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Abstract 

Raman spectroscopy has become an essential technique to characterize and investigate 

graphene and many other two-dimensional materials. However, there still lacks consensus on 

the Raman signature and phonon dispersion of atomically thin boron nitride (BN) which has 

many unique properties distinct from graphene. Such a knowledge gap greatly affects the 

understanding of basic physical and chemical properties of atomically thin BN as well as the 

use of Raman spectroscopy to study these nanomaterials. Here, we use both experiment and 
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theory to reveal the intrinsic Raman signature of monolayer and few-layer BN. We find 

experimentally that atomically thin BN without interaction with substrate has a G band 

frequency similar to that of bulk hexagonal BN, but strain, such as induced by substrate, can 

cause pronounced Raman shift. This is in excellent agreement with our first-principles 

density functional theory (DFT) calculations at two levels of theory, including van der Waals 

dispersion forces (opt-vdW) and a fractional of the exact exchange from Hartree-Fock (HF) 

theory through hybrid HSE06 functional. Both demonstrate that the intrinsic E2g mode of BN 

does not depend sensibly on the number of layers. Our results also suggest the importance of 

the exact exchange mixing parameter in calculating the vibrational modes in BN, as it 

determines the fraction of HF exchange included in the DFT calculations. 

 

Introduction 

Boron nitride (BN) nanosheets, atomically thin hexagonal boron nitride (hBN), are an 

isoelectronic and structural analog of graphene, with excellent mechanical strength and 

thermal conductivity.[1] BN nanosheets have a number of properties and applications distinct 

from graphene.[2] For instance, BN nanosheets can withstand oxidation beyond 800 °C in 

air,[3] and this superior thermal stability makes them an excellent barrier to protect metals 

against oxidation at high temperatures.[4] Furthermore, BN nanosheets with wide band gaps 

of ~6.0 eV are the thinnest electrically insulating materials,[5] suitable to serve as dielectric 

substrates to improve the mobility of graphene and molybdenum disulfide (MoS2) based 

devices.[6] BN nanosheets can also serve as highly sensitive, reproducible, and reusable 

substrates for sensing.[7] 

 

Raman spectroscopy is an indispensable method to characterize and study graphene and 

many other 2D nanomaterials, and tremendous efforts have been devoted to this field. Take 
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graphene as an example. The thickness of single and few-layer graphene can be 

unambiguously determined by the Raman intensity ratio between its G and 2D bands, and the 

detailed structure of the 2D band.[8] Similarly, MoS2, a typical transition metal 

dichalcogenide, shows clear Raman frequency changes in 𝐸!!
!  and 𝐴!! modes when scaled 

down to atomically thin sheets.[9] In addition, Raman can be used to probe crystallinity,[10] 

edge state,[11] strain,[12] doping,[13] lattice temperature[14] of these 2D nanomaterials. In spite 

of the similar structure to graphene, BN nanosheets do not show a Raman 2D band due to the 

lack of Kohn anomaly, but Raman spectroscopy is still widely used to characterize BN 

nanosheets.[3, 5b, 6b, 7b, 15] Therefore, it is important to study Raman signature and phonon 

dispersion of BN nanosheets of different thicknesses.  

 

However, there still lacks consensus on the Raman signature of atomically thin BN. 

Gorbachev et al. first reported that the Raman G band of atomically thin BN shifted with 

thickness: compared to bulk hBN crystals, monolayer (1L) BN on silicon oxide covered 

silicon wafer (SiO2/Si) substrate showed upshifted G band, while downshifts were observed 

from few-layer BN on the same substrate.[15b] Since then, these results have been used as a 

reference to determine the thickness of BN nanosheets in many reports. However, we found[3, 

5b, 7b] that 1L and few-layer BN nanosheets mechanically exfoliated from hBN single crystals 

from the same source on SiO2/Si substrate all showed upshifted G bands, but to different 

extent, compared to bulk hBN. The discrepancy implies a knowledge gap and can greatly 

affect the use of Raman spectroscopy for characterizing BN nanosheets. Till now, there is 

still no systematic study to understand the intrinsic Raman signatures of atomically thin BN. 

