominantly

electrostatic. In this case Æk2(L)
p

is suÆcient for calculating the instability growth rate. For

the RFS, ! � ck, and the electromagnetic part of the plasma wake, characterized by By,

can be as important as the electrostatic one. The localized contribution can be calculated

analytically. We do this �rst, and return to the numerical estimation of Æk2(B)
p

later on.

Substituting Æk2(L)
p

into Eq. (6), obtain the dispersion relation D+D�
=(D+ +D

�
) = u20

~Q,

where

~Q =
Z 1

�1
dy(1 � y2)

"
y2

�2
+
!2

4c2

#
!2
p1 +�!2

p
y2=2

(!2 � !2
p1)��!2

p
y2=2

: (9)

The plasma response function ~Q(!) can be evaluated analytically; for a broad shallow chan-

nel !2�2=c2 � 1 the expression for ~Q is particularly simple, yielding

D+D�

D+ +D
�

=
!2

4c2
!2
p1u

2
0

!2 � !2
p1

"
2

B2

 
1� 2C2

3
+
C2

B2

!

�(B2 + C2)(1�B2)

B5
ln

�
1 +B

1�B

�#
; (10)

where C2 = �!2
p
=2!2

p1 and B2 = �!2
p
=2(!2 � !2

p1) . Equation (10) is the �rst, to our

knowledge, closed-form dispersion relation for the SRS instability in a plasma channel which

correctly describes the plasma wave excitation and localization; it is valid for both the
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forward and backward Raman scattering. For the previously studied RFS in very shallow [15]

and hollow [20] channels plasma wave localization was not an issue.

The almost-homogeneous plasma limit is recovered by expanding Eq. (10) in the powers

of small B and C: ~Q � k2
p1!

2=3(!2�!2
p1). In the time domain, Q(t) describes an undamped

channel-averaged plasma oscillation Q / sin!p1t: just as expected from the simpli�ed SRF

equation. For ! = !p1 + i
 and k = !p1=vg0 the peak temporal growth rate 
hom �
u0!

2
p1=
p
6!0 (where we used D+D�

=(D+ +D
�
) � �i!2

0
=!p1c
2, and vg0 = c2k0=!0 is the

group velocity of the pump). This growth rate is almost identical to 
rfs in the homogeneous

plasma. The above estimate of 
 relies on jB2j � 1, or u0 > (
p
6=4)�!2

p
!0=!

3
p1. Even

for a very shallow �!2
p
=!2

p1 = 0:2 (10% density depression) channel with !0=!p1 = 10, the

homogeneous plasma result is valid for u0 > 1:2. Physically, this means that the plasma wave

localization can only be neglected if the RFS rate is high, 
 > �!2
p
=2!p1. More accurately,


hom is derived using the exact expression (9) for ~Q:


hom =
u0!

2
p1p

6!0

vuut1 +
1

10

�!2
p

!2
p1

+
4

5

c2

!2
p1�

2
+

6

35

�!2
p

!2
p1

c2

!2
p1�

2
:

The importance of the localization is measured by the dimensionless parameter � =

�!2
p
!0=u0!

3
p1 which is proportional to the ratio of the channel depth and the growth rate.

For � > 1, the jB2j � 1 limit of ~Q yields

~Q =
!2

c2
!2
p1

�!2
p

" �i��!pp
8(!2 � !2

p1)
1=2

+

 
2 � �!2

p

3!2
p1

!#
(11)

The physical meaning of jB2j � 1 is that a plasma wave has a transverse extent Æx �
�=jBj, i. e. it is more localized than the driving beatwave. Localization reduces the overlap

between the plasma wave and the beatwave, a�ecting the growth rate. In the time domain,

localization manifests itself in the algebraic decay of the plasma response for t! 1: Q /
sin (!p1t)=

p
t.

The analytic estimates of the growth rate are obtained in two limits: gain-dominated

and dispersion-dominated. In the gain-dominated case 
 > !3
p1=2!

2
0 (which corresponds to

u20 > 0:8�!p=!0) obtain
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! � !p1 = ei�=3
 
u0!

