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We present a quantum theory of nondegenerate phase-sensitive parametric

amplification in a χ(3) nonlinear medium. The non-zero response time of the

Kerr (χ(3)) nonlinearity determines the quantum-limited noise figure of χ(3)

parametric amplification, as well as the limit on quadrature squeezing. This

non-zero response time of the nonlinearity requires coupling of the parametric

process to a molecular-vibration phonon bath, causing the addition of excess

noise through spontaneous Raman scattering. We present analytical expres-

sions for the quantum-limited noise figure of frequency non-degenerate and

frequency degenerate χ(3) parametric amplifiers operated as phase-sensitive

amplifiers. We also present results for frequency non-degenerate quadrature

squeezing. We show that our non-degenerate squeezing theory agrees with

the degenerate squeezing theory of Boivin and Shapiro as degeneracy is ap-

proached. We have also included the effect of linear loss on the phase-sensitive

process. c© 2005 Optical Society of America

OCIS codes: 060.2320, 270.5290.

1. Introduction

Fiber-optical parametric amplifiers (FOPAs) are currently the subject of much research for

use in wavelength conversion1 and efficient broadband amplification.2 They are also candi-

dates for performing all-optical network functions.3,4, 5 Advances in pumping techniques have

permitted improvements of the noise figure (NF) of FOPAs operated phase-insensitively1,6

and the manufacture of high-nonlinearity and microstructure fibers has improved the gain

slope7,8 of FOPAs.
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In order to explain our experimental noise figure result for a phase-insensitive amplifier

(PIA),9 we have recently published a quantum theory of χ(3) parametric amplifiers that

takes into account the non-instantaneous nonlinear response of the medium and the requi-

site addition of noise caused by this non-instantaneous nonlinear response.10,11 This work

also provides analytical expressions for the noise figure of χ(3) phase-insensitive paramet-

ric amplifiers10 and wavelength converters (WCs).11 This theory shows excellent agreement

with experiment.9 In addition, we have recently experimentally investigated the noise figure

spectrum for PIA and WC operation of a FOPA, and shown good agreement to an extended

theory that includes distributed loss.12

Phase-sensitive amplifiers (PSA)13,14 are also of interest because unlike PIAs, they can

ideally provide amplification without degrading the signal-to-noise ratio (SNR) at the in-

put.15 Experiments with fully frequency degenerate fiber phase-sensitive amplifiers have

demonstrated a noise figure of 2.0 dB at a gain of 16 dB,16 a value lower than the stan-

dard phase-insensitive high-gain 3-dB quantum limit. A noise figure below the standard

PIA limit has also been reached in a low-gain phase-sensitive amplifier.17 However, these

fully frequency degenerate PSA experiments were impaired by guided-acoustic-wave Bril-

louin scattering (GAWBS)18 requiring pulsed operation19 or sophisticated techniques for

partially suppressing GAWBS.17 In order to avoid the GAWBS noise one may obtain phase-

sensitive amplification with an improved experimental noise figure by use of a frequency

nondegenerate PSA. In addition, the nondegenerate PSA, unlike its degenerate counterpart,

can be used with multiple channels of data. A nondegenerate PSA is realized by placing

the signal in two distinct frequency bands symmetrically around the pump frequency with

a separation of several GHz, so that GAWBS noise scattered from the pump is not in the

frequency bands of the signal. Such frequency nondegenerate regime has been demonstrated

experimentally.20 So an analysis of this case is practically useful. Accordingly, we here de-

scribe in suitable detail a quantum theory of FOPAs that takes into account the non-zero

response time of the χ(3) nonlinearity along with the effect of distributed linear loss. We

present analytical expressions for the quantum-limited noise figure of CW χ(3) PSAs in the

frequency nondegenerate case. We also report the limiting value of the NF when degeneracy

is approached.

A frequency nondegenerate parametric amplifier can also operate as a phase-sensitive

deamplifier (PSD) of two-frequency input signals. When a PSD is operated with no input

signal, such a parametric amplifier is said to produce “quadrature-squeezed vacuum” (para-

metric fluorescence of the PSD) whose two-frequency homodyne detection exhibits pho-

tocurrent variance less than that of the vacuum for suitable choice of homodyne phases.21

Quadrature squeezing has been proposed for applications in quantum communications22,23,24

and improved measurement sensitivity.25 In the case of FOPAs, previous work by Shapiro and
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Boivin26 used the dispersionless theory of self-phase modulation (SPM) developed by Boivin

and Kartner 27,28 that included the non-instantaneous response of the χ(3) nonlinearity to

obtain a limit on quadrature squeezing in the fully four-degenerate-wave case. In this paper,

we present results for frequency nondegenerate CW quadrature squeezing for a noninstanta-

neous nonlinearity in the presence of dispersion. We show that optimal squeezing occurs for

slightly different input conditions than those for optimal classical deamplification. In addi-

tion, we show that, unlike the dispersionless case, the degree of squeezing reaches a constant

value in the long-interaction-length limit when the linear phase-mismatch is nonzero and a

non-instantaneous nonlinear response is present. Our nondegenerate squeezing theory agrees

with the previous degenerate squeezing results of Boivin and Shapiro26 when degeneracy is

approached.

This paper is organized as follows: In Section 2, we discuss the non-instantaneous χ(3)

nonlinear response. In Section 3 we discuss the solution of the equations describing evolution

of the mean values of the pump, Stokes, and anti-Stokes fields. In Section 4, we present a

quantum mechanically consistent theory of the FOPAs. In Sections 5 and 6, we apply this

theory to obtain the noise figure of phase-sensitive amplification and to obtain the degree

of nondegenerate quadrature squeezing, respectively. We reemphasize the main results and

conclude in Section 7.

2. χ(3) nonlinear response

We have discussed the χ(3) nonlinear response at length;11 only a summary is presented here.