 

Here, we used both experiments and theoretical calculations to reveal the phonon dispersion 

and Raman signatures of BN nanosheets of different thicknesses. We found that the intrinsic 
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Raman frequency of BN did not show dramatic change with thickness, but strain induced by 

substrates could greatly affect the G band frequency of monolayer and few-layer BN. This 

study not only provides a fundamental understanding of the vibrational property of atomically 

thin BN but also guides the use of Raman spectroscopy to analyze these 2D nanomaterials. 

 

Results and discussion 

The high-quality atomically thin BN crystals used in this study were mechanically exfoliated 

from hBN single crystals[16] on SiO2/Si substrates with and without pre-fabricated wells (1.3 

µm in diameter and >2 µm deep) by Scotch tape technique. Our previous publications can be 

referred for details on the exfoliation process.[3, 5b, 7b, 7e] Atomically thin BN nanosheets were 

located and identified using an optical microscope (Figure 1a and e) thanks to the interference 

enhancement of the SiO2 layer on Si wafer.[15b] The thickness of the BN nanosheets was then 

measured by atomic force microscopy (AFM). Figure 1b and e show AFM images of 1-2L 

BN nanosheets bound to SiO2/Si substrate and suspended over the wells. According to the 

corresponding height traces, the thicknesses of 1L and 2L BN were about 0.5 and 0.9 nm, 

respectively. These results are consistent with previous reports.[4b, 5b, 7b, 15b]  
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Figure 1. (a) Optical image of 1-3L BN nanosheets bound to SiO2/Si substrate; (b) the 

corresponding AFM image with height trace inserted; (c) Raman frequencies of the G band of 

substrate-bound 1-3L and bulk BN; (d) optical image of 1-2L BN nanosheets partially 

suspended over ~1.3 µm wells; (e) the corresponding AFM image with height trace inserted; 

(f) Raman frequencies of the G band of suspended 1-3L BN and bulk hBN. 

 

 

The G band frequencies of substrate-bound 1-3L BN in comparison to that of bulk hBN 

crystal are shown in Figure 1c. Bulk hBN crystals showed a G band centered at 1366.6±0.2 

cm-1 (based on 6 samples, i.e. N=6), consistent with previous studies.[3] It corresponds to the 

E2g vibration mode in hBN.[17] Obviously upshifted G band were observed on the substrate-

bound atomically thin BN: 1369.5±0.6 cm-1 for 1L (N=8), 1369.0±0.5 cm-1 for 2L (N=6), and 

1367.5±0.2 cm-1 for 3L (N=9). In addition, 1-3L BN showed more variations in their G band 

frequency than that of the bulk crystals.  

 

Three reasons may cause the upshifted G band of atomically thin BN: 1) doping due to 

substrate and/or adsorbates; 2) heating effect from laser beam; 3) strain induced by substrate 

(i.e. roughness). The doping effect can be ruled out because previous studies showed that 

monolayer BN nanosheets were not subject to surface doping.[13f, 18] This is understandable 

by considering their wide band gaps close to 6 eV and therefore electrical insulation. The 

laser heating effect can also be eliminated because we found that the G band frequency of BN 

nanosheets downshifted at higher temperatures: the G band of a 1L BN downshifted to 

1367.66 cm-1 at 75 °C and 1366.44 cm-1 at 100 °C, respectively. In other words, laser heating 

should increase the temperature and soften the E2g phonons, resulting in redshift of the G 
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band.[17b, 19] Thus, laser heating cannot explain the upshifts of substrate-bound atomically thin 

BN. This leaves us with the only factor: strain.  

 

Atomically thin nanosheets which have small bending moduli[20] tend to corrugate or ripple, 

and it has been found that the uneven surface of SiO2 introduces strain to graphene.[21] 

Therefore, it is likely that the different Raman frequency shifts from BN nanosheets of 

different thicknesses are due to their different degrees of corrugation and hence strain on 

SiO2/Si substrate. In other words, suspended atomically thin BN nanosheets which are mostly 

free from substrate disturbance (though probably still not completely strain free) should be 

much better to illustrate their intrinsic Raman signatures. As shown in Figure 2f, the average 

G band frequencies of suspended BN nanosheets were very close: 1367.3±0.3 cm-1 for 1L, 

