
RAMBleed: Reading Bits in Memory Without
Accessing Them

Andrew Kwong
University of Michigan

ankwong@umich.edu

Daniel Genkin
University of Michigan

genkin@umich.edu

Daniel Gruss
Graz University of Technology

daniel.gruss@iaik.tugraz.at

Yuval Yarom
University of Adelaide and Data61

yval@cs.adelaide.edu.au

Abstract—The Rowhammer bug is a reliability issue in DRAM
cells that can enable an unprivileged adversary to flip the values
of bits in neighboring rows on the memory module. Previous
work has exploited this for various types of fault attacks across
security boundaries, where the attacker flips inaccessible bits,
often resulting in privilege escalation. It is widely assumed
however, that bit flips within the adversary’s own private memory
have no security implications, as the attacker can already modify
its private memory via regular write operations.

We demonstrate that this assumption is incorrect, by em-
ploying Rowhammer as a read side channel. More specifically,
we show how an unprivileged attacker can exploit the data
dependence between Rowhammer induced bit flips and the bits
in nearby rows to deduce these bits, including values belonging to
other processes and the kernel. Thus, the primary contribution
of this work is to show that Rowhammer is a threat to not only
integrity, but to confidentiality as well.

Furthermore, in contrast to Rowhammer write side channels,
which require persistent bit flips, our read channel succeeds even
when ECC memory detects and corrects every bit flip. Thus,
we demonstrate the first security implication of successfully-
corrected bit flips, which were previously considered benign.

To demonstrate the implications of this read side channel, we
present an end-to-end attack on OpenSSH 7.9 that extracts an
RSA-2048 key from the root level SSH daemon. To accomplish
this, we develop novel techniques for massaging memory from
user space into an exploitable state, and use the DRAM row-
buffer timing side channel to locate physically contiguous mem-
ory necessary for double-sided Rowhammering. Unlike previous
Rowhammer attacks, our attack does not require the use of
huge pages, and it works on Ubuntu Linux under its default
configuration settings.

Index Terms—Side channels, Rowhammer, OpenSSH

I. INTRODUCTION

In recent years, the discrepancy between the abstract model

used to reason about computers and their actual hardware

implementation has lead to a myriad of security issues. These

range from microarchitectural attacks [15] that exploit con-

tention on internal components to leak information such as

cryptographic keys or keystroke timing [18, 45, 65], through

transient execution attacks [10, 35, 39, 60, 63] that break down

fundamental OS isolation guarantees, to memory integrity

attacks [9, 32, 34, 36] that exploit hardware limitations to

change the contents of data stored in the device.

Rowhammer [19, 34, 55] is a fault attack, in which the

attacker uses a specific sequence of memory accesses that

results in bit flips, i.e., changes in bit values, in locations

other than those accessed. Because the attacker does not

directly access the changed memory location, the change is

not visible to the processor or the operating system, and is

not subject to any permission checks. Thus far, this ability to

reliably flip bits across security boundaries has been exploited

for sandbox escapes [19, 55], privilege escalation attacks on

operating systems and hypervisors [19, 21, 51, 55, 61, 64],

denial-of-service attacks [21, 28], and even for fault injection

in cryptographic protocols [6].

A common theme for all past Rowhammer attacks is

that they break memory integrity. Namely, the attacker uses

Rowhammer to obtain a (limited) write primitive into oth-

erwise inaccessible memory, and subsequently modifies the

contents of that memory in a way that aligns with the attacker’s

goals. This observation has led to various mitigation proposals

designed to secure the target’s memory by using integrity

checks [62], or by employing ECC (error-correcting code)

memory to ensure memory integrity. The latter, in particular,

has long been touted as a defense against Rowhammer-based

attacks. Even when an attacker flips a bit in memory, the

ECC mechanism corrects the error, halting the attack. While

recent work has demonstrated that an attacker can defeat the

ECC mechanism, resulting in observable bit-flips after error

correction [13], successfully corrected flips are still considered

benign, without any security implications. Thus, in this paper

we pose the following questions:

• Is the threat posed by Rowhammer limited only to memory
integrity and, in particular, can the Rowhammer effect be
exploited for breaching confidentiality?

