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Abstract

We present the first demonstration of glycated albumin detection and quantification using Raman spectroscopy without
the addition of reagents. Glycated albumin is an important marker for monitoring the long-term glycemic history of
diabetics, especially as its concentrations, in contrast to glycated hemoglobin levels, are unaffected by changes in
erythrocyte life times. Clinically, glycated albumin concentrations show a strong correlation with the development of serious
diabetes complications including nephropathy and retinopathy. In this article, we propose and evaluate the efficacy of
Raman spectroscopy for determination of this important analyte. By utilizing the pre-concentration obtained through drop-
coating deposition, we show that glycation of albumin leads to subtle, but consistent, changes in vibrational features, which
with the help of multivariate classification techniques can be used to discriminate glycated albumin from the unglycated
variant with 100% accuracy. Moreover, we demonstrate that the calibration model developed on the glycated albumin
spectral dataset shows high predictive power, even at substantially lower concentrations than those typically encountered
in clinical practice. In fact, the limit of detection for glycated albumin measurements is calculated to be approximately four
times lower than its minimum physiological concentration. Importantly, in relation to the existing detection methods for
glycated albumin, the proposed method is also completely reagent-free, requires barely any sample preparation and has
the potential for simultaneous determination of glycated hemoglobin levels as well. Given these key advantages, we believe
that the proposed approach can provide a uniquely powerful tool for quantification of glycation status of proteins in
biopharmaceutical development as well as for glycemic marker determination in routine clinical diagnostics in the future.
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Introduction

Glucose forms the most ubiquitous energy source in biology. In

humans, glucose is primarily derived from the breakdown of

carbohydrates in the diet or in body stores (glycogen), in addition

to secondary endogenous synthesis from protein or from the

glycerol moiety of triglycerides [1]. Importantly, even under

diverse conditions (such as feeding, fasting and severe exercise), the

blood glucose level is maintained within a fairly narrow interval,

70–120 mg/dL, by the homeostatic system of a healthy individual.

This implies that, for an average person, the total quantity of

glucose in the blood and body fluids is approximately 5 grams - a

remarkably small number given the typical carbohydrate intake

per day (ca. 150–200 grams). To maintain this natural balance, an

intricate set of biomolecule interactions, modulated by glucor-

egulatory hormones such as insulin, needs to occur. However, in

people afflicted with diabetes mellitus, the defective nature of

carbohydrate metabolism (stemming from inadequate insulin

production, response or both) leads to the presence of high blood

glucose. Ominously, diabetes, which affects more than 25 million

people in the US alone [2], has no established cure. As a

consequence, early diagnosis and careful management of diabetes

via frequent monitoring of glucose level is imperative in alleviating

the severe associated health complications including micro- and

macro-vascular diseases [3]. Presently, diagnosis and therapeutic

monitoring of diabetes requires direct measurement of glucose by

withdrawal of blood or/and interstitial fluid, both for clinical

laboratory measurements as well as for self-monitoring of blood

glucose. In order to reduce/eliminate the painful and invasive

nature of these fingerprick measurements, minimally invasive [4–

7] and non-invasive glucose monitoring has been actively pursued

by a number of research laboratories [8–10] including our own

[11–14].

In addition to these ‘‘gold standard’’ blood glucose measure-

ments, measurement of glycated proteins has received consider-

able contemporary attention in the medical community for

monitoring long-term glycemic control in diabetics [15,16].

Specifically, glycated hemoglobin (HbA1c) and glycated albumin,

which are formed by the non-enzymatic attachment of glucose to

hemoglobin and serum albumin respectively, have been proposed

as retrospective indices of the integrated blood glucose values over

extended periods of time [17–20]. Importantly, these markers are

not subject to the substantive variations observed in blood glucose

concentration measurements, due to their intrinsic half-lives of 120
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days (HbA1c) and 21 days (glycated albumin). While HbA1c