1367.0±0.1 cm-1 for 2L, and 1367.0±0.2 cm-1 for 3L, respectively. These values were very 

close to the Raman frequency of bulk hBN (i.e. 1366.6±0.2 cm-1). As aforementioned that 

BN nanosheets are not subject to substrate doping, the only difference between the substrate-

bound and suspended BN nanosheets should be strain. Our results imply that 1) the observed 

different G band frequency of 1-3L BN on SiO2/Si should be due to their different flexibility 

and levels of strain caused by the uneven substrate; 2) the intrinsic Raman frequency of 

atomically thin BN of different thicknesses may be close to each other and that of bulk hBN 

crystals.  

 

To better understand the vibrational properties of BN nanosheets, we performed first-

principles density functional calculations including van der Waals (vdW) dispersion forces 

(see Experimental section). We also took into account a fractional component of the exact 

exchange from the Hartree-Fock (HF) theory hybridized with the density functional theory 



7	  

	  

(DFT) exchange-correlation functional at the level of the range-separated HSE06 hybrid 

functional. The exchange-correlation energy in HSE06 is given by:  

 

                     EHSE

XC
=α

ex
E
X

HF,SR
(ω)+ (1−α

ex
)E

X

ωPBE,SR
(ω)+E

X

ωPBE,LR
(ω)+E

C

PBE          (1) 

 

where E
X

HF,SR
(ω)  is the short-range (SR) HF exchange; E

X

ωPBE,SR
(ω) 	  and E

X

ωPBE,LR
(ω) 	  are the 

short and long range (LR) components of the PBE exchange functional, respectively; 

ω = 0.20 Å-1
	   is the screening parameter, which defines the separation of the SR and LR 

exchange energy, and α
ex
	  is the HF mixing factor that controls the amount of exact Fock 

exchange energy in the functional.[22] Note that HSE functional with α
ex
= 0 	  becomes the 

PBE functional.[23] Therefore, any limitation of the exchange and correlation functional in the 

chemical and physical description of the vibrational modes could be improved.  
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Figure 2: (a) Phonon dispersion with their acoustic (ZA, TA, LA) and optical (ZO, TO, LO) 

branches labeled for 1L BN nanosheet calculated within the density functional theory. The 

range-separated hybrid functional HSE06 was used at different values of the mixing factor 

αex. The frequency of phonon branches increases with increased αex, as displayed in different 

colors.  (b) The enlarged region along the optical mode (E2g) highlighted by a small green 

rectangle in (a) to compare HSE06 simulations with the experimental value (red bar). (c) 

Calculated Raman shifts (cm-1) for E2g mode as a function of αex for 1L BN system. The 

different values of αex correspond to different contribution of HF exact exchange to the 

exchange-correlation functional: 0.0 (PBE including vdW corrections, opt-vdW functional), 

0.10, 0.25 (standard HSE06), 0.35, and 0.40. 

(d) Ab initio Raman spectra of free-standing NL (N=1-3), with the vertical dashed line 

representing the calculated E2g frequency of bulk hBN calculated at opt-vdW level. The top 

inset shows a schematic of the Raman-active mode E2g in BN, and the bottom inset shows the 

variation of the Raman shift as a function of thickness at standard HSE06 functional (faint 

brown squares) and opt-vdW (orange squares) in comparison with the experimental values 

(red circles). (d) Phonon Grüneisen dispersion relations calculated for 1L BN layer at 

standard HSE06 (faint brown) and opt-vdW (orange) levels of theory.  

 

Figure 2a shows the ab initio phonon dispersion for 1L BN at different values of α
ex

using the 

HSE06 method. Although different values of α
ex
	  gave rise to similar trends in the dispersion 

of the phonon modes along the Brillouin-zone, including acoustic (ZA, TA, LA) and optical 

(ZO, TO, LO) phonon modes, the phonon frequencies slightly increased with increased α
ex
.	  