• What are the security implications of corrected bit flips?
Can an attacker use Rowhammer to breach confidentiality
even when ECC memory corrects all flipped bits?

A. Our Contributions

In this paper, we answer these questions in the affirmative.

More specifically, we present RAMBleed, a new Rowhammer-

based attack that breaks memory confidentiality guarantees

by acquiring secret information from other processes running

on the same hardware. Remarkably, RAMBleed can break

memory confidentiality of ECC memory, even if all bit flips are

successfully corrected by the ECC mechanism. After profiling

the target’s memory, we show how RAMBleed can leak secrets

stored within the target’s physical memory, achieving a read

speed of about 3–4 bits per second. Finally, we demonstrate

695

2020 IEEE Symposium on Security and Privacy

© 2020, Daniel Genkin. Under license to IEEE.
DOI 10.1109/SP40000.2020.00020



the threat posed by RAMBleed by recovering an RSA 2048-

bit signing key from an OpenSSH server using only user level

permissions.

Data-Dependent Bit Flips. The main observation behind

RAMBleed is that bit flips depend not only on the bit’s

orientation, i.e., whether it flips from 1 to 0 or from 0 to 1, but

also on the values of neighboring bits [34]. Specifically, true

bits tend to flip from 1 to 0 when the bits above and below

them are 0, but not when the bits above and below them are

1. Similarly, anti bits tend to flip from 0 to 1 when the bits

above and below them are 1, but not when the bits above and

below them are 0. While this observation dates back to the

very first Rowhammer paper [34], we show how attackers can

use it to obtain a read primitive, thereby learning the values

of nearby bits which they might not be allowed to access.

RAMBleed Overview. Suppose an attacker wants to

determine the value of a bit in a victim’s secret. The attacker

first templates the computer memory to find a flippable bit

at the same offset in a memory page as the secret bit. (For

the rest of the discussion we assume a true bit, i.e., one that

flips from 1 to 0.) The attacker then manipulates the memory

layout to achieve the arrangement depicted below:

Row Activation Page Secret

Unused Sampling Page

Row Activation Page Secret

Here, each memory row spans two memory pages of size

4 KiB. The attacker uses the Row Activation pages for ham-

mering, the Sampling page contains the flippable bit, which

is initialized to 1, and Secret pages contain the secret victim

data that the attacker aims to learn. If the value of the secret

bit is 0, the layout results in a flippable 0-1-0 configuration,

i.e., the flippable bit is set to 1, and the bits directly above

and below it are 0. Otherwise, the secret bit is 1, resulting in

a 1-1-1 configuration, which is not flippable.

Next, the attacker repeatedly accesses the two activation

pages she controls (left top and bottom rows), thereby ham-

mering the middle row. Because the Rowhammer effects are

data dependent, this hammering induces a bit flip in the

sampling page in the case that the secret bit is 0. The attacker

then accesses the sampling page directly, checking for a bit

flip. If the bit has flipped, the attacker deduces that the value

of the secret bit is 0. Otherwise, the attacker deduces that

the value is 1. Repeating the procedure with flippable bits at

different offsets in the page allows the attacker to recover all

of the bits of the victim’s secret.

We note here that neither the victim nor the attacker access

the secrets in any way. Instead, by accessing the attacker-

controlled row activation pages, the attacker uses the victim’s

data to influence Rowhammer-induced bit flips in her own

private pages. Finally, the attacker directly checks the sampling

page for bit flips, thereby deducing the victim’s bits. As such,

RAMBleed is a cross address space attack.

ECC Memory. ECC memory has traditionally been consid-

ered an effective defense against Rowhammer-based attacks.

Even when an attacker flips a bit in memory, the hard-

ware’s ECC mechanisms simply revert back any Rowhammer-

induced bit flips. However, recent work has demonstrated

that an attacker can defeat the ECC mechanism by inducing

enough carefully-placed flips in a single codeword, resulting

in observable bit-flips after error correction [13].

In this paper, however, we show that even ECC-corrected

bit flips may have security implications. This is because

RAMBleed does not necessarily require the attacker to read

the bit to determine if it has flipped. Instead, all the attacker

requires for mounting RAMBleed is an indication that a bit in

the sampling page has flipped (and subsequently corrected).

