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We present a review of the Raman spectra of graphite from an experimental and
theoretical point of view. The disorder-induced Raman bands in this material have
been a puzzling Raman problem for almost 30 years. Double-resonant Raman scat-
tering explains their origin as well as the excitation-energy dependence, the over-
tone spectrum and the difference between Stokes and anti-Stokes scattering. We
develop the symmetry-imposed selection rules for double-resonant Raman scattering
in graphite and point out misassignments in previously published works. An excellent
agreement is found between the graphite phonon dispersion from double-resonant
Raman scattering and other experimental methods.
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1. Introduction

Graphite is one of the longest-known forms of pure carbon and familiar from everyday
life. It is built from hexagonal planes of carbon atoms. In ideal graphite these planes
are stacked in an ABAB manner. Macroscopic single crystals of graphite do not occur
in nature. So-called kish graphite—which is often referred to as a single crystal—
consists of many small crystallites (up to 100×100 µm2) which are oriented randomly.
Highly oriented pyrolytic graphite (HOPG) is artificially grown graphite with an
almost perfect alignment perpendicular to the carbon planes. Along the in-plane
directions, however, the crystallites are again small and randomly oriented. The
disorder in a graphite sample gives rise to a number of Raman peaks with quite
peculiar properties (Tuinstra & Koenig 1970). Vidano et al. (1981) found that the
disorder-induced Raman modes depend on the energy of the incoming laser light;
their frequencies shift when the laser energy is changed. This puzzling behaviour
was shown by Thomsen & Reich (2000) to originate from a double-resonant Raman
process close to the K point of the graphite Brillouin zone. For a given incoming
laser energy, the double-resonant condition selectively enhances a particular phonon
wave vector; the corresponding frequency is then observed experimentally.

Double resonances also explain the frequency difference between Stokes and anti-
Stokes scattering in graphite (Tan et al. 1998). Particularly interesting is that the

One contribution of 13 to a Theme ‘Raman spectroscopy in carbons: from nanotubes to diamond’.

Phil. Trans. R. Soc. Lond. A (2004) 362, 2271–2288
2271

c© 2004 The Royal Society



2272 S. Reich and C. Thomsen

(a) (b) (c)

3

2

1
H

L

M
A

Γ

α

α

α

K

Figure 1. Graphite lattice in (a) top and (b) side view. a1, a2 and a3 span the unit cell of
graphite. (c) Brillouin zone of graphite. The irreducible domain is spanned by the Γ–M–K–Γ
triangle within the plane. Γ–A is the direction corresponding to the a3 lattice vector in reciprocal
space.

phonon wave vectors giving rise to the disorder-induced Raman bands are large
compared with the extension of the Brillouin zone (Thomsen & Reich 2000). Thus,
Raman scattering can be used to measure the phonon dispersion for wave vectors
normally reserved to neutron or inelastic X-ray scattering, which was first pointed
out by Saito et al. (2002). The concept of double-resonant Raman scattering has
been applied to other sp2 bonded carbon systems, most notably carbon nanotubes,
during the last three years. These topics are reviewed in other articles in this issue
and will not be considered here. An alternative model for the Raman spectrum of
graphite is based on small aromatic molecules; it was suggested by Castiglioni et al.
(2001) and is discussed likewise in another article of this issue.

In this paper we review the vibrational properties of graphite as measured by
Raman spectroscopy. We first consider the symmetry of graphite, its phonon branches
and Raman selection rules in § 2. Section 3 introduces the Raman spectra of graphite
with emphasis on the disorder-induced modes and their overtones in the second-
order spectrum. In particular, we describe the three key experiments that established
the unusual properties of the disorder-induced bands experimentally. The theory of
double-resonant Raman scattering is developed in § 4. We begin with the examples
of two linear electronic bands, where the Raman cross-section can be calculated
analytically. We then apply double-resonant Raman scattering to graphite and show
that the peculiar excitation-energy dependence follows naturally from the double-
resonant condition. The rest of § 4 treats the selection rules for double-resonant
scattering, and the second-order and the anti-Stokes Raman spectra. Finally, we
show in § 5 how to obtain the phonon dispersion from the disorder-induced and
second-order Raman peaks in graphite. Section 6 summarizes this work.

2. Symmetry and selection rules

Graphite is built from hexagonal planes of carbon atoms; it contains four atoms
in the unit cell (see figure 1). The two planes are connected by a translation t =
(a1 + a2)/3 + a3/2 or by a C6 rotation about the sixfold symmetry axis followed
by a translation a3/2 (ai are the graphite lattice vectors (see figure 1)). Graphite
belongs to the P63/mmc (D4

6h) space group; its isogonal point group is D6h. When
studying the physical properties of graphite it is often sufficient to consider only a
single hexagonal plane of carbon atoms (graphene), because the interaction between
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Figure 2. Phonon eigenvectors of graphene and graphite. Every phonon eigenvector of graphene
gives rise to two vibrations of graphite. For example, the in-phase combination of the two layers
for the E2g optical mode of graphene yields E2g ⊗ A1g = E2g and the out-of-phase combination
E2g ⊗ B1u = E1u. Next to the graphite modes we indicate whether they are Raman (R) or
infrared (IR) active and the experimentally observed phonon frequencies. The translations of
graphite were omitted from the figure.

the layers is very weak. However, even a weak interaction can change selection rules
in a crystal. We therefore first derive the normal modes of graphene; we then look
at how their symmetries are affected by stacking the planes.