2
p1

!0

! "
�2

16�

#1=3
: (12)

From Eq. (12), note the unusual scaling of the growth rate with the laser intensity 
 /
I
2=3
0 . For comparison, 
hom / I

1=2
0 for the resonant Raman instabilities in the homogeneous

plasma, but 
 / I0 for the non-resonant SRS in glass �bers [21]. That the intensity scaling

of the SRS growth rate in a plasma channel falls between those in the homogeneous plasma

and in the glass is explained by the time dependence of the response functions Q. The

corresponding Q's of the homogeneous plasma, plasma channel, and the glass �ber decay

progressively faster: hence the correspondingly stronger scalings of the gain with the laser

intensity.

In the opposite dispersion-dominated (u20 < 0:8�!p=!0) limit, the growth rate can also

be evaluated analytically. A straightforward (although cumbersome) calculation yields 
d �

hom

q
6!p1=!0�!p. The solid line in Fig. 1(a) is the dependence of the peak growth rate

on u0, obtained by solving the dispersion relation with the exact ~Q for the plasma channel

with a 40% density depression. The 
hom (dotted line) over-estimates the growth rate for all

values of u0. The dashed-dotted and dashed lines are the growth rates in the dispersion and

gain-dominated regimes, respectively. Consistently with the assumptions used in deriving

Eq. (12) and 
d, the growth rate is better approximated by the former for large u0 and by

the latter for small u0. The RFS spectrum calculated from the exact ~Q is shown in Fig. 1(b)

(dashed line) for u0 = 0:35.

We �nd that the RFS growth rate and spectrum are signi�cantly modi�ed after the

magnetic �eld contribution Æk2(B)
p

is added to the locally-driven density perturbation Æk2(L)
p

.

The numerically calculated overlap integral

u0
hÆk2(B)

p
;  2

0i
h 0;  0i

=
u20
2c2

!4�!4
p

(!2 � !2
p1)

3

Z 1

0
dy
y(1� y2)H1

(1 �B2y2)2

contains the normalized magnetic �eld H1 satisfying

@

@y

"
1� y2

1 �B2y2
@H1

@y

#
+ �2

 
�!2

p

2c2
� k2

p2

1� y2

!
�

� H1

1�B2y2
= � y(1� y2)

(1�B2y2)2
; (13)
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with H1(y = 0) = H1(y = 1) = 0. Equation (13) follows from Eq. (8) by setting ! = kc;

its LHS describes the collisionlessly-damped global quasi-mode [8] of the plasma channel.

Boundary conditions forH1 are satis�ed for a single value ofB which determine the frequency

and damping rate of the quasi-mode. For example, for a plasma channel with a 40% density

depression these are equal to !Q = 0:82!p2 and 
Q = 0:045!p2. Qualitatively, damping of

the hybrid wave in a smooth plasma channel is related to the phase-mixing of the plasma

oscillations which support this wave at location x. Since these supporting plasma 
uid

elements are within �x = k�1
p

of x, the di�erence between the local oscillation frequencies

!p leads to phase-mixing and eventual damping of the wave [8].

The total peak growth rate 
 (with Æk2(B)
p

added), marked by squares in Fig. 1(a), is

increased by the addition of the non-electrostatic contribution. That the total 
 is rather

close to 
hom appears to be a coincidence. The modi�cation of the RFS spectrum [Fig. 1(b)]

by the addition of Æk2(B)
p

is observed as a distinctive broad ampli�cation band peaked at

!r = 0:91!p2. It is slightly shifted from the quasi-mode frequency !Q = 0:82!p2. The

double-humped RFS spectrum is the result of the interplay between the two novel e�ects

which appear during the SRS in a plasma channel: (a) plasma wave localization caused

by the phase-mixing of plasma oscillations, and (b) non-electrostatic nature of the plasma

waves in a channel. We speculate that these newly uncovered phenomena might also a�ect

other laser instabilities in plasma channels, such as the self-modulation instability.
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FIGURES

FIG. 1. (a) Peak growth rate 
 of RFS near the on-axis plasma frequency !p1 as a func-

tion of normalized laser amplitude u0. Growth rate is numerically calculated from: dispersion

relation D+D�
=(D+ + D

�
) = u

2
0Q (solid line); homogeneous plasma estimate 
 = 
hom (dotted

line); Eq. (12) in gain-dominated regime (dashed line); 
 = 
d in dispersion-dominated regime

(dot-dashed line), and with the addition of Æk
2(B)
p (squares). (b) Instability spectrum for u0 = 0:35

with (solid line) and without (dashed line) non-local density perturbation due to magnetic �eld.

Channel parameters: !p1=!p2 = 0:775 and !0=!p2 = 10.
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