Unfortunately, as Cojocar et al. [13] show, the synchronous

nature of the ECC correction algorithm typically exposes such

information through a timing channel, where memory accesses

that require error correction are measurably slower than normal

accesses.

Thus, we can exploit Rowhammer-induced timing variation

to read data even from ECC memory. In particular, our work is

the first to highlight the security implications of successfully

corrected flips, hitherto considered to be benign.

Memory Massaging. One of the main challenges for mount-

ing RAMBleed, and Rowhammer-based attacks in general, is

achieving the required data layout in memory. Past approaches

rely on one or more mechanisms which we now describe. The

first practical Rowhammer attack relied on operating system

interfaces (e.g., /proc/pid/pagemap in Linux) to perform

virtual-to-physical address translation for user processes [55].

Later attacks leveraged huge pages, which give access to

large chunks of consecutive physical memory [19], thereby

providing sufficient information about the physical addresses

to mount an attack. Other attacks utilized memory grooming or

massaging techniques [61], which prepare memory allocators

such that the target page is placed at the attacker-chosen phys-

ical memory location with a high probability. An alternative

approach is exploiting memory deduplication [7, 51], which

merges physical pages with the same contents. The attacker

then hammers its shared read-only page, which is mapped to

the same physical memory location as the target page.

However, many of these mechanisms are no longer available

for security reasons [42, 52, 57, 61]. Thus, as a secondary

contribution of this paper, we present a new approach for

massaging memory to achieve the desired placement. Our

approach builds on past works that exploit the Linux buddy

allocator to allocate blocks of consecutive physical mem-

ory [11, 61]. We extend these works by demonstrating how

an attacker can acquire some physical address bits from the

allocated memory. We further show how to place secret-

containing pages at desired locations in the physical memory.

Finally, we note that this method may have independent

value for mounting Prime+Probe last-level cache attacks [40].

This is since it allows the attacker to deduce physical addresses

of memory regions, thereby aiding eviction set construction.

Extracting Cryptographic Keys. To demonstrate the

effectiveness of RAMBleed, we use it to leak secrets across

process boundaries. Specifically, we use RAMBleed against

an OpenSSH 7.9 server (newest version at time of writ-

696



ing), and successfully read the bits of an RSA-2048 key

at a rate of 0.3 bits per second, with 82% accuracy. We

combine the attack with a variant of the Heninger-Shacham

algorithm [23, 24, 46] designed to recover RSA keys from

partial information, achieving complete key recovery.

Summary of Contributions. In this paper we make the

following contributions:

• We demonstrate the first Rowhammer attack that breaches

confidentiality, rather than integrity (Section IV).

• We abuse the Linux buddy allocator to allocate a large block

of consecutive physical addresses, and show how to recover

some of the physical address bits (Section V-A).

• We design a new mechanism, which we call Frame Feng
Shui, for placing victim program pages at a desired location

in the physical memory (Section V-C).

• We demonstrate a Rowhammer-based attack that leaks keys

from OpenSSH while only flipping bits in memory locations

the attacker is allowed to modify (Section VII).

• Finally, we demonstrate RAMBleed against ECC memory,

highlighting security implications of successfully-corrected

Rowhammer-induced bit flips (Section VIII).

B. Responsible Disclosure

Following the practice of responsible disclosure, we have

notified Intel, AMD, OpenSSH, Microsoft, Apple, and Red

Hat about our findings. The results contained in this paper (and

in particular our memory massaging technique) were assigned

CVE-2019-0174 by Intel.

C. Related Works

Security Implications of Rowhammer. The potential for

sporadic bit flips was well known in the DRAM manufacturing

industry, but was considered a reliability issue rather than a

security threat. Kim et al. [34] were the first to demonstrate a

reliable method for inducing bit flips by repeatedly accessing

pairs of rows in the same bank. Subsequently, Seaborn and

Dullien [55] showed that Rowhammer is a security concern

by using Rowhammer-induced flips to break out of Chrome’s

Native Client sandbox [67] and obtain root privileges.