The nonlinear refractive index of the Kerr interaction can be written as

n2 =
3χ(3)

4ε0n2
0c

, (1)

where n0 is the linear refractive index of the nonlinear material, ε0 is the permittivity of free

space, and c is the speed of light in free space. For clarity, we state that

χ(3) ≡ χ
(3)
1111

[
m2

V2

]
. (2)

The χ(3)(t) nonlinear response is composed of a time-domain delta-function-like electronic

response (� 1 fs) that is constant in the frequency domain over the bandwidths of interest

and a time-delayed Raman response (≈ 50 fs) that varies over frequencies of interest and

is caused by back action of nonlinear nuclear vibrations on electronic vibrations. Recent

experimental and theoretical results demonstrate that the nonlinear response function χ(3)(t)

can be treated as if it were real in the time domain,29,30 yielding a real part that is symmetric

in the frequency domain with respect to pump detuning and an imaginary part in the

frequency domain that is anti-symmetric.
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Fig. 1. Raman contribution Im{γRaman‖(Ω)} (solid curve) and Re{γRaman‖(Ω)}
(dotted curve) normalized to the peak of Im{γRaman‖}. Calculated from

Dougherty et al.31

Although a nonlinear response is also present in the polarization orthogonal to that of the

pump, this cross-polarized nonlinear interaction is ignored because we assume that the pump,

Stokes, and anti-Stokes fields of interest stay copolarized as their polarization states evolve

during propagation through the FOPA. Parametric fluorescence and Raman spontaneous

emission are present in small amounts in the polarization perpendicular to the pump, but

do not affect the NF of the amplifier.

We can write N2(Ω) in the frequency domain as a sum of electronic and molecular contri-

butions:

N2(Ω) = n2e + n2rF (Ω). (3)

We next explain the relation between the published spectra of the Raman-gain coefficient and

the nonlinear coefficients used in this paper. Typical measurements of the counterpropagating

pump-and-signal Raman-gain spectrum yield the polarization averaged power-gain coefficient

gr(−Ω) = [g‖(−Ω)+g⊥(−Ω)]/2. At the Raman-gain peak, g⊥ � 0, as can be seen from Fig. 1

of Dougherty et al.31 We define a nonlinearity coefficient

γΩ =
2πN2(Ω)

λAeff

, (4)

where λ is the pump wavelength and Aeff is the fiber effective area. Thus our γ0 is equivalent to

the nonlinear coupling coefficient γ used in Agrawal.32 It is the scaling of Aeff with wavelength

that mainly causes γΩ to be no longer anti-symmetric with γ−Ω at detunings greater than

several THz. In what follows, our analytical treatment of the mean fields allows for the more

general case of asymmetry in the Raman-gain spectrum. However, other results including

graphs assume an anti-symmetric Raman spectrum as this has a minor effect on the quantum

noise at large detunings.
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The above approximation is valid for our comparison to a typical experimental setup,

wherein the pump-signal detuning is less than 1.5 THz. For co-propagating, co-polarized,

optical waves Im{γ−Ω} = g‖(−Ω)/2. We estimate the spectrum of g‖, normalized to its

maximum value, from Dougherty et al.31 for both dispersion-shifted fiber (DSF) and standard

single-mode fiber (SMF). From this normalized Raman-gain spectrum we obtain via the

Kramers-Kronig transform the normalized real part of the spectrum of the Raman response,

Re{γRaman‖(Ω)}. In Fig. 1 the real (dotted curve) and imaginary parts (solid curve) of this

spectrum are shown. We take the magnitude of the Raman-gain spectrum from Koch et

al.33 for both DSF and SMF. For N2(0), we use measurements from Boskovic et al.34 The

nonlinear coefficients are then calculated as follows:

Im{γΩ} =
sgn(Ω)g‖ normalized(Ω)g‖ peak

2
(5)

Re{γΩ} = γ0 − Re{γ‖Raman(0)}g‖peak

2
+

Re{γ‖Raman(Ω)}g‖peak

2
, (6)

where Re{γ‖Raman(Ω)} is the Kramers-Kronig transform of g‖normalized(Ω).

3. Classical phase-sensitive amplification and deamplification

In this section we present solutions to the mean field equations (we denote mean fields with

overbars) governing a parametric amplifier. The optical fields are assumed to propagate in

a dispersive, polarization-preserving, single-transverse-mode fiber under the slowly-varying-

envelope approximation. As the involved waves are quite similar in frequency, to good ap-

proximation all fields can be treated as if their transverse mode profiles are idententical. Even

though the fibers used to construct FOPAs typically support two polarization modes and

the polarization state of the waves is usually elliptical at a given point z in the FOPA, for

typical fibers it is still appropriate to describe the system with a scalar theory if the detuning

is relatively small.12 This is because the input waves are copolarized at the beginning of the

amplifier and the fields of interest remain essentially copolarized during propagation down

the fiber.

Consider the field

Ā(t) = Āp + Ās exp(iΩt) + Āa exp(−iΩt) (7)

for the total field propagating through a FOPA having a frequency and polarization degener-

ate pump. The lower frequency field we refer to as the Stokes field, Ās; the higher frequency

field referred to as the anti-Stokes field, Āa. The classical equation of motion for the total

field35 with the addition of arbitrary frequency dependent loss is:

∂Ā(t)

∂z
= i

[∫
dτ γ(t − τ)Ā∗(τ)Ā(τ)

]
Ā(t) −

∫ α(Ω)

2
Ã(Ω) exp(−iΩt) dΩ, (8)
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where α(Ω) is the power attenuation coefficient at detuning Ω from the pump and Ã(Ω) is the

Fourier transform of the field. Because the involved waves (Stokes, anti-Stokes, and pump) are

CW, the usual group-velocity dispersion term does not explicitly appear in Eq. (8). However,

dispersion is included; its effect is simply to modify the wavevector of each CW component.