The largest difference in frequency from PBE (α
ex
= 0 ) and HSE06 (α

ex
= 0.40 ) methods 

was 47.80-67.41 cm-1 at the ZO phonon branch; smaller differences were observed at specific 

k points, such as the Γ point (Figure 2b). In terms of the optical LO and TO phonons which 
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are responsible for the Raman G band of BN, PBE and standard HSE06 (α
ex
= 0.25 ) gave 

rise to ~1.5% and 0.5% underestimated frequencies than the experimental values from the 

suspended 1L samples (i.e. 1367.3±0.3 cm-1), respectively. However, this difference became 

negligible once higher magnitudes of α
ex

(= 0.40 ) were included (Figure 2c). This indicates 

that even though the exact HF-exchange at its default mixing value corrects the self-

interaction error in DFT and gives a better description of the vibrational properties,[24] a full 

representation of the experimental data is only possible at higher values of α
ex

. This 

highlights the importance of the HF exact exchange in the long-range asymptotic behavior of 

the exchange-correlation potential, −1/ r . Although it has been shown previously that α
ex
	  

could improve the calculations of the Raman frequencies in several non-layered systems,[25] 

no attempt has been made to improve the description of the vibrational properties of BN 

using approaches beyond mean-field level or quantum chemistry based methods. In fact, most 

of the discrepancy between calculations and experiments have been observed at local or 

semi-local levels using different functionals.[26] Our simulations at HSE06 level gave rise to 

vibrational values much closer to those from experiments.  

 

Figure 2d shows the ab initio Raman spectra of freestanding 1-3L BN nanosheets and bulk 

hBN using a 514.5 nm laser simulated by PBE (opt-vdW functional) (main panel). The 

polarization of the incident and scattered light was set along (0, 1, 0) plane. Based on the opt-

vdW functional, the in-plane vibrational E2g mode of freestanding 1L, 2L, 3L and bulk BN 

nanosheets were at 1348.5, 1343.3, 1347.6 and 1343.7 cm-1, respectively (top inset in Fig. 

2d). These frequencies were clearly downshifted relative to our experimental values (circles 

in red). In comparison, improvement was achieved at the level of HSE06 (faint brown 

squares) using the standard mixing value of α
ex
= 0.25 : 1360.6, 1357.6, 1357.4 and 1356.8 

cm-1 for 1L, 2L, 3L and bulk hBN, respectively (bottom inset in Fig. 2d). Although the 



10	  

	  

difference between calculations and experiments could be further corrected using higher 

values of α
ex

, both sets of simulations reproduced closely the trend observed in the 

experiments (Figure 1f). That is, the E2g mode did not depend sensibly on the number of BN 

layers. This behavior is different from many other 2D nanomaterials, whose Raman modes 

change noticeably with decreased number of layers.[8-9]  

 

Based on the phonon-dispersion relations, we calculated the Grüneisen parameters (γ) at 

different k points of the Brillouin zone (see Experimental section) at opt-vdW and HSE06 (

α
ex
= 0.25 ) levels (Figure 2e).  HSE06 gave smaller Grüneisen parameters than opt-vdW. As 

previously discussed (Figure 2a), this was due to the effect of the increment of the phonon 

frequencies, as some fractional parts of the exact exchange were taken into account. Most of 

the HSE06-deduced values lay in the range of –1.13 to +0.83 at K and M points, 

respectively, and can be grouped into two sets: i) modes with γ>0, which were formed by LO, 

TO, LA and TA phonon branches; and ii) modes with γ<0, where ZO and ZA were the main 

components. The Grüneisen parameter for the LO and TO modes at Γ was 0.64. As shown 

later, this value is useful for the calculation of deformation or strain in BN from its G band 

shift. It should also be mentioned that the phonon frequencies were very sensitive to strain in 

the utilized supercell: changes as small as ~0.15% in lattice constant used in our calculations 

could induce ~9 cm-1 in Raman shift in both opt-vdW and HSE06 simulations. Such Raman 

shift increased or decreased linearly with further applied strain, suggesting a strain-driven 

vibrational state in BN nanosheets.   