Since the initial Rowhammer-based exploit of [55], re-

searchers have demonstrated numerous other avenues for

Rowhammer exploitation. Gruss et al. [19] demonstrated

that page-table bits can be flipped via Rowhammer from

JavaScript, while Bosman et al. [7] flipped the types of

JavaScript objects through the browser. Aweke et al. [2] also

demonstrated Rowhammer flips without the use of CLFLUSH,

and with a halved DRAM refresh interval. Van Der Veen

et al. [61] used Rowhammer to gain root on mobile phones,

while Lipp et al. [38] and Tatar et al. [59] used network

requests to induce Rowhammer flips via a completely remote

attack. Frigo et al. [14] managed to induce bit flips from the

browser’s interface to the GPU. ECC memory was shown to

be vulnerable to Rowhammer by Cojocar et al. [13].

Lou et al. [41] systematically categorize Rowhammer at-

tacks in a framework to better understand the problem and

uncover new types of Rowhammer attacks. Their methodology,

however, is limited and completely ignores the possibility of

using Rowhammer as a read side channel.

Defenses. Various defenses have been proposed for Rowham-

mer attacks, aiming to detect ongoing attacks [2, 12, 20, 27,

47, 69], neutralize the effect of bits being flipped [19, 61], or

eliminate the possibility of Rowhammer bit flips in the first

place [8, 31, 33, 34].

II. BACKGROUND

This section provides the necessary background on DRAM

architecture, the row-buffer timing side channel described by

Pessl et al. [49], and the Rowhammer bug. We begin by briefly

overviewing DRAM organization and hierarchy.

A. DRAM Organization

DRAM Hierarchy. DRAM (dynamic random access mem-

ory) is organized in a hierarchy of cells, banks, ranks, and

DIMMs, which are connected to one or more channels.

More specifically, at the lowest level DRAM stores bits in

units called cells, each consisting of a capacitor paired with

a transistor. The charge on the capacitor determines the value

of the bit stored in the cell, while the transistor is used to

access the stored value. For true cells, a fully charged capacitor

represents a ‘1’ and a discharged capacitor represents a ‘0’

while the opposite holds true for anti cells.

Memory cells are arranged in a grid of rows and columns

called a bank. Cells in each row are connected via a word
line, while cells in each column are connected across bit lines.

Banks are then grouped together to form a rank, which often

corresponds to one side of a DIMM. Each DIMM is inserted,

possibly with other DIMMs, into a single channel, which is a

physical connection to the CPU’s memory controller.

DRAM Operation. Access to a DRAM bank operates at

a resolution of a row, typically consisting of 65536 cells, or

8 KiB. To activate a row, the memory controller raises the

word line for the row. This produces minute currents on the

bit lines, which depend on the charge in the cells of the active

row. Sense amplifiers capture these currents at each column

and amplify the signal to both copy the logical value of the

cell into a latch and refresh the charge in the active row. Data

can then be transferred between the CPU and the row buffer,

which consists of the latches that store the values of the cells

in the active row.

Over time, the charge in the cell capacitors in DRAM leaks.

To prevent data loss through leakage, the charges need to be

refreshed periodically. Refreshing is handled by the memory

controller, that ensures that each row is opened at least once

every refresh interval, which is generally 64 ms [30] for

DDR3 and DDR4. LPDDR4 defines temperature-dependent

adaptations for the refresh interval [29].

DRAM Addressing. Modern memory controllers use a com-

plex function to map a physical address to the correct physical

location in memory (i.e., to a specific channel, DIMM, rank,

bank, row, and column). While these functions are proprietary

and undocumented for Intel processors, they can be reverse

697



Fig. 1: Reverse engineered DDR3 single channel mapping (2

DIMM per channel) for Ivy Bridge / Haswell (from [49]).

engineered through both software- and hardware-based tech-

niques [49]. For example, Section II-A shows the DRAM

mapping for a typical configuration found in Ivy Bridge and

Haswell systems. As the figure shows, the bank and the rank

are determined based on bits 13–21 of the physical address. We

have verified that the mapping matches the Haswell processor

we use in our experiments.

Row Addressing. As discussed above, DRAM rows have a

fixed size of typically 8 KiB. However, from the implementa-

tion side, it is usually more important to know what amount of

memory has the same row index. This is sometimes referred to

as same-row [19, 55]. If the address goes to the same row and

the same bank, it is called same-row same-bank; if it goes

to different banks but has the same row index, it is called

same-row different-bank [55].