measurements have been more extensively employed in clinical

laboratories as an adjunct to blood glucose determinations, studies

over the past decade have suggested that glycated albumin

remains an ‘‘underestimated marker of diabetes’’ [21] and is, in

fact, ‘‘a better indicator for glucose excursion than glycated

hemoglobin in type 1 and type 2 diabetes’’ [22]. Notably, HbA1c

values are significantly affected by shortening of erythrocyte life

span [23–26] and are also prone to inaccuracies in the case of

several chronic diabetes-related disorders (e.g. hemolytic or renal

anemia and liver cirrhosis) [27–29]. On the other hand, glycated

albumin is more sensitive to shorter term alterations in blood

glucose values (due to its shorter half-life) and is not affected by

changes in erythrocyte survival times nor by abnormal hemoglobin

metabolism observed in some type 2 diabetes cases [28,29]. From

a clinical perspective, the value of glycated albumin determination

has been further highlighted by reports of the strong correlation

between glycated albumin concentrations and the development of

serious diabetes complications including nephropathy [30],

retinopathy [31] and arterial stiffening [32]. In light of these

reports, one can reasonably infer that measurement of glycated

albumin provides a crucial piece of information to complement

plasma glucose and HbA1c determination for appropriate diabetes

monitoring and therapeutics.

Current methods of glycated albumin determination include

affinity chromatography, high-performance liquid chromatogra-

phy and specific reagent-based colorimetric methods (e.g. thiobar-

bituric acid assay and nitro-blue tetrazolium assay). Nevertheless,

as detailed by Sacks [33], these methods are not widely used

because of their lack of suitability for routine clinical laboratory

application. For example, the aforementioned colorimetric assays

suffer from lack of specificity [34] and are vulnerable to the

presence of free glucose, uric acid or lipemia [35–37]. Further-

more, the development of monoclonal antibodies specific to

glycated albumin [38], while beneficial in principle, has not caused

a rise in the availability of commercial glycated albumin assays at

this present time.

In this context, optical/spectroscopic approaches provide a

reagent-free detection method, which can be performed with little

or no sample preparation. Previously, fluorescence spectroscopy

has been employed to differentiate between glycated and

unglycated albumin [39] as well as to characterize the effect of

anti-oxidants on glycation-induced changes in proteins [40].

Nevertheless, to overcome the lack of specificity of intrinsic

fluorescence spectroscopy (i.e. without addition of external dyes),

investigators have used FTIR (Fourier-transform infrared) spec-

troscopy. FTIR spectroscopy is sensitive to changes in secondary

structure and has provided valuable information on dynamic

build-up of glycated albumin when incubating albumin with

glucose [41,42]. Alternately, one can obtain (complementary)

vibrational information by using Raman spectroscopy. Notably,

Raman can be used to analyze aqueous solutions as it does not

suffer from the large water absorption effects associated with FTIR

and, generally, provides higher spectral detail (due to less

cluttering of peaks).

In this article, we propose a new Raman spectroscopy-based

method for selective and sensitive determination of glycated

albumin. Specifically, a derivative of spontaneous Raman

spectroscopy, known as drop coating deposition Raman (DCDR)

spectroscopy [43], is employed here to investigate the feasibility of

reproducible identification and accurate quantitation of this

important glycemic marker. In addition to the well-characterized

advantages of Raman spectroscopy (such as excellent chemical

specificity which obviates the need for exogenous reagents [44]),

this technique provides signal amplification by pre-concentration

of the analytes in solution. This pre-concentration – which is

obtained by the simple drying of a droplet of the analyte solution

(i.e. the so-called ‘‘coffee-ring effect’’, stemming from the interplay

of contact line pinning, solvent evaporation and capillary flow

[45]) – enables the Raman measurement of analytes at 2–3 orders

of magnitude lower than otherwise possible, without sacrificing

their solution conformation [46–48].

Herein, our DCDR measurements reveal that glycation of

albumin manifests itself in subtle but consistent changes in

spectral features. In fact, in combination with standard

multivariate chemometric methods, we observe that the glycated

albumin can be discriminated from the unglycated samples with

100% accuracy. Moreover, we characterize the accuracy and

precision of these measurements and demonstrate that the

developed calibration models show high predictive power, even

at substantially lower concentrations than typical physiological

levels. Finally, we establish the limit of detection of this method

for glycated albumin measurements. Based on the results

obtained here, the proposed approach can be expeditiously

employed for characterization of glycation status of proteins in

mixtures, which is of critical importance because glycation can

modify the stability, pharmacokinetics and immunogenicity of

glycoprotein-based biopharmaceuticals. Additionally, Raman

spectroscopy-based inspection of glycated albumin as a comple-

mentary glycemic marker exhibits substantive promise for similar

determination in serum and whole blood samples. We envision

that, in the future, this method will be enable us to provide real-

time, reagent-free and simultaneous measurement of both

glycated albumin and HbA1c providing a uniquely powerful tool

for clinical laboratories.