Graphene has six normal modes at q = 0, which can be found by standard proce-
dures (Rousseau et al. 1981; Wilson et al. 1980; Yu & Cardona 1996):

Γvib,2D = A2u ⊕ B2g ⊕ E1u ⊕ E2g. (2.1)

The A2u and E1u representations are the translations of the plane; the B1g mode
is an optical phonon where the carbon atoms move perpendicular to the graphene
planes. Finally, E2g is the doubly degenerate in-plane optical vibration. Only the E2g
representation is Raman active.

The normal modes of graphene can be combined either in phase (Γvib,2D ⊗ A1g)
or out of phase (⊗B1u) to obtain the vibrations of graphite.† From the vibrational
representation of graphene Γvib,2D we thus find the phonon symmetries of graphite:

Γvib,3D = 2A2u ⊕ 2B2g ⊕ 2E1u ⊕ 2E2g. (2.2)

Figure 2 illustrates how the graphene modes split into a higher-frequency out-
of-phase and a lower-frequency in-phase vibration. The in-phase combination of a
Raman-active phonon of graphene is also Raman active in graphite, the out-of-phase
combination never. On the other hand, the out-of-phase combination of a phonon
eigenvector that is not Raman active for the single plane might or might not be
Raman active in the graphite crystal (see, for example, the E2g and B2g low-energy
modes in figure 2). A graphite crystal thus has two Raman-active vibrations at the
Γ point of the Brillouin zone. The high-energy E2g phonon is constructed from the

† The terms ‘in phase’ and ‘out of phase’ refer to the atoms in the two planes that are connected
by, for example, the inversion or the diagonal glide planes. The two carbon atoms on top of each other
in figure 1a at (0, 0, 0) and (0, 0, 1

2 ) move in opposite directions in the in-phase combination of the two
planes.
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in-plane optical mode of graphene; in the low-energy E2g mode the graphene planes
slide against each other.

We will see in the following sections that the Raman spectrum of graphite involves
phonons which are non-Γ-point vibrations. When going away from q = 0 along one
of the in-plane high-symmetry directions Γ–M (Σ) and Γ–K–M (T) the point group
symmetry is reduced to C2v. Both the in-plane optical and acoustic phonons thereby
split into two non-degenerate modes which belong to A1 and B1 in the molecular
notation. More precisely, the LO and LA phonons transform according to Σ1, the
TO and TA according to Σ3 along Γ–M; along Γ–K–M the TO and LA branches
belong to T1 and the LO and TA branches to T3. At the high-symmetry points M
and K of the in-plane section of the Brillouin zone, we have

Γvib,M,2D = M+
1 ⊕ M+

2 ⊕ M−
2 ⊕ M+

3 ⊕ M−
3 ⊕ M−

4 (2.3)

and
Γvib,K,2D = K1 ⊕ K2 ⊕ K5 ⊕ K6. (2.4)

Note that at all high-symmetry points, Γ, M and K, the phonon eigenvectors of
graphene are completely given by symmetry (see Mapelli et al. 1999). Considering
that the eigenvectors are known at the most important parts of the Brillouin zone, it
is quite surprising that the published phonon dispersions differ strongly in the calcu-
lated phonon frequencies and shapes, in particular, of the optical branches (Dubay
& Kresse 2003; Grüneis et al. 2002; Jishi & Dresselhaus 1982; Mapelli et al. 1999;
Maultzsch et al. 2004; Pavone et al. 1993; Sánchez-Portal et al. 1999). It can be
shown that the differences arise mainly from the assignment of the M-point eigen-
vectors to the phonon branches of graphite. For example, Mapelli et al. (1999) and
Kresse et al. (1995) assigned the LA mode to the totally symmetric vibration at
M, whereas Pavone et al. (1993), Sánchez-Portal et al. (1999) and Dubay & Kresse
(2003) found the M-point LO mode to be totally symmetric. These discrepancies were
resolved recently by inelastic X-ray measurements of the graphite phonon dispersion
performed by Maultzsch et al. (2004). The phonon dispersion is further discussed in
§ 5 of this paper (see, in particular, figure 9).

3. Raman spectrum of graphite

Figure 3a shows the Raman spectrum of graphite that is observed on well-ordered
defect-free samples (Nemanich & Solin 1979; Tuinstra & Koenig 1970; Wang et al.
1990). The first-order spectrum shows the E2g optical mode at 1583 cm−1. The inten-
sity of this peak is independent of the polarization in the Raman experiment as
expected for an E2g Raman tensor (Cardona 1982). The second-order spectrum of
graphite is quite remarkable in several aspects. The frequency of the G∗ peak is
greater than the E2g frequency (indicated by the vertical dotted line in figure 3a). The
G∗ peak is associated with the overbending of the longitudinal optical branches of
graphite, i.e. the LO branch has its maximum away from the Γ point of the Brillouin
zone in contrast to most other materials. Secondly, it is apparent in figure 3a that
the second-order spectrum is very strong when compared with the first-order peak.
The most intense D∗ line, moreover, is clearly not an overtone of a Raman-allowed
first-order phonon. While second-order scattering by overtones of non-Raman-active
vibrations is, in general, allowed in graphite, their intensities are expected to be weak
compared with the first-order Raman spectrum.
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Figure 3. The Raman spectrum of graphite. The spectra were measured on different spots
of kish graphite. (a) First- and second-order Raman spectrum of a perfect crystallite in the
sample. The first-order spectrum shows a single line at 1583 cm−1. Note the high intensity of
the second-order spectrum. (b) Raman spectrum of graphite in the presence of disorder in the
focal spot of the laser. An additional line at 1370 cm−1 and a high-energy shoulder at the E2g

line are observed. The spectra in (a) and (b) were corrected for the sensitivity of the Raman
set-up. Full (dashed) lines are for parallel (crossed) polarization of the incoming and outgoing
light; the spectra in parallel polarization were shifted for clarity. The dotted lines are positioned
at twice the frequency of the fundamentals of the D and G modes.