Taking the Fourier transform of Eq. (8) and separating into frequency-shifted components

that are capable of phase-matching, we obtain the following differential equations for the

mean fields:35

dĀp

dz
= i γ0 |Āp|2Āp − αp

2
Āp, (9)

dĀa

dz
= i (γ0 + γΩ) |Āp|2Āa + iγΩĀ2

pĀ
∗
s exp (−i∆kz) − αa

2
Āa, (10)

dĀs

dz
= i (γ0 + γ−Ω) |Āp|2Ās + iγ−ΩĀ2

pĀ
∗
a exp (−i∆kz) − αs

2
Ās. (11)

Here ∆k = ka + ks − 2kp is the phase mismatch. Expanding the wavevectors in a Taylor

series around the pump frequency to second order, one obtains ∆k = β2Ω
2 to second order,

where β2 is the group-velocity dispersion coefficient. The attenuation coefficients are αj for

j = p, a, s at the pump, anti-Stokes, and Stokes wavelenths, respectively. The nonlinear

coupling coefficients γ0, γΩ, and γ−Ω are as defined in the previous section. Eqs. (9–11) are

valid when the pump remains essentially undepleted by the Stokes and anti-Stokes waves

and is much stronger than the Stokes and anti-Stokes waves. The solution to Eqs. (9) and

(11) can be expressed as

Āa(z, L) = µa(z, L)Āa(z) + νa(z, L)Ā∗
s(z), (12)

Ās(z, L) = µs(z, L)Ās(z) + νs(z, L)Ā∗
a(z), (13)

where we have explicitly written the solution as a function of both a starting point z for the

parametric process and an end point L for the fiber. We do this because we will be interested

not only in the input-output relationships of the electromagnetic fields, i.e. Aa(0, L), but also

evolution of noise generated at a point z that propagates to the end of the fiber, L. In the

following subsections, we provide expressions for µj(z, L) and νj(z, L) for the three main

cases of interest.

3.A. Distributed loss solution

In the most general case, when there are no restrictions on ∆k and distributed linear loss

is present, Eqs. (9–11) can be shown to have a series solution. We here briefly outline the

derivation of this solution. Solving for the mean field of the pump, Eq. (9), we obtain

Āp(z) = exp[iγ0Ip(0)zeff − αz

2
], (14)
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where the effective length zeff is defined to be zeff = [1 − exp(−αpz)]/αp. Further defining

the initial pump power in Watts to be Ip(0) = |Āp(0)|2, and setting the reference phase to

be that of the pump at the input of the fiber, we substitute the resulting expressions into

Eqs. (10) and (11). Writing

Āa = B̄a exp[i(γ0 + γΩ)Ip(0)zeff − αaz/2], (15)

Ās = B̄s exp[i(γ0 + γ−Ω)Ip(0)zeff − αsz/2], (16)

and making a change of variable from z to zeff , one obtains

dB̄a

dzeff

= iγΩIp(0) exp[−f(zeff)]B̄∗
s , (17)

dB̄∗
s

dzeff

= −iγ∗
−ΩIp(0) exp[f(zeff)]B̄a, (18)

where

f(zeff) = i[γΩ + γ∗
−Ω]Ip(0)zeff − (αs − αa + 2i∆k) ln(1 − αpzeff)

2αp

. (19)

After some algebra and making use of the substitutions

F̄a = B̄a exp[f(zeff)], (20)

F̄ ∗
s = B̄∗

s exp[−f(zeff)], (21)

we can obtain the nonlinear coupled equations

dF̄a

dzeff

− [Γ +
Λ

1 − αpzeff

]F̄a = ξ1F̄
∗
s , (22)

dF̄ ∗
s

dzeff

+ [Γ +
Λ

1 − αpzeff

]F̄ ∗
s = ξ2F̄a, (23)

where the following constants are used for calculating evolution from point z to L: Γ =

i[γΩ + γ∗
−Ω]Ip(z)/2, Λ = [αs/2 − αa/2 + i∆k]/2, ξ1 = iγΩIp(z), and ξ2 = −iγ∗

−ΩIp(z). Using

the expansion

1

1 − αpzeff

=
∞∑

n=0

αn
pzn

eff , (24)

on the nonlinear term in Eqs. (22) and (23), we find a series solution for F̄j and then obtain

Āj.

The series solution converges in relatively few terms when αpzeff is small, which is the case

for practical amplifiers. The following solutions are then obtained:

µa(z, L) = exp[p(z, L)]
∞∑

n=0

anL
n
eff (a0 = 1, s∗0 = 0), (25)
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Fig. 2. Gain spectrum vs. detuning for PSA made from DSF for (a) optimum

lossless PSA of fiber length L = Leff = 3.63 km, and Im{γΩ} = 0 (solid curve),

(b) optimum lossless PSA of fiber length L = Leff = 3.63 km, and Im{γΩ}
calculated for DSF as explaine in the text (circles), (c) optimum PSA of fiber

length L = 4.44 km, and thus Leff = 3.63 km with αa = αs = αp = 0.41 db/km

and Im{γΩ} calculated for DSF as explained in the text (dotted curve), (d)

optimum lossless PSD of fiber length L = Leff = 3.63 km, and Im{γΩ} = 0

(dashed curve), (e) optimum lossless PSD of fiber length L = Leff = 3.63

km, and Im{γΩ} calculated for DSF as explaine in the text (squares), (f)

optimum PSD of fiber length L = 4.44 km, and thus Leff = 3.63 km with

αa = αs = αp = 0.41 db/km and Im{γΩ} calculated for DSF as explained in

the text (dash-dotted curve). Input pump power is 0.33 Watts, λ0 = 1551.16

nm, pump wavelength is 1551.5 nm, and the dispersion slope is 57 ps/(nm2

km).

µs(z, L) = exp[p(z, L)]
∞∑

n=0

snL
n
eff (a0 = 0, s∗0 = 1), (26)

νa(z, L) = exp[p(z, L)]
∞∑

n=0

anL
n
eff (a0 = 0, s∗0 = 1), (27)

νs(z, L) = exp[p(z, L)]
∞∑

n=0

snL
n
eff (a0 = 1, s∗0 = 0), (28)

where

p(z, L) = i[γ0 + (γΩ − γ∗
−Ω)/2]Ip(z)Leff (29)

−i∆k(L − z)/2 − αa(L − z)/4 − αs(L − z)/4 (30)

and Leff = {1− exp[−αp(L− z)]}/αp. The coefficients an and s∗n are then calculated through
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Fig. 3. Gain vs. fiber length for PSA made from DSF for (a) phase-sensitive

deamplification with optimum power splitting in lossless fiber (αa = αs =

αp = 0) (thick solid line), (b) phase-sensitive deamplification with optimum

power splitting in a lossy fiber (αa = αs = αp = 0.25 dB/km) (dotted line),

(c) phase-sensitive deamplification in a lossless fiber with |ζa|2 = |ζs|2 (dash-

dotted line), (d) phase-sensitive deamplification in a lossy fiber with |ζa|2 =

|ζs|2 (dashed line), (e) phase-sensitive amplification in a lossless fiber with

|ζa|2 = |ζs|2 (squares) and optimum input power splitting (solid curve under

the squares), and (f) phase-sensitive amplification in a lossy fiber with |ζa|2 =

|ζs|2 (circles) and optimum input power splitting (solid curve under the circles).