Materials and Methods

Our aim in this study is to develop DCDR as a complementary

tool for qualitative and quantitative investigation of glycated

albumin. As alluded to above, in this technique, spectroscopic

measurements are performed on the coffee-ring pattern, where the

analytes (e.g. proteins) are deposited from the drying drop. Herein,

systematic experimental studies were initiated to achieve a two-

fold objective. First, we assess the ability of the proposed approach,

in conjunction with multivariate chemometric methods, to clearly

distinguish pure albumin and glycated albumin samples. Second,

we evaluate the quantitative ability of this method to precisely and

accurately predict the concentration of glycated albumin at

physiologically relevant levels and below. For the purpose of

achieving these objectives, Raman spectroscopic measurements

were performed on multiple drop-coated samples derived from a

wide range of albumin and glycated albumin solutions, respec-

tively. The acquired spectra were first examined for specific

Raman bands and, subsequently, to discriminate between the

samples. Subsequently, basic regression methodology was em-

ployed to quantitatively predict glycated albumin concentrations

from the Raman spectroscopic measurements obtained from drop-

coated depositions and to establish the prediction accuracy,

precision and limit of detection of the proposed approach. In

addition to the spectroscopic measurements, we also performed

2D spatial Raman mapping on representative drop-coated

samples to investigate the uniformity (or the lack thereof) of the

distribution of the analytes of interest (namely, albumin and

glycated albumin). Evidently, the lack of substantial variance in

measurements performed at a constant radial distance would

manifest in higher reproducibility of the predicted concentrations

from the drop-coated depositions.

Novel Approach for Glycemic Marker Determination
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Experimental
For this study, a home-built Raman spectroscopic system

equipped with a 785 nm CW Ti:Sapphire laser (3900S, Spectra-

Physics), which was pumped using a frequency-doubled Nd:YAG

laser (Millennia 5sJ, Spectra-Physics), was used. A liquid-nitrogen

cooled CCD (LN/CCD 1340/400-EB, Roper Scientific) com-

bined with a spectrograph (Kaiser Holospec f/1.8i) was used for

collection of the spectra. A water immersion objective lens

(Olympus UPLSAPO60XWIR 60X/1.20) focuses the laser to a

spot size of approximately 1 mm on the sample and collects the

backscattered Raman light. Due to the non-absorptive nature of

the albumin and glycated albumin deposits, the power at the

sample could be kept relatively high at ca. 30 mW without the

possibility of optical and/or thermal damage to the samples. The

detailed description of this system can be found in one of our

laboratory’s previous publications [49]. It should be noted that

while this laboratory system was used in our experiments for the

sake of convenience, a considerably simpler system comprising a

single frequency diode laser would be adequate for these

investigations.

Lyophilized powder samples of human serum albumin and

glycated albumin were obtained from Sigma-Aldrich (St. Louis,

MO, USA). The aqueous solutions of albumin were prepared in

the range of 23–750 mM (the typical physiological range is

between 3.5–5.5 g/dL or, ca. 510–710 mM [50]). Corresponding-

ly, glycated albumin samples were formulated with concentrations

in the range of 7–250 mM (typical physiological values are 10–25%

of the above mentioned albumin concentrations [51]). All sample

preparations are performed using high purity PESTANAL water

(Fluka) to ensure the reproducibility of the measurements. Drop-

coated depositions were prepared by pipetting aliquots (4 mL) of

the prepared solutions on quartz coverslips (which were used to

avoid the strong fluorescence interference of glass) and air-drying

for approximately 20 minutes. The air-dried annular rings had

widths in the range of 40–700 mm and scaled roughly in a linear

fashion with respect to the concentrations (consequently, the

albumin samples had larger annular ring widths in comparison to

the glycated albumins samples). Figure 1 shows (portions of the)

annular rings obtained from the glycated albumin samples after

solvent evaporation, where (a) has the highest analyte concentra-

tion and (f) the lowest.

The acquisition time for all the Raman spectra was 10 seconds.