In our experimental setup, we have a total of 32 DRAM

banks, and thus an aligned block of 256 KiB = 218 B of

memory has the same row index. In other words, the row

index on our system is directly determined by bits 18 and

above of the physical address. Pessl et al. [49] provide a more

extensive discussion.

B. Row-Buffer Timing Side Channel

Opening a row and loading its contents into the row buffer

results in a measurable latency. Even more so, repeatedly

alternating accesses to two uncached memory locations will

be significantly slower if these two memory locations happen

to be mapped to different rows of the same bank [49]. In

Section V, we use this timing difference to identify virtual

addresses whose contents lie within the same bank, and

also uncover the lower 22 physical addressing bits, thereby

enabling double-sided Rowhammer attacks.

C. Rowhammer

The trend towards increasing DRAM cell density and de-

creasing capacitor size over the past decades has given rise to

a reliability issue known as Rowhammer. Specifically, repeated

accesses to rows in DRAM can lead to bit flips in neighboring

rows (not only the direct neighbors), even if these neighboring

rows are not accessed [34].

The Root Cause of Rowhammer. Due to the proximity of

word lines in DRAMs, when a word line is activated, crosstalk

effects on neighboring rows result in partial activation, which

leads to increased charge leakage from cells in neighboring

rows. Consequently, when a row is repeatedly opened, some

· · ·

· · ·

expect flip
hammer

expect flip
hammer

expect flip

(a) Double-sided

· · ·

· · ·

hammer

hammer

expect flip
hammer

expect flip

(b) Single-sided

· · ·

· · ·
expect flip

expect flip

expect flip
hammer

expect flip

expect flip

expect flip

(c) One-location

Fig. 2: Different hammering techniques as presented by [21].

cells lose enough charge before being refreshed to drop to an

uncharged state, resulting in bit flips in memory.

Performing Uncached Memory Accesses. A central re-

quirement for triggering Rowhammer bit flips is the capability

to make the memory controller open and close DRAM rows

rapidly. For this, the adversary needs to generate a sequence

of memory accesses to alternating DRAM rows that bypass

the CPU cache. Several approaches have been suggested for

bypassing the cache.

• Manually Flush Cache Lines. The x86 instruction

set provides the CLFLUSH instruction, which flushes the

cache line containing its destination address from all of

the levels of the cache hierarchy. Crucially, CLFLUSH only

requires read access to the flushed address, facilitating

Rowhammer attacks from unprivileged user-level code. On

ARM platforms, prior to ARMv8, the equivalent cache line

flush instruction could only be executed in kernel mode;

ARMv8 does, however, offers operating systems the option

to enable an unprivileged cache line flush operation.

• Cache Eviction. In cases where the CLFLUSH instruction

is not available (e.g. in the browser), an attacker can force

contention on cache sets to cause cache eviction [2, 19].

• Uncached DMA Memory. Van Der Veen et al. [61] report

that the cache eviction method above is not fast enough to

cause bit flips on contemporary ARM-based smartphones.

Instead, they used the Android ION feature to allocate

uncacheable memory to unprivileged userspace applications.

• Non-temporal instructions. Non-temporal load and store

instructions direct the CPU not to cache their results. Avoid-

ing caching means that subsequent accesses to the same

address bypass the cache and are served from memory [50].

Another important distinction between Rowhammer attacks is

the strategy in which DRAM rows are activated, i.e., how

aggressor rows are selected. See Figure 2.

Double-sided Rowhammer. The highest amount of

Rowhammer-induced bit flips occur when the attacker ham-
mers, that is repeatedly opens and closes, the two rows

adjacent to a target row. This approach maximizes the number

of neighboring row activations, and consequently the charge

leakage from the target row (Figure 2a). However, for double-

sided hammering, the attacker needs to locate addresses in the

two adjacent rows, which may be difficult without knowledge

of the physical addresses and their mapping to rows. Previous

attacks exploited the Linux pagemap interface, which maps

virtual to physical addresses. However, to mitigate the Seaborn

698



and Dullien [55] attack, recent versions of Linux only allow

root access to the pagemap interface.

Another avenue used by previous works for finding adjacent

rows is to use huge pages, e.g., transparent huge pages (THP),

to obtain large blocks of physically contiguous memory [19].