The situation gets even more interesting when we collect the Raman scattered light
on a disordered part of the sample as in figure 3b (Tuinstra & Koenig 1970). The
intensity ratio of the E2g line in crossed (dashed line) and parallel (full) polarization
is I⊥/I‖ ∼ 3

4 , ensuring that the graphite crystallites are small and randomly oriented
in the area of the laser spot (Cardona 1982; Wilson et al. 1980). At ca. 1370 cm−1

a new line appears in the Raman spectrum, which was first reported by Tuinstra
& Koenig (1970), and named D mode for disorder-induced mode. The second-order
spectrum is less affected by disorder. Nevertheless, it now becomes apparent that the
D∗ feature is very close to twice the D mode energy. It is tempting to assign the D∗

mode to an overtone of the D band, and we will later see that this is indeed the case.
The D, D∗ and G∗ modes were known experimentally for three decades before

their origin and their peculiar behaviour were explained theoretically (Thomsen &
Reich 2000).† Let us briefly review the three key experiments that established the
properties of the graphite Raman spectra. Tuinstra & Koenig (1970) showed that
the intensity of the D band compared with the Raman-allowed E2g mode depends
on the size of the graphite microcrystals in the sample (see figure 4a). Wang et al.
(1990) generalized the intensity dependence to any kind of disorder or defects in
the sample by recording the D mode intensity on boron-doped and electrochemically
oxidized HOPG. Boron doping is substitutional in graphite; the crystallites in HOPG
thus remain comparatively large. Nevertheless, the symmetry breaking by the boron

† In the early literature on Raman scattering, in graphite the E2g mode at 1580 cm−1 was usually
called the G peak and the overtone of the D mode, i.e. the D∗ peak, was called the G′ peak. The Raman
peaks at ca. 1350, 1620 and 3250 cm−1 were referred to as D, D′ and D′′. This convention arose because
the G and D∗ appear with strong intensity on perfect graphite crystals and were labelled G for graphite.
The other modes are either observed only on defective samples or are very weak in intensity like the
G∗ peak that was incorrectly assigned as a defect-induced feature. In this paper we use the modern
convention, where D stands for modes coming approximately from the K point of graphite and G for
vibrations close to the Γ point; additionally, overtones are denoted by an asterisk.
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Figure 4. (a) Dependence of the relative D mode intensity on the length-scale La of the graphite
microcrystallites (after Tuinstra & Koenig 1970). (b) Excitation-energy dependence of the first-
and second-order Raman spectra of graphite (after Vidano et al. 1981). (c) Stokes (top) and
anti-Stokes (bottom) Raman scattering of the D and E2g modes in graphite (after Tan et al.
1998).

atoms gives rise to a strong D band. This mode thus appears regardless of the type
of disorder.

The truly puzzling piece of information was added by Vidano et al. (1981) by
Raman scattering on graphite employing different excitation energies. Figure 4b
reproduces their spectra recorded between 1.91 and 2.53 eV (647–488 nm). The fre-
quency of the D mode shifts to higher energies with increasing excitation energy.
The shift was observed to be linear over a wide range of excitation energies (near
IR to near ultraviolet (UV)) with a slope between 40 and 50 cm−1 eV−1 (Matthews
et al. 1999; Pócsik et al. 1998; Vidano et al. 1981; Wang et al. 1990). The D∗ band
has twice the slope of the D band, confirming the assignment as an overtone that
we mentioned above. Subsequently, many other much weaker Raman modes were
also reported to have laser-energy-dependent frequencies in graphite (Kawashima &
Katagiri 1995; Tan et al. 2001); a similar behaviour is also observed in other car-
bon materials (Ferrari & Robertson 2001; Maultzsch et al. 2003). Finally, Tan et
al. (1998) observed that the Stokes frequencies of the D, D∗ and other modes differ
from the respective anti-Stokes frequencies (see figure 4c for the D mode range). All
these observations apparently contradict our fundamental understanding of Raman
scattering. We will see in the following that the excitation-energy dependence of the
phonon frequencies and other effects arise from a double resonance peculiar to the
electronic band structure of graphite and other sp2 bonded carbon materials.

4. Double-resonant Raman scattering

The first attempts to explain the appearance of disorder modes in graphite suggested,
among other mechanisms, Raman-forbidden Γ-point vibrations activated by disorder
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Figure 5. Double-resonant Raman scattering for two linear bands. (a) Resonant excitation of
an electron–hole pair followed by non-resonant scattering of the electron. (b) Double-resonant
Raman scattering occurs for one pair (ωph, qph) for a given laser energy. (c) For a different
incoming laser energy the double-resonant condition selects a different (ω′

ph, q′
ph) pair. Resonant

(non-resonant) transitions are indicated by full (dashed) arrows. (d) Calculated Raman spectrum
for linear electron and phonon dispersion. After Reich et al. (2004).

or the observation of the phonon density of states (see Wang et al. (1990) for a review
of the earlier works). All these attempts failed, however, to explain the excitation-
energy dependence of the peaks, which, in the first-order Raman spectrum, is most
pronounced for the D mode. Thomsen & Reich (2000) showed that this peculiar
behaviour is due to a double-resonant Raman process that selectively enhances a
particular phonon wave vector and hence phonon frequency. We first present a text-
book example of double-resonant Raman scattering before we turn more specifically
to the situation in graphite.