For the classification and regression studies, spectra were collected

from each sample at three different points at a constant radial

distance from the center, with five replicate measurements at each

location. The spectroscopic measurements were performed on the

approximate center of the annular region (e.g. the position between

the two concentric arcs marked by the asterisk in Fig. 1(a)) where

the analytes accumulate due to solvent evaporation. It should be

noted that this is different from the center of the entire ring, where

little or no analyte deposition takes place (as confirmed by the lack

of analyte-specific Raman spectral features in this region). Further

mention of the drop-coated deposit should be taken as referring to

the former, i.e. the analyte-rich annular region, unless otherwise

noted. In addition for the investigation of the uniformity, 100

spectra were collected over a 80680 mm field of view with 8 mm

inter-point distance (2D spatial Raman mapping). The spectra

acquired from these studies were subject to vertical binning and

cosmic ray removal. No background correction was performed for

the ensuing quantitative analysis due to the possibility of

incorporation of spurious artifacts [52].

Data Analysis
In order to investigate the classification ability of the proposed

method between albumin and glycated albumin samples, we

performed principal component analysis (PCA) (part of the

Figure 1. Bright field images of the drop-coated deposition rings. Bright field images of the drop-coated deposition rings obtained from air-
drying of aq. glycated albumin samples. Evidently, the analytes are concentrated in the annular ring. The samples (a)–(f) are arranged in the order of
descending concentration levels of glycated albumin, which is reflected in the widths of the corresponding rings. The asterisk in Fig. 1(a) represents
the approximate center of the annular analyte-rich region. In all drop-coated deposition rings, spectroscopic measurements were performed at this
approximate center location, where the Raman signal intensity was maximum.
doi:10.1371/journal.pone.0032406.g001

Novel Approach for Glycemic Marker Determination
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Statistics Toolbox in MATLAB R2010b (MathWorks, Natick,

MA)) on the entire dataset containing 180 spectra in all. In

particular, 90 spectra were acquired from 6 concentrations of

albumin and, similarly, 90 more spectra were collected from 6

glycated albumin concentrations (where the concentrations of each

analyte were in the ranges mentioned previously). Principal

component analysis (PCA) is a dimension reduction technique,

which uses an orthogonal transformation to convert a set of

observations of closely correlated variables into a set of values of

uncorrelated variables called principal components (PC). The first

few principal components (each PC is orthogonal to the preceding

one) account for a high degree of the net variance and are often

used for visualizing the primary differences between the classes

[53,54]. Here, logistic regression on the relevant principal

components was pursued to obtain a separation plane between

the samples and to ascertain the degree of classification accuracy.

Logistic regression is a standard discriminate analysis technique,

which is employed here to correlate the principal component

scores with the sample classes (namely, albumin and glycated

albumin) [55,56].

Moreover, in order to illustrate the capability of DCDR to

provide quantitative measurements of these analytes, partial least

squares (PLS) regression was employed [57]. Specifically to gauge

the reproducibility of the measurements in the 2D spatial Raman

mapping study, a leave-one-sample-out PLS model (developed on

the 75 spectra from 5 calibration samples) was used to predict the

concentrations for the 100 prospective spectra collected over a 2D

area of the ring on a representative glycated albumin sample.

For the quantification of the accuracy and precision of our

measurements, we have performed leave-one-sample-out cross-

validation procedure on the glycated albumin data acquired from

the 6 samples. In the leave-one-sample-out cross-validation

routine, one sample is left out when developing the calibration

model and the resultant model is used to predict concentrations of

the left out sample spectra. This procedure is repeated until all

samples are left out and all concentrations are predicted. In

particular, the calibration models are developed using 75 spectra

(5 samples with 15 spectra per sample) and the predictions are

performed on the remaining 15 spectra (1 sample) to obtain 15

predicted concentrations. This routine is repeated till all the

glycated albumin samples (and spectra therein) are accounted for.

Here, three figures of merit, namely relative error of prediction

(REP), relative standard deviation (RSD) and limit of detection

(LOD), were computed. The REP and RSD values correlate

directly with the accuracy and precision of DCDR predictions,

respectively. In the following, we provide the equations used for

computing the figures of merit:

(i) Average relative error of prediction, REP:

REP (%)~
100

N

XN

i~1

ĉci{ci

ci

����
���� ð1Þ

where N is the number of spectra in the dataset, ci is the

reference concentration and ĉi is the predicted concentra-

tion.

(ii) Average relative standard deviation of predicted concentra-

tions, RSD:

RSD (%)~
100

Nconc

XNconc

k~1

sck

ck

where s2
ck

~
Xp

i~1

ĉcik{ckð Þ2

p{1
ð2Þ

where Nconc is the number of distinct concentrations in the

dataset, p is the number of spectra per concentration and sck

is the standard deviation obtained at concentration ck.