Input pump power is 4 Watts, pump-signal detuning is 1 THz, and phase-

matching is achieved at the input (∆k = −2Re{γΩ}Ip(0)).

the following recursion relations:

an =
Γan−1 + ξ1s

∗
n−1 + Λ

∑n−1
j=0 αj

pan−1−j

n
, (31)

s∗n =
−Γs∗n−1 + ξ2an−1 − Λ

∑n−1
j=0 αj

ps
∗
n−1−j

n
. (32)

3.B. Lossless, ∆k �= 0 solution

The solution for lossless fiber and ∆k �= 0 is well known, as are the µ and ν functions which

can be expressed as35

µa(z, L) = exp

−i
(
∆k − [2γ0 + γΩ − γ∗

−Ω]Ip

)
(L − z)

2


×

(
iκ

2g
sinh[g(L − z)] + cosh[g(L − z)]

)
, (33)
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µs(z, L) = exp

(
−i (∆k − [2γ0 + γ−Ω − γ∗

Ω]Ip) (L − z)

2

)
(

iκ∗

2g∗ sinh[g∗(L − z)] + cosh[g∗(L − z)]

)
, (34)

νa(z, L) = exp

−i
(
∆k − [2γ0 + γΩ − γ∗

−Ω]Ip

)
(L − z)

2

 iγΩIp

g
sinh[g(L − z)], (35)

νs(z, L) = exp

(
−i (∆k − [2γ0 + γ−Ω − γ∗

Ω]Ip) (L − z)

2

)
iγ−ΩIp(z)

g∗ sinh[g∗(L − z)].(36)

Here Ip(z) = Ip = |Āp(0)|2 is the pump power in Watts, κ = ∆k + (γΩ + γ∗
−Ω)Ip, and

g =
√
−(κ/2)2 + γΩγ∗

−ΩI2
p is the complex gain coefficient.

3.C. Lossless, ∆k = 0 solution

We also state the results for the lossless, ∆k = 0 case, which is useful in our analysis near

degeneracy. We have ∆k = 0 when the FOPA is pumped at the zero dispersion wavelength

or if the system is treated as if dispersionless. When the three frequencies are very nearly

degenerate, we can also make the approximation that ∆k = 0. Then the µ and ν functions

become

µa(z, L) = exp
[
i
(

2γ0 + γΩ − γ∗
−Ω

2

)
Ip(L − z)

]
[1 + iγΩIp(L − z)], (37)

µs(z, L) = exp
[
i
(

2γ0 + γ−Ω − γ∗
Ω

2

)
Ip(L − z)

]
[1 + iγ−ΩIp(L − z)], (38)

νa(z, L) = exp
[
i
(

2γ0 + γΩ − γ∗
−Ω

2

)
Ip(L − z)

]
iγΩIp(L − z), (39)

νs(z, L) = exp
[
i
(

2γ0 + γ−Ω − γ∗
Ω

2

)
Ip(L − z)

]
iγ−ΩIp(L − z). (40)

Under the normal assumption of an anti-symmetric Raman gain profile (γΩ = γ∗
−Ω), we see

the power gain, G = |µa(0, L)|2 = 1 + 2Im{γΩ}IpL + |γΩ|2I2
pL2, has a four wave mixing gain

that is quadratic as a function of fiber length and that the Raman loss at the anti-Stokes

wavelength is linear in pump power and length (2Im{γΩ}IpL). Similarly, the Raman gain at

the Stokes wavelength is linear in power and length (2Im{γ−Ω}IpL).

3.D. Optimal classical phase-sensitive amplification and deamplification

We next find the optimal phase-sensitive amplification and phase-sensitive deamplification of

a mean field consisting of a superposition of Stokes and anti-Stokes fields. We define optimal

phase-sensitive amplification (deamplification) as the greatest (least) output signal power

10



possible for a fixed amount of input signal power. Assuming coherent signal inputs ζj having

powers |ζj|2 and phases exp(iθj) for j = a, s, the phase-sensitive gain of the PSA is

G =
|Āa(L)|2 + |Ās(L)|2
|Āa(0)|2 + |Ās(0)

|2

=
|µaζa + νaζ

∗
s |2 + |µsζs + νsζ

∗
a |2

|ζa|2 + |ζs|2

=
(|µa|2 + |νs|2)|ζa|2 + (|νa|2 + |µs|2)|ζs|2 +

{
[(µsν

∗
s + µaν

∗
a)|ζa||ζs| ei(θa+θs)] + c.c.

}
|ζa|2 + |ζs|2 .

(41)

By properly choosing the relative power of the Stokes and anti-Stokes inputs and their sum

phase θ = θa + θs relative to the input pump phase, one achieves maximimum (minimimum)

phase-sensitive amplification (deamplification). The optimum sum phases θpsa, opt and θpsd, opt

are

θpsa, opt = − arg[µsν
∗
s + µaν

∗
a ], (42)

θpsd, opt = π − arg[µsν
∗
s + µaν

∗
a ], (43)

for amplification and deamplification, respectively. By setting the sum input power |ζa|2 +

|ζs|2 = C to be some constant C, the extrema of Eq. (41) can be found to occur when the

proportion of input anti-Stokes power to the total input power is

|ζa|2
|ζa|2 + |ζs|2 =

1

2

1 ± |µs|2 − |µa|2√
4|µaν∗

a + µsν∗
s |2 + [|µs|2 − |µa|2]2

 (44)

where the negative root corresponds to optimum phase-sensitive amplification, the positive

root to optimum phase-sensitive deamplification. The maximum PSA gain, GPSA is found

by insertion of Eqs. (42) and (44) into Eq. (41). The result simplifies to:

GPSA =
(|µa|2 + |µs|2 + |νa|2 + |νs|2)

2
+

√
4|µaν∗

a + µsν∗
s |2 + (|µs|2 − |µa|2)2

2

+
(|µs|2 − |µa|2)(|νa|2 − |νs|2)√

4|µaν∗
a + µsν∗

s |2 + (|µs|2 − |µa|2)2
. (45)

In Fig. 2 all of the plots are optimal in the sense that the best total phase and relative

power of the input fields is chosen. It is clear that the Raman effect is negligible as those

curves including the Raman effect (circles and squares) are very similar to those neglecting it

(solid curve and dashed curve). This plot shows also that the definition of the effective length

is a mathematical one and not a good guide for estimating the gain profile. The dotted and

dash-dot curves show the gain spectrum of a lossy fiber (0.41 db/km) 4.44 km in length.
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The other curves are for a lossless fiber of the effective length Leff = 3.63 km in length. Thus

distributed loss has a greater effect than might be supposed: fibers experience noticeably less

gain than lossless fibers do when the lossless fiber has a length equal to the effective length

of a lossy fiber fiber.

Some of the characteristics of the classical phase-sensitive response can be seen in Fig. 3,

which is a plot of the phase-sensitive gain vs. fiber length. The primary feature of phase-

sensitive amplification is that the mean field gain is relatively insensitive to the relative

strength of the two input fields (this can be seen by the overlap of the thin solid lines with

the squares and circles. In addition, typical distributed losses do not significantly impact

the gain of the fiber, as can be seen by comparison of the squares (lossless fiber) with the

circles, which represent fiber with loss of 0.25 db/km. On the other hand, the achievable

degree of phase-sensitive deamplification is much more sensitive to the relative proportion of

the input fields which can be seen by comparison of the dash-dotted and dashed lines (equal

power splitting, i.e. |ζa|2 = |ζs|2) with the dotted and thick solid lines (optimum relative

proportion). In addition, distributed losses also set a limit on classical deamplification as

can be seen by comparison of the dashed line (lossy) with the dash-dotted lines (lossless)

and comparison of the dotted line (lossy) with the thick solid line (lossless).

4. Input-output quantum mode transformations

In this section, we discuss the quantum mechanics of the χ(3) parametric amplifier and derive

input-output mode transformations in the Heisenberg picture which can be used to calculate

the noise figure of the phase-sensitive operation of a FOPA and the accompanying quadrature

squeezing. Here we also extend our previously described quantum theory10,11 to include the

effects of loss.

Consider the field operator

Â(t) = Âp + Âs exp(iΩt) + Âa exp(−iΩt) (46)

for the total field propagating through a FOPA having a frequency and polarization degener-

ate pump. The quantum equation of motion for the total field is like that in Boivin,27 which

is derived in detail in Kärtner28):

∂Â(t)

∂z
= −

∫ α(Ω)

2

˜̂
A(Ω) exp(iΩt) dΩ + i

[∫
dτ h(t − τ)Â†(τ)Â(τ)

]
Â(t)

+ i m̂(z, t)Â(t) (47)

wherein h(t) is the causal response function of the nonlinearity; i.e., the inverse Fourier

transform of H(Ω) in Eq. (4). In Eq. (47), m̂(z, t) is a Hermitian phase-noise operator

m̂(z, t) =
∫ ∞

0
dΩ

√
W (Ω)

2π
{i d̂†

Ω(z)ei Ωt − i d̂Ω(z)e−iΩt}, (48)
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which describes coupling of the field to a collection of localized, independent, medium oscilla-

tors (optical phonon modes), and αΩv̂Ω(z, t) describes the coupling of the field to a collection

of localized, independent, oscillators in vacuum state. This coupling is required to preserve

the continuous-time commutators

[Â(t), Â†(t′)] = δ(t − t′), (49)

[Â(t), Â(t′)] = 0. (50)

Note that the time t is in a reference frame traveling at group velocity vg, i.e., t =

tstationary frame − z
vg

. The weighting function W (Ω) must be positive for Ω > 0 so that the

molecular vibration oscillators absorb energy from the mean fields rather than providing

energy to the mean fields. The operators d̂Ω(z) and d̂†
Ω(z) obey the commutation relation

[d̂Ω(z), d̂†
Ω′(z′)] = δ(Ω − Ω′)δ(z − z′) (51)

and each phonon mode is in thermal equilibrium:

〈d̂†
Ω(z)d̂Ω′(z′)〉 = δ(Ω − Ω′)δ(z − z′)nth (52)

with a mean phonon number nth = [exp(h̄Ω/kT )−1]−1. Here h̄ is Planck’s constant over 2π,

k is Boltzmann’s constant, and T is the temperature. Looking ahead to a Fourier domain

treatment of the parametric amplifier, note that the creation operator at each Ω, d̂†
Ω(z),

oscillates as eiΩt (a Stokes detuning frequency) and that the annihilation operator at each

Ω, d̂Ω(z), oscillates as e−iΩt (an anti-Stokes detuning frequency).

In what follows, gain and quantum fluctuations occur at a point z in the fiber and it is

necessary to solve for the total field and fluctuations at the output point L.

The pump, Stokes, and anti-Stokes fields are treated as separate frequency modes, implying

that the required commutators are

[Âj(z), Â†
k(z

′)] = δjkδ(z − z′), (53)

[Âj(z), Âk(z
′)] = 0, (54)

for j, k ∈ {p, a, s}.
Linearization of the Fourier transformation of Eq. (47) shows that the quantum fluctu-

ations of the pump contribute negligibly small amounts of fluctuations to the Stokes and

anti-Stokes waves when the pump is strong. These fluctuations are neglected by replacing

the pump field operators with their mean fields. Under the strong pump approximation it is

also acceptable to neglect the fluctuation operators at all frequencies except the Stokes and

anti-Stokes frequencies because the pump mean-field will interact only with these modes of