(a) Linear bands

Consider two linear electronic bands that cross at the Fermi energy as shown in
figure 5. For such an electronic band structure an incoming photon of energy E1
can always excite a resonant transition from a state i in the valence band to a state
a in the conduction band with E1 = Ee

a − Ee
i = Ee

ai, where Ei and Ea are the
eigenenergies of the electrons. The excited electron can be scattered by phonons of
arbitrary wave vector q as shown in figure 5a by the dashed arrows. The scattering
probability, however, will be particularly high if the phonon scatters the electron
from the real electronic states a into another real state b. For a given phonon and
electron dispersion this condition (both a and b are among the allowed electronic
states) is only fulfilled by one pair of phonon energy ωph and phonon wave vector
qph. It is important to understand that the non-resonant scattering by phonons as
in figure 5a actually takes place; it is not forbidden by selection rules. The resonant
transition mediated by a phonon in figure 5b is, however, by far the most dominant
and the corresponding (ωph, qph) pair is selectively enhanced by the large scattering
cross-section (Baranov et al. 1988; Martin & Falicov 1983; Sood et al. 2001; Thomsen
& Reich 2000).

For a Raman process the linear momentum has to be conserved, because the
momentum of the light is small when compared with the Brillouin zone. This is
where the defect comes into the picture; it scatters the electron back elastically ki

(dashed arrow from state b to state c in figure 5b). Finally, the electron–hole pair
recombines, emitting the scattered photon E2 = E1 − �ωph. In figure 5a, b, resonant
transitions are indicated by full arrows, non-resonant transitions by dashed arrows.
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The process in figure 5b involves two resonances; it is therefore called double-resonant
Raman scattering.

The Raman spectra for defect-induced scattering can be calculated by evaluating
the Raman cross-section K2f,10 (Cardona 1982; Martin & Falicov 1983)

K2f,10 =
∑

a,b,c

MeR,ρMe–defMepMeR,σ

(E1 − Ee
ai − iγ)(E1 − �ωph − Ee

bi − iγ)(E1 − �ωph − Ee
ci − iγ)

+
∑

a,b,c

MeR,ρMepMe–defMeR,σ

(E1 − Ee
ai − iγ)(E1 − Ee

bi − iγ)(E1 − �ωph − Ee
ci − iγ)

, (4.1)

where the sum runs over all intermediate states a, b and c. MeR are the matrix ele-
ments for the optical transitions, Mep for electron–phonon interactions and Me–def
for the elastic scattering of the carriers by the defect. γ accounts for the finite lifetime
of the excited states; the energies in the denominator were introduced above. The
first term in equation (4.1) corresponds to the time order in figure 5; the second term
describes the processes where the electron is first scattered by a defect and then by
a phonon. All other time orders do not yield resonant transitions and can, therefore,
safely be neglected. Note that equation (4.1) is more general than figure 5; it con-
tains incoming as well as outgoing resonances, non-resonant or only single-resonant
transitions, and also scattering by holes instead of electrons.

Thomsen & Reich (2000) showed that for the example of linear bands the Raman
cross-section can be calculated analytically. For simplicity we restrict ourselves to
the first term in the Raman cross-section, which yields

K2f,10 = C
MeR,ρMe–defMepMeR,σ

(κ2 − qv2/(v2 − v1))(κ2 + qv1/(v2 − v1))
, (4.2)

where
C = lnκ2/κ1

2κ2 − q

(v2 − v1)2�ωph

is a slowly varying function of q,

κ1 =
E1 − i�γ

v2 − v1
and κ2 =

E1 − �ωph − i�γ

v2 − v1
,

and v1 and v2 are the Fermi velocities. In figure 5d we plot the calculated Raman
spectrum, which is proportional to |K2f,10|2, for linear electronic bands and a phonon
dispersion that is linear as well (γ = 0.1 eV, see the figure for v1 and v2). For a
given laser energy two peaks appear in the spectra. For these q the double-resonance
condition is fulfilled. They correspond to the phonon wave vectors where one of the
denominators in equation (4.2) vanishes, i.e.

q =
E1 − �ωph(q)

v2
and q =

E1 − �ωph(q)
−v1

. (4.3)

When increasing the laser energy the double-resonant q shift to larger values. This
is easily understood by the illustration in figure 5c, which shows the double-resonant
process for two slightly different laser energies. Since the energy and the momentum
of the photo-excited electron are larger for increasing E1, the double-resonant phonon
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Figure 6. (a) Brillouin zone and contour plot of the π∗ band of graphene. The arrows indicate
the two possible double-resonant transitions. The phonon wave vectors are close to the K or the
Γ point of the Brillouin zone. Cuts through the Brillouin zones of (b) the simple tetragonal and
(c) the face-centred cubic (FCC) lattices. In the tetragonal Brillouin zone an electron at X can
be scattered resonantly by an M- or a Γ-point phonon; in the FCC case either Γ- or X-point
phonons yield symmetry-imposed resonances.

wave vector increases as well. In turn the phonon frequency changes to higher energies
because we assumed a monotonically increasing dispersion for the phonon branch.
The absolute values of the phonon wave vectors in figure 5d are comparable with the
typical extensions of the Brillouin zone of a crystal (1.26 Å−1 for a lattice constant
of 2.5 Å). Double-resonant Raman scattering can thus probe the phonon dispersion
far away from the Γ point.