(iii) Limit of detection (LOD), as per the IUPAC definition [58],

is computed from the best fit line obtained between

predicted concentrations and reference concentrations [59]:

LOD mMð Þ~3
sy=x

slope
where sy=x~

X
i

(ĉci{ci)
2

N{2

2
64

3
75

1=2

ð3Þ

where sy/x is the standard deviation of the residuals and is a

measure of the average deviation of the predicted values

from the regression line.

Results and Discussion

Figure 2 shows Raman spectra acquired from typical drop-

coated depositions of human serum albumin (green) and glycated

albumin (red) solutions. For the sake of visual representation, the

plots shown in Fig. 2 were subject to 5 spectra averaging from each

sample and baseline-removal [60]. (It is worth emphasizing that

the baseline-removed spectra were not used for any of the

following analysis, as mentioned in Materials and Methods

section.) The features observed in our (DCDR) albumin spectrum

are consistent with those previously reported in the literature for

albumin solutions [61–63]. A summary of the wavenumbers and

their corresponding tentative Raman band assignments is given in

Table 1. In particular, we note the presence of the following key

features: 1655 cm21 Amide-I band, 1447 cm21 CH2 deformation

band, 1002 cm21 phenylalanine band and the tyrosine doublet at

828 and 850 cm21. The Amide-I band is a characteristic feature

of the a-helical (secondary) conformation of the polypeptide

backbone stemming mainly from peptide C = O stretching

vibration [64]. This is important because any change of this band

would indicate a modification in the secondary structure of human

serum albumin, which is predominantly an alpha-helical molecule

(67%). Furthermore, the strong phenylalanine peak at 1002 cm21

is reflective of the presence of 31 phenylalanine residues present in

albumin (tryptophan may provide a small contribution to the

intensity of the 1002 cm21 band as well).

Expectedly, the glycated albumin spectrum does not exhibit any

gross differences in comparison to the albumin spectrum (although

subtle changes in the Raman spectra in the 780–850 cm21 region

exist). Numerous studies have previously identified that (non-

enzymatic) glycation of albumin occurs at multiple sites corre-

sponding to the arginine, lysine and cysteine residues, which can

be attributed to their high nucleophile properties [21,65–67].

Since the Raman signature of albumin do not have significant

contributions from these residues, one would anticipate that the

corresponding glycation-induced changes would be subtle. Nev-

ertheless, we hypothesize that these changes, although relatively

small, are consistent and, as such, provide sufficient information to

distinguish between albumin and glycated albumin samples.

Specifically, such small changes are routinely detected using

multivariate chemometric algorithms, which we have employed in

the following analysis to test this hypothesis. It is also worth

mentioning that glycation studies have indicated the conversion of

albumin into a high b-sheet structure [68,69] - another potential

marker that may aid the classification of glycated and unglycated

samples.

Novel Approach for Glycemic Marker Determination
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To this end, PCA was employed to visualize the underlying

information from the multivariate spectral dataset, comprising

both albumin and glycated albumin samples (90 spectra from 6

samples at different concentrations for each of the analytes).

Figure 3(A) gives the first four principal components (which

together account for 99.74% of the net variance). We observe that

PC1 bears a striking resemblance to the pure albumin spectrum

(and by extension to the glycated albumin spectrum, albeit to a

somewhat lesser extent - especially in the 780–850 cm21 region).

PC2 retains some of the key features seen in PC1, although in

different proportions. Interestingly, a new feature is observed at ca.

792 cm21, which seems to stem from the differences in the

aforementioned shoulder region in the tyrosine doublet between

the glycated and unglycated samples. This feature is also present in

a prominent manner in PC 3 and 4. In addition, these PCs have

an interesting feature at ca. 1542 cm21, which was not noted in the

list of prominent bands in Table 1 and the origin of which is

unclear at this present time.