 

To further show the effect of strain on the Raman spectrum of BN nanosheets, we 

experimentally modified the level of strain in atomically thin BN on SiO2 and studied their G 

band frequency. Due to the different thermal expansion coefficient (TEC) between BN and 
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SiO2, heat treatment can further increase the corrugation and hence strain in atomically thin 

BN, similar to the case of graphene.[27] In our experiment, atomically thin BN nanosheets 

were heated up to 400 oC in argon (Ar) gas for 1 h. The roughness of a 1L BN before and 

after heat treatment was revealed by AFM (Figure 3a and b). The AFM images show that the 

heat treatment did increase the roughness of the nanosheet. Such change can be better seen 

from the Gaussian fitted height distributions in Figure 3c: a relatively broader height 

distribution after heat treatment, corresponding to approximately 20% of increased 

roughness. Height-height correlation function (HHCF) is another direct indication of the total 

and short-range roughness. The function can be described as: 

 

𝑔 𝑥 = (ℎ 𝑥 − ℎ(𝑥 − 𝑟)!                   (2) 

 

where 𝑥 is any specific point in the image, and 𝑟 is a displacement vector. The average height 

difference between any two points separated by the distance 𝑟 is described by the function 

𝑔(𝑥).[28] For the self-affine scaling, the function can be simplified as: 

 

𝑔 𝑥 = 𝐴𝑟
!!for 𝑟 ≪ ξ                  (3) 

𝑔 𝑥 = 2𝜎
! for 𝑟 ≫ ξ                  (4) 

 

where A is a constant; 𝐻 describes the degree of surface irregularity (i.e. jag) at the short 

range; ξ is the correlation length;	  σ denotes the root mean square (RMS) roughness.[29] Figure 

3d shows the log-log plot of the HHCF and the corresponding fittings (Eq. 3 and 4) of the 1L 

BN before and after heat treatment. The correlation functions increased significantly in the 

short range (i.e. r< ξ), and the fitting deduced 2H values for the 1L BN before and after heat 

treatment were 1.9 and 1.6, respectively. This strongly suggests a more corrugated surface 
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after annealing. In addition, the RMS roughness amplitude σ of the 1L BN increased from 

~0.12 nm to ~0.14 nm after heat treatment. According to the intersection of power-law line 

and the saturation line, the correlation length ξ can be calculated by: 

 

                                                                  ξ = (2σ! 𝐴)! !!                     (5) 

 

The values of ξ for the 1L BN before and after heat treatment were 25.7±0.1 and 24.2±0.2 

nm, respectively. The larger RMS roughness and smaller correlation length further indicate 

larger roughness in the 1L BN after annealing. Therefore, the heat treatment increased the 

roughness and hence strain in substrate-bound atomically thin BN nanosheets. 
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Figure 3. AFM images of a 1L BN on SiO2/Si before (a) and after (b) heat treatment at 400 

°C in Ar for 1 h; height distribution (c) and height-height correlation functions (d) of the 

nanosheet before and after the heat treatment. 

 

As aforementioned, the increased roughness after heat treatment was caused by a mismatch 

of the TEC between SiO2 substrate and BN nanosheets. The strain change introduced by the 

mismatch at certain temperature can be estimated by:[30] 

 

∆𝜀 = 𝛼!" 𝑇 − 𝛼!"#!
𝑇 𝑑𝑇

!!

!"
             (6) 

 

where 𝛼!!"!   and 𝛼!" are the temperature-dependent TEC of SiO2 and BN nanosheets, 

respectively. We used 0.5×10-6/K for 𝛼!!"!  and –2.9×10-6/K for 𝛼!"  in calculation.[15g] 

Hence, our heat treatment at 400 °C could cause a maximum increase of compressive strain 

of about –0.128% in BN nanosheets. In other words, BN nanosheets contracted while SiO2 

expanded during the heat treatment, increasing the biaxial compressive strain in the 

nanosheets.  