From equation (4.3) we can derive a general approximation for the double-resonant
wave vectors. Neglecting the phonon energies in equation (4.3) and assuming the two
Fermi velocities to be the same, v1 = v2 = v, equation (4.3) simplifies with E1 = 2vke
to q ≈ 2ke, where ke is the wave vector of the photo-excited carriers. This relationship
can also be seen in figure 5b. The q ≈ 2ke approximation, often called a ‘selection
rule’, is very useful for quickly finding the double-resonant phonon wave vector for a
given excitation energy. We will use it later to map the disorder-induced frequencies
onto the Brillouin zone of graphite and thus to find the phonon dispersion from
double-resonant Raman scattering.

(b) Graphite

From the textbook example we saw that double resonances in Raman scattering are
given by a convolution of the electronic band structure and the phonon dispersion. To
describe defect-induced Raman processes in graphite we need to know the electronic
states for optical transitions in the visible (up to ca. 3 eV). Only the π electrons have
eigenstates with energies close to the Fermi level EF; the π and π∗ bands cross at
the six K and K′ points of the Brillouin zone (Wallace 1947). The bands around the
K points can be very well approximated by a linear dispersion and correspond to the
example of the last section.

Figure 6a shows a contour plot of the π∗ conduction band in the Brillouin zone
of graphene (Reich et al. 2002; Saito et al. 1998; Wallace 1947). An electron (black
circle) was resonantly excited into the conduction band in the first step of the Raman
process. Let us for simplicity assume that the phonon energy corresponds exactly to
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Figure 7. (a) Calculated Raman spectra for the D mode in graphite for three different laser
energies. (b) Calculated (full squares) and measured (open symbols) frequencies of the D mode
as a function of excitation energy. From Thomsen & Reich (2000); the measurements were taken
from Wang et al. (1990), Pócsik et al. (1998) and Matthews et al. (1999).

the difference between two energy contours. Which phonon wave vectors then yield
a second resonant transition? As we can see by the white arrows in figure 6a, there
are two distinct possibilities: the phonon can scatter the electron from a state close
to K to one of the K′ points, or from K to another K point. The first process requires
a phonon wave vector close to the K point of graphene and gives rise to the D mode
in graphite. Scattering from K to K occurs by phonons with q ≈ k1 = 0, i.e. close
to the Γ point of the Brillouin zone. If we neglect the phonon energy, the selection
of the double-resonant wave vector is entirely given by the symmetry in reciprocal
space. The band structure of graphene is the same at all K and K′ points because
they are connected by reciprocal lattice vectors and time inversion.

To see the selection of the double-resonant wave vector by the symmetry in recip-
rocal space more clearly, we show two other examples in figure 6b, c. In a simple
tetragonal lattice (figure 6b) an electron at the X point is scattered to a symmetry-
equivalent state either by a Γ- or an M-point phonon. In the diamond lattice X-
or Γ-point vibrations yield scattering from one X point to another X point of the
Brillouin zone (see figure 6c).

Let us now return to the situation in graphite and, in particular, to the D mode.
Thomsen & Reich (2000) first calculated the Raman spectra of the D mode using the
concept of double resonances. Their results are reproduced in figure 7a, which illus-
trates nicely that a Raman line appears by defect-induced resonances and shifts to
higher frequencies under increasing excitation energy. Figure 7b compares the exper-
imental and theoretical frequencies. The agreement is found to be excellent, show-
ing that double-resonant Raman scattering explains the curious excitation-energy
dependence of the defect-induced Raman modes in graphite. As we discuss below,
the other peculiarities of the graphite Raman spectrum can also be understood by
double-resonant scattering. The D∗ mode is an overtone of the D peak where the
electron is backscattered by a second phonon instead of a defect. The differences
between Stokes and anti-Stokes scattering arise because the double-resonant condi-
tion is slightly different for the creation and destruction of a phonon.

There is an alternative approach to explaining the appearance of the D mode
and its excitation-energy dependence. It is based on the lattice dynamics of small
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aromatic molecules and their Raman spectra (Castiglioni et al. 2001; Mapelli et al.
1999). In these molecules, which can be viewed as small graphitic flakes, the D mode
has a Raman-active eigenvector; its frequency depends on the actual size and shape
of the molecule in question. The shift with excitation energy results from a resonant
selection of a particular molecule by the incoming laser. For defect scattering induced
by the small size of the graphitic microcrystals, the solid-state approach presented
above and the molecular approach can be shown to be the same. The latter fails,
however, to explain the D∗ mode and its properties in perfect graphite. On the
other hand, it has been argued (Ferrari & Robertson 2001) that double-resonant
Raman scattering cannot explain why only one phonon branch shows strong double
resonances. The other defect-induced peaks are much weaker than the D mode. To
understand the selectivity of the process we have to look at the matrix elements in
the Raman cross-section.