The corresponding scores plot for PCs 2, 3 and 4 is given in

Figure 3(B). (PC1 was excluded from this 3D plot because of its

relatively lower discriminative power between the two sets of

samples in comparison to the PCs employed here.) Remarkably,

we can see a clear separation between the albumin and glycated

albumin samples. To measure the discrimination ability of the

proposed approach, we used logistic regression on the scores of PC

2, 3 and 4 (i.e. score2, score3 and score4, respectively). The optimal

separation plane, based on these three parameters, was computed

to be:

3:9225{0:0027 score2z0:0023 score3z0:0041 score4~0 ð4Þ

This logistic regression algorithm gave a classification accuracy of

100%, as can be seen from Fig. 3(B). To test whether such a

classification result could have been obtained from spurious

correlations (such as system drift during measurements), we

performed two control studies. First, we assigned the ‘‘albumin’’

and ‘‘glycated albumin’’ labels randomly to the 180 spectra,

without any regard for their actual origin. We observed that the

new ‘‘optimal’’ logistic regression algorithm barely gave 55%

classification accuracy (which in this binary classification problem

is akin to a random guess). This underlines the inability of the

algorithm to predict the randomly assigned classes. Subsequently,

we assigned class labels in correlation with the measurement order

of the samples to investigate the possibility of temporal correlations

(e.g. that stemming from system drift). In other words, we assigned

the first 90 samples as albumin and the last 90 as glycated albumin

(whereas the spectral measurements were performed in an

arbitrary manner between the albumin and glycated albumin

samples). Here, too, the ‘‘optimal’’ logistic regression algorithm

displayed poor performance, and the overall classification

accuracy was computed to be ca. 60%. Taken together, the actual

logistic regression performance and the control studies validate our

hypothesis that the chemometric methods can reliably predict class

labels based on subtle, but consistent, differences in spectral

features between albumin and glycated albumin samples. The

control studies, in particular, also underline the robustness of

DCDR in combination with multivariate classification to chance

correlations.

Since PCA and logistic regression showed excellent discrimina-

tion ability from the DCDR spectra, we used a multivariate

regression approach (PLS) to test the predictive power of the

glycated albumin data. Before this test, however, it is important to

Figure 2. Raman spectra acquired from the drop-coated
albumin and glycated albumin samples. Raman spectra acquired
from the drop-coated albumin and glycated albumin samples derived
from their corresponding aqueous solutions, respectively (the spectra
are normalized and offset for the sake of clarity). The asterisks indicate
the principal peaks, namely the 1655 cm21 Amide-I band, the
1447 cm21 CH2 deformation band, the 1002 cm21 phenylalanine band
and the tyrosine doublet at 828 and 850 cm21.
doi:10.1371/journal.pone.0032406.g002

Table 1. Chemical assignments of vibrational modes for the
Raman spectra acquired from drop-coated deposition of
human serum albumin sample.

Wavenumber (cm21) Tentative Band Assignments

1655 Amide-I

1616 Tyr

1605 Phe

1584 Phe

1447 d(CH2)

1335 d(CH)

1319 d(CH)

1208 Tyr+Phe

1172 Tyr

1157 u(CN)

1125 u(CN)

1102 u(CN)

1089 u(CN)

1031 Phe

1002 Phe

960 u(CC)

940 u(CCN)sym, u(CC)

899 u(CC)

850 Tyr

828 Tyr

667 u(CS)

643 Tyr

Here, n means stretching vibration; and d deformation. Tyr, Trp and Phe refer to
the tyrosine, tryptophan and phenylalanine residues, respectively.
doi:10.1371/journal.pone.0032406.t001

Novel Approach for Glycemic Marker Determination
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Figure 3. PCA decomposition of the spectral dataset. (A) The first four principal components corresponding to the entire spectral dataset
acquired from the albumin and glycated albumin drop-coated deposition samples. These four principal components, combined, explain 99.74% of
the net variance in the dataset. (B) Scores plot corresponding to principal components 2, 3 and 4 for the spectral dataset acquired from albumin and
glycated albumin drop-coated rings. The albumin and glycated albumin samples are indicated by green circles and red squares, respectively. The
optimal plane of separation, shown here, is constructed using a logistic regression algorithm (further details are noted in the text).
doi:10.1371/journal.pone.0032406.g003

Novel Approach for Glycemic Marker Determination
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characterize the reproducibility of the measurements by comput-

ing the potential variations in the radial and, more importantly, in

the angular direction. Here, we have performed 2D spatial Raman

mapping-based predictions on a representative glycated albumin

sample (reference analyte concentration = 31.25 mM) using PLS

calibration models developed on the other 5 sample spectra.