 

After the heat treatment, the Raman frequencies of substrate-bound 1-3L BN upshifted. The 

G band frequency of 1L BN increased from 1369.5±0.6 cm-1 to 1372.7±0.4 cm-1 after 

annealing, representing an upshift of 3.2±0.7 cm-1 (Figure 4b and c). The Raman upshifts 

observed from the heated 2L and 3L BN nanosheets are 3.0±0.8 and 2.2±0.6 cm-1, 

respectively (Figure 4d and e). In contrast, no change of G band frequency was detected from 

bulk hBN before and after the same heat treatment (Figure 4a). It is clear that strain is the key 

factor that determines the Raman frequency of atomically thin BN nanosheets. We used the 

average Raman upshift of 1L BN after heat treatment to calculate the strain change:[12d] 
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𝜀 = −∆𝜔! 2𝛾𝜔!
!              (7) 

 

where  ∆𝜔!  is G band frequency shift, 𝛾 is Grüneisen	   parameter	   of	   hBN	   (0.64	   deduced	  

from	  Figure	  2e),	  𝜔!
!
  is	  the	  G	  band	  frequency	  of	  unstrained  BN	  (we	  used	  1367	  cm-‐1).	  The 

strain change calculated based on the average upshift (3.2±0.7 cm-1) of the 1L BN nanosheets 

after heat treatment is –0.18±0.04%. This value is basically in agreement with that estimated 

using Eq. 6. 

 

 

Figure 4. Raman spectra of bulk (a) and 1L (b) BN on SiO2/Si, and Raman G band frequency 

shifts of 1L (c), 2L (d) and 3L BN (e) on SiO2/Si before (black) and after (red) the heat 

treatment. 

 

Conclusion 



15	  

	  

The Raman frequency of monolayer and few-layer BN measured from suspended nanosheets 

was similar to that of bulk hBN, suggesting that the E2g mode of BN did not depend sensibly 

on the number of layers. This was justified by DFT calculations at PBE-opt-vdW and HSE06 

levels of theory. Our simulations also indicated that the inclusion of exact exchange from the 

Hartree-Fock theory improved the accuracy of the calculated vibrational modes and gave 

remarkably improved agreement to the experimental data. In contrast, atomically thin BN on 

SiO2/Si showed upshifted Raman G bands with decreased thickness. This was due to higher 

flexibility of thinner nanosheets, which could follow the uneven surface of substrate more 

closely and hence gain more compressive strain. The substrate-induced strain in atomically 

thin BN was further increased by heating treatment, and as the result, further upshifts of G 

band was observed on BN nanosheets. 

 

 	  

 

Experimental section 

The substrate-bound and suspended BN nanosheets were mechanically exfoliated from 

single-crystal hBN using Scotch tape on 90 nm SiO2/Si substrate with and without pre-

fabricated 1.3 µm wells. An Olympus BX51 optical microscope equipped with a DP71 

camera was used to locate atomically thin BN, and a Cypher AFM (Asylum Research) was 

employed to measure their thickness. The AFM images for estimating roughness of the 

nanosheets were taken with 512×512 pixels in contact mode. The Raman spectra of 

atomically thin and bulk BN were collected using a Renishaw inVia Raman microscope with 

a 514.5 nm laser. All Raman spectra were calibrated with the Raman band of Si at 520.5 cm-

1. An objective lens of 100x with a numerical aperture of 0.9 was used (i.e. laser spot size of 
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~0.9 µm). In order to further introduce strain to BN nanosheets on SiO2/Si, the samples were 

heated in Ar at 400 °C for 1h.  

 

Theoretical calculations were performed using the DFT formalism as implemented in the 

Vienna ab initio simulation package (VASP).[31] For the calculations of phonon modes, both 

PHONON[32] and Phonopy[33] were used. A 2x2x1 supercell was used for these calculations. 

For the calculation of Raman band frequency, PHONON was used implementing the PEAD 

method. The optB88-vdW functional[34] was used along with a plane-wave cutoff of 800 eV 

combined with the projector-augmented wave (PAW) method.[35] Atoms were allowed to 

relax under the conjugate-gradient algorithm until the forces acting on the atoms were less 

than 1x10-8 eV/Å. The self-consistent field (SCF) convergence was also set to 1.0x10-8 eV. 

Relaxed lattice constants were found to be a=b=2.50976Å for the monolayer system and 

a=b=2.5110 Å for the bi and trilayer systems which is in excellent agreement with 

experiments. A 20 Å vacuum space was used to restrict interactions between images. A 

12x12x1 gamma-centered k-grid was used to sample the Brillouin zone for all systems. K-

sampling was increased to 24x24x1 and there was no appreciable difference seen in the 

values obtained. 
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