(c) Selection rules

In this section we first derive the symmetry-imposed selection rules for double-
resonant Raman scattering. The symmetries of the electronic states and the phonon
branches along high-symmetry lines impose strict rules on which phonons give rise
to a double-resonant Raman signal. In particular, the highest Raman intensity is
expected for TO phonons close to the K point of the Brillouin zone, whereas out-
of-plane modes cannot participate in double resonances. We then discuss ab initio
calculations of the electron–phonon coupling in graphite that were performed recently
(Piscanec et al. 2004).

Figure 8 shows the electronic π and π∗ band structure of graphene along the
MK′ΓKM line (Reich et al. 2002). The electronic states are labelled by their irre-
ducible representations. Optical transitions from the valence to the conduction band
(first resonance from the open to the closed circles) are induced by the Γ−

6 represen-
tation, i.e. in plane-polarized light. For the excited electron there are two possibilities
for scattering resonantly to another state by emitting a phonon: scattering within the
same band across the Γ point or scattering across K into another band. The apparent
third possibility, scattering across Γ and K′, vanishes by destructive interference in
the summation over all intermediate states (see Martin & Falicov (1983) and Martin
(1974) for details).

Scattering within the same band across Γ requires a phonon wave vector close
to 2(k1 − k2)/3 or equivalent points in the Brillouin zone, i.e. close to the K
points. Only totally symmetric modes can resonantly couple electrons within the
same non-degenerate band. For scattering across the K point, in contrast, the nec-
essary wave vectors are comparatively small and the phonon has to belong to the
T3 representation. For the electron–phonon matrix element to be non-vanishing the
double-resonant phonon thus has to be of T1 (A1) symmetry close to K and of T3
(B1) symmetry close to Γ. Before discussing which phonon branches meet the out-
lined requirements, let us consider the third step in the Raman process, the elastic
backscattering by a defect. For defects coupling states of the same symmetry, the
matrix element Me–def is expected to be large. Moreover, the virtual electronic state
after defect scattering (state c in figure 5c) is very close to an allowed electronic
state of the same symmetry. The third denominator in the Raman cross-section in
equation (4.1) is, therefore, of the same order as the phonon energy ca. 0.2 eV. In
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Figure 8. Electronic band structure and symmetry of the π and π∗ states in graphene along the
ΓKM line. The possible phonon species leading to a double-resonant transition are T1 (A1 in
molecular notation) for scattering across the Γ point and T3 (B1) for scattering across K.

contrast, for backscattering from the T4 band either electrons of different symme-
try have to be coupled (small Me–def) or the closest allowed electronic states of the
same symmetry is ca. 2 eV away. Although scattering across the K point yields dou-
ble resonances, the overall Raman intensity is expected to be weaker than for KK′

scattering because of the symmetry-imposed selection rules.
Along ΓK the TO and the LA branches belong to T1 and the LO and the TA

branches to T3; the out-of-plane modes belong to T2 and T4; they cannot induce
double resonances for graphene. The TO and LA branches thus meet the requirement
for double-resonant scattering close to K. The matrix element for electron–phonon
coupling is expected to be much stronger for the TO than the LA phonon because
the TO phonon, in contrast to the LA phonon, (i) is Raman active at the Γ point and
(ii) can couple electronic states exactly at the K and K′ points of the Brillouin zone.
Thus, the TO phonon is the candidate for the strongest double-resonant Raman
signal and the origin of the D mode. As pointed out by Ferrari & Robertson (2000,
2001), the LO branch was incorrectly assigned to the D band by Thomsen & Reich
(2000) and in other papers (Kürti et al. 2002; Matthews et al. 1999; Pócsik et al.
1998; Saito et al. 2002). The assignment of the TO branch to the D band is consistent
with the calculations for aromatic molecules (Castiglioni et al. 2001) and the phonon
dispersion of graphite from inelastic X-ray scattering (Maultzsch et al. 2004). Close
to the Γ point the LO and TA branches can induce double resonances. TA scattering
will be negligible compared with LO scattering due to the small electron–phonon
coupling of the acoustic mode at small q. The discussion presented so far is strictly
valid only for graphene. When including the coupling between the graphene layers, a
refined analysis shows that double resonances can also result from LO and TA modes
close to K and TO and LA phonons around Γ. However, these are secondary effects
that account only for weak disorder signals.

The two most prominent features in the disorder-induced graphite Raman spec-
trum up to 1600 cm−1 are the D mode and a peak around 1620 cm−1, i.e. right above
the E2g line, often called G′ (see figures 3b and 4b). From the symmetry analysis we
can assign them to the TO branch close to K and the LO mode close to Γ. The rela-
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tive Raman intensities of these two peaks are of the order of ID/IG′ ≈ 10. Since the
intensity is proportional to the square of the Raman cross-section, this yields a factor
of approximately three between their Raman cross-sections. Considering the differ-
ences in the vibrational density of states (higher for G′ than for D) and the combined
matrix elements (lower for G′ than for D), this ratio is quite reasonable. Piscanec
et al. (2004) recently calculated the electron–phonon interaction in graphite using
first-principles methods. They showed that the matrix element for the LO phonon
at K is two orders of magnitude weaker than for the TO-derived phonon, which
nicely confirms the symmetry arguments. For the intensity ratio between the D and
G′ line they obtained ID/IG′ ≈ 2.5; the additional factor of four when compared
with experiment most likely arises from the elastic scattering process. The symme-
try of the TO and LO branches at K and Γ, respectively, combined with the peculiar
Fermi surface of graphene, give rise to a singular behaviour of the phonon dispersion
at the two high-symmetry points (Piscanec et al. 2004). This behaviour, known as
a Kohn anomaly, explains the strong electron–phonon coupling in graphite as well
as the large slope of the disorder-induced D Raman peak; details are discussed in
another article in this issue. The other, weaker, disorder-induced lines in the Raman
spectrum of graphite can also be assigned to phonon branches and used to mea-
sure the phonon dispersion of graphite. Before we do so, however, let us turn to the
second-order spectrum and Stokes and anti-Stokes scattering in this material.