13



interest to a non-negligible degree, as is also shown by linearization of the quantum fluctua-

tions around the mean fields. As a result, we obtain

dĀp

dz
= i γ0 |Āp|2Āp − αp

2
Āp, (55)

dÂa

dz
= i (γ0 + γΩ) |Āp|2Âa + iγΩĀ2

pÂ
†
s exp (−i∆kz) − αaÂa

+
√

2Im{γΩ}d̂Ω(z)Āp exp[i(kp − ka)z] +
√

αaÂa(z), (56)

dÂs

dz
= i (γ0 + γ−Ω) |Āp|2Âs + iγ−ΩĀ2

pÂ
†
a exp (−i∆kz)

−
√

2Im{γ−Ω}d̂†
Ω(z)Āp exp[i(kp − ks)z] +

√
αsÂs(z), (57)

Under the undepleted pump approximation, wherein the pump is treated essentially classi-

cally, it is also permissible to relax the commutation relations so that only the commutators

at Stokes and anti-Stokes frequencies are required to be preserved. Even when the pump is

treated quantum mechanically, changes to the commutatators of the pump field are of second

order in this linearized first-order theory. Therefore the commutators that are required to be

obeyed are:

[Âj(z), Â†
k(z

′)] = δjkδ(z − z′), (58)

[Âj(z), Âk(z
′)] = 0, (59)

for j, k = a, s only.

The solution of Eqs. (56) and (57) is

Âa(L) = µa(0, L)Âa(0) + νa(0, L)Â†
s(0) +√

2Im{γΩ}
∫ L

0
dz Āp(z) exp[i(kp − ka)z] [µa(z, L) − νa(z, L)] d̂Ω(z),

+
∫ L

0
dz [

√
αaµa(z, L)v̂a(z) +

√
αsνa(z, L)v̂†

s(z)] (60)

Âs(L) = µs(0, L)Âs(0) + νs(0, L)Â†
a(0) +√

2Im{γΩ}
∫ L

0
dz Āp(z) exp[i(kp − ks)z] [−µs(z, L) + νs(z, L)] d̂†

Ω(z).

+
∫ L

0
dz [

√
αsµs(z, L)v̂s(z) +

√
αaνs(z, L)v̂†

a(z)] (61)

In the notation used in this paper, the functions µj(z, L) and νj(L, z) denote evolution

from a point z in the fiber to the end of the fiber (L) where the intensity and phase of the

pump at point z must be used.

In this section, we have presented a thorough derivation of the input-output mode trans-

formations that govern a lossless χ(3) parametric amplifier. In the following two sections, we

use these input-output mode transformations to obtain the noise figure of χ(3) phase-sensitive

parametric amplifiers and the squeezing parameter for quadrature squeezing.
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5. Noise Figure of phase-sensitive amplification

In this section we discuss the noise figure of phase-sensitive amplification, which is defined

as

NF =
SNRin

SNRout

. (62)

We assume for our treatment here that the difference between the Stokes and anti-Stokes

frequencies exceeds the bandwidth of the detector. Thus beat frequencies of these two waves

will not be detected and can be neglected. The input power at the Stokes and anti-Stokes

wavelength is 〈Â†
j(0)Âj(0)〉 = |ζj|2, which has units of Watts, and is assumed to be in a

coherent state having mean photon number 〈n̂j〉 = 〈Â†
j(0)Âj(0)〉/(h̄ωj) = |ζj|2/(h̄ωj). In

what follows, we neglect the small frequency difference between ωa and ωs. Thus the input

SNR can be written as

SNRin =
(〈n̂a〉 + 〈n̂s〉)2

〈∆n̂a〉 + 〈∆n̂s〉 =
(|ζa|2 + |ζs|2)2

|ζa|2 + |ζs|2 = |ζa|2 + |ζs|2. (63)

Calculating the output SNR in a similar way and plugging into Eq. (62), the NF for phase-

sensitive amplification can be expressed as

NF =
(|ζa|2 + |ζs|2)(〈∆n̂2

PI〉 + 〈∆n̂2
PS〉)

(Pa + Ps)2
, (64)

where the mean output power at each wavelength, Pa and Ps, is

Pa = |µa|2|ζa|2 + |νa|2|ζs|2 + (ζaζsµaν
∗
a + c.c.), (65)

Ps = |µs|2|ζs|2 + |νs|2|ζa|2 + (ζaζsµsν
∗
s + c.c.). (66)

In Eq. (64), we have expressed the variance of the output photocurrent as the sum of a phase-

insensitive portion, 〈∆n̂2
PI〉, and a phase-sensitive portion, 〈∆n̂2

PS〉, which are calculated to

be

〈∆n̂2
PI〉 = PaBa + PsBs, (67)

〈∆n̂2
PS〉 = 2Q∗B1 + 2QB2, (68)

where the quantities

Bj = |µj|2 + |νj|2 + (2nth + 1)|rj|2 + |cj1|2 + |cj2|2, (j = a, s) (69)

Q = (µaζa + νaζ
∗
s )(µsζs + νsζ

∗
a) (70)

B1 = cx1 + rx(nth + 1) + µaνs, (71)

B2 = c∗x2 + r∗xnth + µ∗
sν

∗
a , (72)
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which have noise terms defined as follows:

|ra|2 = 2Im{γΩ}
∫ L

0
dz |Āp(z)|2|µa(z, L) − νa(z, L)|2, (73)

|rs|2 = −2Im{γ−Ω}
∫ L

0
dz |Āp(z)|2|µs(z, L) − νs(z, L)|2, (74)

|ca(s)1|2 =
∫ L

0
dz αa(s)|µa(s)(z, L)|2, (75)

|ca(s)2|2 =
∫ L

0
dz αs(a)|νa(s)(z, L)|2, (76)

rx = 2Im{γΩ}
∫ L

0
dz Ā2

p(z) exp(−i∆kz)

×[µa(z, L) − νa(z, L)][−µs(z, L) + νs(z, L)], (77)

cx1 = αa

∫ L

0
dz µa(z, L)νs(z, L), (78)

c∗x2 = αs

∫ L

0
dz νa(z, L)∗µs(z, L)∗. (79)

In the above expressions, |ra(s)|2 represents the integrated amplified noise at the anti-

Stokes (Stokes) wavelength seeded by thermally populated optical phonon modes that are

coupled in by the Raman process. The terms |ca(s)1|2 represent integrated amplified noise at

the anti-Stokes (Stokes) wavelength seeded by vacuum noise mixed in through distributed

loss at the anti-Stokes (Stokes) wavelength, while the terms |ca(s)2|2 represent amplified noise

at the anti-Stokes (Stokes) wavelength seeded by vacuum noise mixed in through distributed

loss at the Stokes (anti-Stokes) wavelength.