Figure 4 plots the results of this analysis for the 100 spectra

acquired over a 80680 mm area of the annular ring. The profile

along the radial direction (X-axis) shows an approximately

symmetric shape with a steeper descending outer part (i.e. over

pixels 8, 9 and 10) in comparison to the more gradual descent in

the inner part of the ring (i.e. over pixels 3, 2 and 1). This is

consistent with previous experimental observations of complete

desiccation at the outer perimeter of the ring, primarily from

oscillation of the droplet contact line [70–72]. On the other hand,

there is a high degree of consistency between the predictions along

the Y-axis, which for small distances (such as those considered

here) provides a reasonable approximation for the angular

direction. The coefficient of variation (i.e. the ratio of standard

deviation to the mean of the predicted concentrations) along the

Y-axis is calculated to be in the range of 0.014–0.074 with a mean

of 0.038. This demonstrates the excellent reproducibility of the

spectral predictions along the analyte-rich annular region of the

ring, when the measurements are performed at a constant radial

distance. Importantly, we also observe that the reference values of

the glycated albumin concentrations are reproduced fairly

accurately near the centre portion of the ring, i.e. the average of

the predicted concentration over pixels 5 and 6 on the X-axis is

29.9 mM. Clearly, the absence of significant inhomogeneity in the

drop-coated samples substantially increases the enthusiasm for

systematic assessment of the prediction accuracy and precision

across a wide range of concentrations.

Figure 5 shows the results of leave-one-sample-out cross-

validation for the glycated albumin samples, where the reference

and PLS predicted concentrations are given along the X- and Y-

axis, respectively. The solid black line illustrates y = x and is given

to explicitly understand the linearity of the response (or the lack

thereof). From the figure, it is evident that the predicted values

show excellent agreement with the reference concentrations and

the corresponding correlation coefficient between these two set of

values is calculated to be 0.9986. Further, the relative error of

prediction (REP) was calculated to be ca. 16%, showing thereby

that PLS provides very accurate predictions for the DCDR

glycated albumin data over the entire concentration range of 7–

250 mM. When the glycated albumin sample having 7 mM

concentration is omitted from the dataset (as it is below the limit

Figure 4. 2D spatial Raman mapping of a glycated albumin drop-coated ring. 2D spatial Raman mapping based concentration prediction
results for a representative glycated albumin drop-coated ring. The reference glycated albumin concentration in this sample is 31.25 mM. The field of
view is 80680 mm with a pixel-to-pixel distance of 8 mm. Here, the X- and Y-axis provide a close approximation to the radial and angular directions,
respectively. Pixel 1 on the X-axis is located closer to the center of the ring (inner periphery) and pixel 10 is farthest away from the ring center.
doi:10.1371/journal.pone.0032406.g004
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of detection of our system as discussed below), the REP value

drops to 8.5%.

Finally, we evaluated the precision of our measurements using

the relative standard deviation (RSD) metric. For the entire

concentration range, our precision was observed to be 21.6%.

Notably, when the 7 mM glycated albumin sample was not

included in this analysis, the RSD metric reached a clinically

acceptable value of 11.6%. Naturally, the precision gets worse as

the concentration of the analyte decreases - a common

characteristic of any spectrochemistry measurement. This aspect

is revealed in Fig. 6 (also known as a precision profile in clinical

chemistry), where the RSD is graphically plotted as a function of

the reference glycated albumin concentration.

At this point, we determined the limit of detection (LOD) using

the standard deviation of the residuals and the slope of the

regression line, the so-called calibration plot method. Here, our

LOD for glycated albumin was computed to be 13.7 mM, which is

evidently higher than the lowest concentration used in this study

(7 mM) but lower than the remaining sample concentrations. More

importantly, this value is nearly 4 times less than the lowest

physiological concentrations likely to be encountered in clinical

settings (ca. 50 mM). Quantitatively speaking, the RSD is also 33%

at the limit of detection (as per the IUPAC definition or 3s
detection limits) and therefore one can graphically extrapolate the

RSD versus concentration plot to arrive at the LOD. Here, using

this alternate method, we found the LOD value to be 14.7 mM.

The small deviation from the previous value (13.7 mM) can be

attributed to the deviation from an ideal exponential fit seen in

Fig. 6. Nevertheless, it is reassuring that both methods generate

very close numbers strengthening our confidence in the system’s

capability of measuring very low concentrations of glycated

albumin.