Single-sided Rowhammer. To avoid the need for finding

the two rows adjacent to the target row, an adversary can take

a more opportunistic approach, which aims to cause bit flips

in any row in memory (Figure 2b). This can be achieved by

guessing several addresses at random, e.g., 8 addresses, in the

hope that some fall within two rows in the same bank. With

B banks, the probability of having at least one such a pair is

1−∏n
i=1

B−i
B , i.e., 61.4% for 8 addresses and 32 banks.

Alternatively, the adversary can take a more disciplined

approach and use the row-buffer timing channel (Section II-B)

to identify rows in the same bank [6, 61].

Because only one of the rows being hammered is located

near the target row, single-sided Rowhammer results in fewer

bit flips than double-sided Rowhammer [2].

One-location Rowhammer. Finally, one-location hammer-

ing [21], is the least restrictive strategy, but also generates

the fewest number of bit flips (Figure 2c). Here, the attacker

repeatedly flushes and then reads from a single row. The

presumed cause of flips, in this case, is that newer memory

controller policies automatically close DRAM rows after a

small amount of time. This obviates the need to open different

rows in the same bank.

D. RSA Background

As the end-to-end attack described in this paper recovers

RSA private keys from an OpenSSH server, we now briefly

overview the RSA [53] cryptosystem and signature scheme.

A user creates an RSA key pair by first generating two

random primes, p and q, a public exponent e, and a private

exponent d such that e · d ≡ 1 (mod (p − 1)(q − 1)). The

public key is then set to be (e,N) where N = pq, and the

private key is set to be (d,N). To sign a message m, the signer

uses its private key to compute σ ← zd mod N , where z is a

collision resistant hashing of m. To verify a signature σ, the

verifier first hashes the message by herself and obtains a digest

z′. She then computes z′′ ← σe mod N using the public key

and verifies that z′ = z′′, and rejects the signature otherwise.

The Chinese Remainder Theorem. A common optimization

used by most applications to compute σ ← zd mod N is the

Chinese Remainder Theorem (CRT). Here, the private key

is first augmented with dp ← d mod (p − 1) and dq ←
d mod (q−1). Next, instead of computing zd mod N directly,

the signer computes σp ← zdp mod p and σq ← zdq mod q.

Finally, the signer computes σ from σp and σq using the CRT.

Partial Key Recovery. Cryptographic keys recovered through

a side channel are typically subject to some measure of noise.

Often only a fraction of the key bits are recovered, and their

values are not known with certainty. Various researchers have

exploited the redundancy present in private key material to

correct the errors [5, 25, 44, 46, 48, 66].

III. THREAT MODEL

We assume an attacker that runs unprivileged software

within the same operating system (OS) as the victim software.

The OS maintains isolation between the victim program and

the attacker. In particular, we assume that the OS works

correctly. We further assume that the attacker cannot exploit

microarchitectural side channel leakage from the victim, either

because the victim does not leak over microarchitectural

channels or because the OS enforces time isolation [16]. We

do assume that the machine is vulnerable to the Rowhammer

attack. However, we assume that the attacker only changes

its own private memory to bypass any countermeasures and

detection mechanisms. Finally, we assume that the attacker is

able to somehow trigger the victim to perform allocations of

secret data (for example using an incoming SSH connections

for the OpenSSH attack in Section VII).

IV. RAMBLEED

Previous research mostly considers Rowhammer as a threat

to data integrity, allowing an unprivileged attacker to modify

data without accessing it. With RAMBleed, however, we

show that Rowhammer effects also have implications on data

confidentiality, allowing an unprivileged attacker to leverage

Rowhammer-induced bit flips in order to read the value of

neighboring bits. Furthermore, as not every bit in DRAM can

be flipped via Rowhammer, we also present novel memory

massaging techniques that aim to locate and subsequently

exploit Rowhammer flippable bits. This enables the attacker to

read otherwise inaccessible information such as secret key bits.

Finally, as our techniques only require the attacker to allocate

and deallocate memory and to measure instruction timings,

RAMBleed allows an unprivileged attacker to read secret data

using the default configuration of many systems (e.g., Ubuntu

Linux), without requiring any special configurations (e.g.,

access to pagemap, huge pages, or memory deduplication).