In addition, the phase-sensitive terms µaνs and µ∗
sν

∗
a represent amplified phase-sensitive

noise seeded by the vacuum noise at the anti-Stokes and Stokes wavelengths. The quantity rx

represents amplified phase-sensitive noise seeded by the thermal-phonon fields due the Raman

effect, and cx1 and cx2 represent the amplified phase-sensitive noise seeded by the vacuum

noise due to distributed linear losses. Phase-sensitive noise is present when the photocurrent

variance with both Stokes and anti-Stokes waves impinging on a detector is different from

the sum of the individual noise variances of the Stokes and anti-Stokes frequency.

5.A. Degenerate Limit

By taking the limiting value of the NF as Ω → 0, we find the NF performance of a fully degen-

erate FOPA. We find this limiting value of the NF by expanding the anti-symmetric imagi-

nary part of γΩ in a Taylor seris and expanding the exponential in nth = {exp[h̄Ω/(kT )]−1}−1

before allowing Ω → 0. We also use the fact that in this limit, ∆k also approaches 0 and the

optimum power splitting ratio approaches 0.5. This NF limit is:

NFPSA, Ω→0 = 1 +

4kTγ
′
i(0)

h̄γ0

[
1 − φNL√

1+φ2
NL

]
1 + 2φ2

NL + 2φNL

√
1 + φ2

NL

, (80)
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where φNL = γ0Ip(0)L is the nonlinear phase shift and γ
′
i(0) is the slope of the imaginary part

of γΩ as Ω → 0. We observe that the PSA noise figure increases to a maximum of slightly

more than 0 dB then decreases again and approaches 0 dB in the high gain limit. This unusual

decreasing noise figure vs. nonlinear phase shift is due to the relative scaling of the Raman

and FWM processes when ∆k = 0 and the mean Raman gain of the Stokes and anti-Stokes

wavelengths vanishes. Then Raman noise scales linearly, and in addition the Raman noise

entering at the Stokes and anti-Stokes frequencies does not undergo further amplification.

The signal, however, undergoes quadratic gain so that the Raman noise contribution to the

NF becomes negligible.
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Fig. 4. PSA noise figure vs. Gain for various detunings. For thick lines, attenua-

tion is 0.75 dB/km at pump, Stokes, and anti-Stokes wavelengths; for thin lines,

fiber is lossless. Ω/2π = 13.8 THz, dashed curves; Ω/2π = 1.38 THz, dash-

dotted curves; Ω/2π = 40 GHz, solid curves; and Ω/2π = 0 Hz, dotted curves.

Except for dotted curves, phase matching at the input ( ∆k = −2Re{γΩ}Ip(0)

) is achieved. For dotted, ∆k = 0. The relative phase and power splitting at the

input is for optimal classical gain. Initial pump power is 340 mW, γ(0) = 9E−3

W−1m−1, peak imaginary part of γ(Ω) is 3.5E−3 W−1m−1. Fiber length is 1

km.

In Fig. 4, we plot the noise figure vs. PSA gain for several values of detuning for a typ-

ical highly-nonlinear fiber with a loss coefficient of 0.75 dB/km. The results show that for

detunings achievable by use of electrooptic elements ( 40 GHz detuning, dash-dotted curve),

results are almost exactly the same as would be achieved in the limit of zero detuning (curve

marked with x). For this simulation, we use realistic values for γ(0) and for the distributed

loss. We have additionally assumed that the highly nonlinear fiber has the same ratio of

Im{γ(Ω)} to Re{γ(Ω)} as dispersion shifted fiber, i.e., the two have the same germanium

content.
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Fig. 5. PSA gain and noise figure spectrum vs. detuning. Relative phase and

input power splitting is for optimal classical gain. Initial pump power is 300

mW, γ(0) = 2E−3 W−1m−1, peak imaginary part of γ(Ω) is 0.75E−3 W−1m−1.

Attenuation is 0.41 dB at pumps, Stokes, and anti-Stokes wavelengths. Fiber

length is 4 km. λ0 = 1551.15 nm, λp = 1555.5 nm, and dispersion slope is 57

ps/nm/km2

Interestingly, unlike the PIA case, Fig. 4 shows that the PSA noise figure is greater than

0 dB as the gain approaches 0 dB. This occurs because the Raman gain and loss process

dominates in the early parts of the amplifier (Raman gain and loss are linear in the early parts

of the amplifier while four-wave-mixing gain is quadratic), adding noise to both frequencies,

while the mean field undergoes no net gain due to Raman loss at one frequency and Raman

gain at the other.

In Fig. 5, we show the gain and noise-figure spectrum for a 4 km fiber with fiber parameters

as described in the caption. This plot shows that the increasing Raman gain coefficient with

detuning causes an increased noise figure. These results show that for realistic optical fibers,

a FOPA operated as a PSA can achieve a noise figure below 1 dB for detunings up to a THz.

6. Nondegenerate quadrature squeezing

When no light is injected into the FOPA, the quantum correlations between the Stokes and

anti-Stokes modes imply the presence of quadrature squeezing measurable by homodyne

detection with a two-frequency local oscillator (LO).

The difference current of the homodyne detector may be written as

Î = b̂†aq̂a + b̂†sq̂s + H.c., (81)

where H.c. stands for the Hermitian conjugate of the first two terms, q̂a and q̂s are the

annihilation operators corresponding to the anti-Stokes and Stokes components of the LO
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beams, which are in a coherent state with powers |αLO,j|2 and relative intensities

yj =
|αLO,j|2

|αLO,a|2 + |αLO,s|2 (82)

for j = a, s.

The squeezing parameter is defined as the ratio of the photocurrent variance with the

pump on to the photocurrent variance with vacuum input entering the homodyne detector

(i.e., pump off).