In summary, a novel analytical procedure for reproducible

identification and accurate quantification of glycated albumin has

been proposed in this article. This method can also provide a real-

time, reagent-free and largely non-perturbative alternative for

probing glycation status of similar proteins in mixture solutions,

which can aid in glycoprotein-based biopharmaceutical research and

development. Moreover, while the experiments performed here

establish the proof-of-principle for glycated albumin detection on the

laboratory bench, further studies are currently underway to translate

it to clinical settings. These studies involve the measurements on

standard serum samples obtained from diabetic patients as well as

normal human subjects (at the Beth Israel Deaconess Medical

Center). Specifically, the samples are drawn by standard venipunc-

ture into ‘‘serum separator’’ tubes, which contain a compound that

speeds clotting and that, upon centrifugation, separates the serum

from the cellular components of the blood (red blood cells, white

blood cells, and platelets). Subsequently, drop coated plates are

prepared (as in the aforementioned proof-of-concept studies) to test

the efficacy of DCDR for glycated albumin determination in more

physiologically relevant serum samples. (The results of this clinical

study will be published in a follow-up article elsewhere.)

It is worth mentioning that in serum samples, the specificity (and

the precision) of this method is unlikely to be significantly

hampered due to two primary reasons. First, the concentrations

of all other analytes (biomolecules) in serum are substantially lower

in relation to physiological albumin concentration. In particular,

albumin has a reference concentration range of 35–52 g/L,

whereas the next highest concentration ranges belong to

immunoglobulin G (7–16 g/L) and transferrin (2–3.6 g/L) (with

almost all other serum constituents having concentrations less than

1 g/L [73]). Second, the strong and distinct Raman signal of

albumin (and its glycated counterpart) does not show substantive

Figure 5. PLS prediction results of glycated albumin samples. Prediction results obtained using partial least squares (PLS) regression on
glycated albumin samples. The solid line denotes y = x values.
doi:10.1371/journal.pone.0032406.g005
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spectral overlap with these major serum constituents [74,75].

Finally, significant improvements to the current results can be

made, especially through optimization of instrumentation and via

enhanced chemometric modeling.

Conclusions
This proof-of-concept study represents the first use of Raman

spectroscopy, without application of extraneous reagents, to detect

and quantify the concentration of glycated albumin, an important

glycemic marker for long-term diabetes monitoring. Specifically, we

have demonstrated that application of drop-coating deposition

Raman spectroscopy can accurately discriminate glycated albumin

from the unglycated variant, even at low mM concentrations.

Further, in conjunction with standard multivariate analysis

methods, we have shown that the limit of detection of the proposed

approach for glycated albumin is nearly 4 times lower than the

minimum physiological concentrations encountered in practice.

The proposed method provides a promising alternative for glycated

albumin determination as it is completely reagent-free and requires

barely any sample preparation. The next step in translating this

promising technology is to assess its predictive diagnostic value in

multi-component mixtures, especially in serum samples. Addition-

ally, in combination with recent studies of Raman-based charac-

terization of protein glycosylation status [76], our investigations

should advance the use of Raman and other spectroscopic

modalities (such as fluorescence, FTIR and 2D-IR absorption

spectroscopy [77]) for understanding the detailed structure and

dynamics of albumin transformation caused by different analytes of

interest, such as glucose and heavy metal ions [78].

Concomitantly, our laboratory is also engaged in investigating

the clinical feasibility of HbA1c determination using DCDR. The

combined determination of HbA1c and glycated albumin will

provide a uniquely powerful metric in estimating the ‘‘true’’

glycemic history of a patient - a feature that is currently lacking in

almost all clinical laboratories globally. The differences in the

lifetime of these two important glycemic markers should shed

interesting insight on the long-term glucose profile of a diabetic.

Furthermore, the measurement of two markers may be

imperative in certain clinical cases where one or the other may

provide inaccurate estimates. For example, HbA1c values have

been reported to underestimate the blood glucose levels in

patients with hemolytic anemia [27], or those submitted to

hemodialysis [79], whereas glycated albumin may not be an

appropriate indicator for glucose excursion in pathologies that

impact albumin metabolism, e.g. thyroid dysfunction and

nephrotic syndrome [80,81]. As a consequence, there is a

significant clinical need for rapid and reliable glycemic history

assessment that is (more) robust to other pathological changes.

We believe this clinical need can be bridged by appropriate

utilization of the proposed spectroscopic approach.
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