(d) Second-order Raman spectrum

The second-order Raman spectrum of graphite corresponds to the overtones and
combinations of the disorder-induced bands. It results from double-resonant Raman
scattering by two phonons instead of a phonon and a defect. The double resonances
explain why the second-order signal in graphite and similar materials is so strong
when compared with the Raman-active E2g phonon. Two phonon processes with
q �= 0 are allowed in perfect graphite crystals as well as in the presence of defects.
Therefore, the second-order signal is the same in parts (a) and (b) of figure 3. Extend-
ing the symmetry analysis of the previous section to overtone scattering we find that
double resonances by two phonons are expected if the two modes belong to branches
of the same symmetry, i.e. overtones and the combinations LO + TA and TO + LA.
An assignment of the second-order bands will be performed in § 5.

(e) Anti-Stokes scattering

In figure 4c we presented measurements by Tan et al. (1998) showing that the
Stokes and anti-Stokes frequencies are different for the D mode in graphite by
∆�ω = 7 cm−1. When double resonances were discovered as the origin of the D band
Thomsen & Reich (2000) pointed out that the resonance conditions differ for the
creation and destruction of a phonon. The double-resonance process shown in fig-
ure 5b is for Stokes scattering. We obtain an anti-Stokes process by inverting all
arrows in the picture. This process is also double resonant, but with a different time
order, an outgoing instead of an incoming resonance and, most importantly, at a
different excitation energy (Tan et al. 2002; Zólyomi & Kürti 2002). In general, the
Raman cross-section for Stokes scattering KS is exactly the same as the cross-section
for anti-Stokes scattering KaS if we interchange the incoming and outgoing photon
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(time inversion), i.e.
KaS [E2, �ωaS(E1), E1] = KS[E1, �ωS(E2), E2] = KS[E1, �ωS(E2), E1 + �ωaS(E1)].

(4.4)
In other words �ωaS(E1) = �ωS(E2). Since we know the dependence of the Stokes
frequency on excitation energy we can calculate the frequency difference

∆�ω = �ωaS(E1) − �ωS(E1) =
∂�ωS

∂E
�ωaS(E1). (4.5)

Tan et al. (1998) measured an anti-Stokes frequency of 1379 cm−1 and a D mode
slope of 43 cm−1 eV−1. The expected ∆�ω = 7.4 cm−1 is in excellent agreement with
the reported value (7 cm−1; see figure 4c). As discussed by Zólyomi & Kürti (2002)
and Tan et al. (2002) the frequency difference for the D∗ overtone is predicted to be
four times larger than for the D mode, because both the energy differences between
E1 and E2 and the slope of the Raman peak with laser energy are doubled. This also
agrees very well with the experimentally reported differences. In turn, equation (4.5)
can be used to determine, at least approximately, the slope of a disorder band.
The experimental advantage of this procedure when compared with measuring the
frequency for two different excitation energies is that no change in laser frequency is
necessary.

5. Phonon dispersion from double-resonant Raman scattering

The change in phonon frequency with excitation energy is the fingerprint of a double
resonance. The shift is caused by the dispersion of the phonon branches with varying
phonon wave vector. Thus, the observed phonon frequency can be used to measure
the phonon dispersion of a material. This idea was first applied to graphite by Saito
et al. (2002). The problem of the approach is that the double-resonant phonon wave
vector depends on the phonon dispersion as can be seen in the linear bands example
(equation (4.3)). Nevertheless, we will see that with some approximations good agree-
ment is found between the measured disorder-induced frequencies and the phonon
dispersion obtained by other methods.

To find the double-resonant q we assume that the q = 2ke rule is strictly valid, i.e.
we drop the �ωph(q) dependence in equation (4.3). For finding the electron (or hole)
wave vector we look at the electronic transition energies along Γ–K and K–M. Either
the first (incoming resonance) or the last (outgoing) step in the Raman process has
to correspond to a real electronic transition of graphite. For the calculation of the
electronic energies we used the third-order tight-binding formalism worked out by
Reich et al. (2002). We further assume that the phonon wave vector has to be along
the Γ–K or K–M symmetry lines. The last approximation is not so rough as it first
seems because of the sixfold symmetry of the graphite lattice. The double-resonant
phonon wave vector q for scattering within the same band (approximately K-point
phonons) is 2ke, whereas the q for scattering between the two high-symmetry direc-
tions (approximately Γ-point phonons) is the difference between ke(ΓK) and ke(KM).
We included the asymmetry between ΓK and KM (trigonal warping), because we
found that for energies in the visible ke differs by 20–30% on the two sides of K.