6.A. Lossless fiber with Raman effect

In this subsection, we concentrate on the case of a lossless FOPA. This is because increased

nonlinear drive will, theoretically at least, overpower linear loss, leading to no hard limit on

the achievable squeezing. However, as the Raman effect at each z scales with pump intensity

as does the four-wave-mixing process, the lossless case illustrates a fundamental limit on the

achievable squeezing. Using Eqs. (81) and (82), we obtain after some simple algebra for the

lossless Raman-active case:

S(θ,R) =
〈∆Î2〉

〈∆Î2〉vac

= [1 + 2(|νa|2 + |ra|2nth)]ya + {1 + 2[|νs|2 + |rs|2(1 + nth)]}ys

+2{[µsνa(1 + nth) − µaνsnth] exp[−i(θa + θs)] + c.c.}√yays. (83)

In order to produce the best squeezing, one must choose the best phase and relative intensity.

Once again, these two choices are independent. In order to choose the LO phases, we note

that the third term in Eq. (83) has a negative sign when

θ = π + arg[µsνa(1 + nth) − µaνsnth]. (84)

Since the total LO power is conserved (ya + ys = 1), we may use this fact to eliminate ys in

Eq. (83), which then becomes quadratic in ya. Maximizing the magnitude of the third term

in Eq. (83) as a function of ya yields the additional condition that for maximal squeezing,

ya =
1

2

1 +
|rs|2(1 + nth) − |ra|2nth√

4|µsνa(1 + nth) − µaνsnth|2 + [|rs|2(nth + 1) − |ra|2nth]2

 . (85)

Thus the power splitting of the LOs for maximal squeezing is slightly different from 50%

and also slightly different from that for maximal classical deamplification.

Use of this optimal two-frequency LO yields the following optimal squeezing result

Sopt = 1 + |νa|2 + |νs|2 + |ra|2nth + |rs|2(nth + 1)

−
√

4|µsνa(1 + nth) − µaνsnth|2 + [|rs|2(1 + nth) − |ra|2nth]2. (86)
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In order to make a connection with previous work, we show that in the limit of degenerate

operation we reach the same result as obtained by Shapiro.26 By placing the pump at the zero

dispersion wavelength of the fiber, our solutions are then identical to those in a dispersionless

fiber (assuming the higher-order terms in an expansion of β are negligible). We thus use

the expressions in Eqs. (37) to (40) for µj and νj. In order to evaluate the limit as the

detuning approaches zero, we expand the anti-symmetric imaginary part of γΩ as an odd

power series around Ω = 0 and take the Taylor series expansion of the exponential in nth =

1/[exp(h̄Ω/(KT )) − 1]. Then taking the limit as Ω → 0, the squeezing approaches the limit

derived by Shapiro26 for the fully degenerate case. This limit is

Sopt(0) = 1 + 2φNL

[
φNL +

2kTγ
′
i(0)

h̄γ0

]

−2φNL

1 +

[
φNL +

2kTγ
′
i(0)

h̄γ0

]2


1/2

, (87)

where φNL = γ0Ip(0)L is the nonlinear phase shift and γ
′
i(0) is the slope of the imaginary

part of γΩ as Ω → 0.

In Fig 6, the main features of this squeezing theory are illustrated for a lossless fiber. First,

it is clear that the Raman effect degrades the achievable amount of squeezing. In addition, it

can be seen by comparing dashed lines (phase-matched), dash-dotted lines (partially phase-

matched) and other lines (∆k = 0) that when the Raman effect is included, phase-matching

leads to worse squeezing instead of the improved squeezing predicted by an instantaneous

nonlinearity model. Finally, by comparing the Raman-included dashed and dash-dotted lines,

we see that when ∆k �= 0 precise balancing of the relative power splitting of the two LO

frequencies is required. When this optimum splitting is achieved, the squeezing can be seen to

approach a constant value. However, when ∆k = 0, the possible amount of squeezing is not

bounded, and squeezing asymtotically scales as 1/φNL, which is explained by the quadratic

scaling for the four-wave-mixing process and the linear scaling of the Raman process. The

hard limit in the ∆k �= 0 case is caused by the fact that the four-wave-mixing and Raman

effect both scale exponentially.

7. Conclusion

In conclusion, we have presented a quantum theory of parametric amplification in a χ(3)

nonlinear medium that includes the noninstantaneous response of the nonlinearity and the

effect of distributed linear loss. We have analyzed this theory for nondegenerate phase-

sensitive amplification and deamplification and have found the input conditions for optimal

amplification and deamplification. We have also found the input conditions for operation

with a minimum noise figure, which is predicted to be in the range of 0.4 dB in the high
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Fig. 6. Squeezing vs. nonlinear phase shift in a lossless fiber. Lower lines

without Raman effect. Upper lines with Raman effect. Dashed lines signify

phase-matching is achieved at the input ( ∆k = −2Re{γΩ}Ip(0) ). The thick

dashed line is for optimal LO power splitting, thin dashed lines for equal LO

power splitting. Dash-dotted lines are for ∆k = −2/3Re{γΩ}Ip(0). Thick dash-

dotted line is for optimal LO power splitting, thin dashed lines for equal LO

power splitting. In all other lines, ∆k = 0. Raman effect neglected, dotted line;

Raman effect included and equal LO power splitting, marked with x; Raman

effect included and optimal LO power splitting, circles; CW limit of Eq. (87)

with γ
′
i(0)kT/h̄γ0 = 0.026. Pump-signal detuning is 40 GHz.

gain limit with FOPAs made from typical dispersion-shifted optical fibers. We anticipate

that nondegenerate phase-sensitive amplifiers will produce record noise-figure performance,

as they allow circumvention of GAWBS noise that is present in the degenerate case. We have

also presented a theory of non-degenerate squeezing and found the optimal continuous-wave

local oscillator for a lossless FOPA having a non-instantaneous nonlinear response. We found

agreement with the limit found by Shapiro as degeneracy is reached. Away from degeneracy

and with a nonzero linear phase mismatch, we have shown that optimal squeezing in a

dispersive fiber when ∆k �= 0 will reach a constant limit, unlike the 1/φnl scaling that occurs

when the linear phase mismatch vanishes.
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