Figure 9a shows the measured disorder-induced phonon frequencies mapped onto
the graphite Brillouin zone (grey dots); figure 9b is the same but for the second-
order bands. The experimental data were taken from a variety of published mea-
surements (see figure caption for details). The black lines are ab initio calculations
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Figure 9. Phonon dispersion of graphite by double-resonant Raman scattering. (a) Frequency of
the disorder-induced modes mapped onto the graphite Brillouin zone as described in the text
(grey dots). Some of the data were measured by us; the others were taken from Wang et al.
(1990), Pócsik et al. (1998), Kawashima & Katagiri (1995) and Tan et al. (2001, 2002). Black
lines are ab initio calculations of the lattice dynamics of graphene; the grey line is a cubic spline
interpolation of the TO branch measured by Maultzsch et al. (2004). (b) Second-order bands of
graphite mapped onto the Brillouin zone; data from Kawashima & Katagiri (1995) and Tan et
al. (2001, 2002). Lines are the sum of the overtones of the phonon branches in (a) and those
combinations which yield the totally symmetric representation. No assignment was obtained for
the second-order mode at ca. 2900 cm−1; this mode was omitted from the figure.

of the phonon dispersion of graphene by Maultzsch et al. (2004). This calculation
was found to excellently describe the phonon dispersion measured by inelastic X-ray
scattering except for the TO branch. For this branch we therefore included a cubic
spline extrapolation of the X-ray data (grey line). The D mode excitation-energy
dependence describes very well the TO branch of graphite; a good agreement is also
found for the LO branch along ΓK and the second-order features of both modes.
The LO Raman data (up to 1625 cm−1) are systematically a little higher than the
X-ray measurements (1610 cm−1), a difference that is not understood presently. For
the acoustic disorder-induced modes the agreement seems to be less satisfactory at
first. Note that in contrast to Saito et al. (2002) and Kawashima & Katagiri (2002)
we assign the ca. 800 cm−1 peak to the TA branch of graphite and not to the out-
of-plane mode. The vibrations perpendicular to the planes do not participate in
double-resonant scattering as discussed in § 4 c. This assignment is, moreover, con-
sistent with the weak LO + TA overtone at 2180 cm−1 observed by Kawashima &
Katagiri (1995) (see figure 9b).

The less good agreement for the acoustic branches is, at least partly, a consequence
of their much stronger dispersion and our neglecting the phonon term in the double-
resonant condition. For the acoustic phonons between Γ and K but close to K the
phonon term shifts the double-resonant q to larger values and to smaller values for q
close to Γ (Cancado et al. 2002). The magnitude of the q shift increases with the slope
of the phonon dispersion and with the phonon energy. This is in good qualitative
agreement with the discrepancies in figure 9; we will, however, not attempt to correct
for this effect within the present paper.
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From figure 9a it is obvious that the most complete set of data is available for the
TO branch of graphite. This is due to the high intensity of the D mode, but also to
the many studies with different lasers performed for this mode. The number of data
in the other frequency ranges is very limited. Although these disorder-induced bands
are weaker in intensity by approximately two orders of magnitude when compared
with the D band, they are well within the detection limit of modern Raman set-ups.
It would be quite interesting to measure the graphite disorder modes over a wider
range of excitation energies. Studies on the second-order features, where a very nice
agreement is seen between theory and experiment, are also very promising.

6. Conclusion

In this paper we have reviewed the experimental and theoretical work on the Raman
spectra of graphite. Graphite has two Raman-active modes at the Γ point at 44
and 1582 cm−1. In addition to these two phonons, several peaks are observed in the
Raman spectra that do not correspond to Γ-point vibrations. The most prominent
of these disorder-induced lines are the so-called D mode and its D∗ overtones in
the second-order spectra. We showed that the disorder modes appear because of a
double-resonant Raman process that, for a given laser energy and phonon branch,
selectively enhances a particular phonon wave vector and phonon frequency. The
double-resonance condition depends strongly on the wave vector of the photo-excited
electrons and holes and hence on excitation energy. The fingerprint of a double res-
onance in Raman scattering is, therefore, the dependence of the phonon frequencies
on the incoming laser light. Another typical feature is a frequency difference between
Stokes and anti-Stokes scattering.

After introducing the theory of double-resonant Raman scattering with the exam-
ple of two linear bands and a linear phonon dispersion, we applied the concept to
graphite. We worked out the symmetry-imposed selection rules for both the wave
vector and the phonon species that participate in the resonant transitions. In partic-
ular, we showed that the two strongest features in the disorder spectrum correspond
to the TO branch close to K (D mode) and the LO branch around Γ (G′). Finally, we
discussed how double resonances can be used to measure the phonon dispersion of a
material. For graphite an excellent agreement is found between the double-resonant
phonon frequencies and the phonon dispersion known independently from theory and
other experiments.
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Grüneis, A., Saito, R., Kimura, T., Cancado, L. G., Pimenta, M. A., Jorio, A., Souza Filho,
A. G., Dresselhaus, G. & Dresselhaus, M. S. 2002 Determination of two-dimensional phonon
dispersion relation of graphite by Raman spectroscopy. Phys. Rev. B65, 155405.

Jishi, R. A. & Dresselhaus, G. 1982 Lattice-dynamical model for graphite. Phys. Rev. B26,
4514.

Kawashima, Y. & Katagiri, G. 1995 Fundamentals, overtones, and combinations in the Raman
spectrum of graphite. Phys. Rev. B52, 10053.

Kawashima, Y. & Katagiri, G. 2002 Evidence for nonplanar atomic arrangement in graphite
obtained by Raman spectroscopy. Phys. Rev. B66, 104109.

Kresse, G., Furthmüller, J. & Hafner, J. 1995 Ab initio force constant approach to phonon
dispersion relations of diamond and graphite. Europhys. Lett. 32, 729.
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