A. The Root Cause of RAMBleed.

RAMBleed exploits a physical phenomenon in DRAM

DIMMs wherein the likelihood of a Rowhammer induced

bit flip depends on the values of the bits immediately above

and below it. Bits only flip when the bits both immediately

above and below them are in their discharged state [13].

This is in agreement with observations by Kim et al. [34]

that hammering with a striped pattern, where rows alternate

between all zeros and all ones, generates many more flips than

with a uniform pattern.

Data-Dependent Bit Flips. Put simply, bits tend to flip to

the same value of the bits in the adjacent rows. That is, a

charged cell is most likely to flip when it is surrounded by

uncharged cells. This is likely due to capacitors of opposite

charges inducing parasitic currents in one another, which cause

the capacitors to leak charge more quickly [3]. For our attack

to work, is it also crucial that bit flips are influenced only by

bits in the same column, and not by the neighboring bits within

the same row. This isolation is what allows us to deduce one

699



bit at a time. Cojocar et al. [13] experimentally demonstrate

this to be the case.

A Toy Example. To illustrate with a concrete example, we

introduce the notation of an x-y-z configuration to describe the

situation in which three adjacent bits in the same column have

the values x, y, and z, respectively, where x, y, z ∈ {0, 1}. The

key reasoning behind our attack is as follows.

• True Cells. For cells where a one-valued bit is represented

as the cell being charged, the 0-1-0 configuration is the

most likely to flip, changing to an all zero configuration (0-

0-0) when rows of the first and the last zero-valued cells

are hammered. In this case, the surrounding zero-bits in the

aggressor rows enable the bit flip in the victim row.

• Anti Cells. For cells where a one-valued bit is represented

by an uncharged cell, a 1-0-1 configuration is more likely

to flip and change to an all one configuration (1-1-1) when

rows of the first and the last one-valued cells are hammered.

Notation. We adopt Cocojar et al.’s [13] terminology of

calling 0-1-0 and 1-0-1 configurations “stripe” patterns, and

naming 1-1-1 and 0-0-0 configurations “uniform” patterns.

Given this data dependency, we now proceed to build a read

side channel in which we read the bits in surrounding rows

by observing flips, or lack thereof, in the attacker’s row.

B. Memory Scrambling

One potential obstacle to building our read channel is

that modern memory controllers employ memory scrambling,

which is designed to avoid circuit damage due to resonant

frequency [68] as well as to serve as a mitigation to cold-

boot attacks [22]. Memory scrambling applies a weak stream

cipher to the data prior to sending it to the DRAM. That is,

the memory scrambler XORs the data with the output of a

pseudo-random number generator (PRNG). The seed for the

PRNG depends on the physical address of the data and on a

random number generated at boot time [26, 43]. The PRNG

is cryptographically weak, and given access to the physical

data in the DRAMs, an adversary can reverse engineer it and

recover the contents of the memory [4, 68].

Bypassing Memory Scrambling. Under our threat model

we cannot use the techniques of Yitbarek et al. [68], as we do

not assume physical access. However, we can take advantage

of the weaknesses of the PRNG. In particular, The boot-time

random seed is identical for all rows, and the physical address

bits included in the seed are such that several adjacent rows

can have the same bits in their addresses. Thus, adjacent

rows typically use the same seed, and have the same mask

applied. Applying the same mask across multiple rows means

that adjacent bits either remain unchanged or are all inverted.

Either way, as observed by [13], striped configurations remain

striped after scrambling. Hence, writing a striped configuration

to memory results in a striped configuration appearing in the

DIMM, maintaining the crucial property that a bit will only

flip if the bits immediately above and below have the opposite

value.

C. Exploiting Data-Dependent Bit Flips

We now show how to exploit the data-dependent bit flips

presented above to read data without accessing it.

A Leaky Memory Layout. We begin by considering the

memory layout presented in Figure 3a, where every DRAM

row contains two 4 KiB pages. In this layout, we assume that

A0, A1, and A2 are the attacker-controlled pages containing

known data, S is a page with the victim’s secret, and R0 is

an arbitrary page. All three rows reside in the same bank.

Next, note that attacker pages A0 and A2 reside in the same

rows as the copies of S. Since DRAM row-buffers operate

at an 8 KiB granularity, accessing a value in A0 activates the

entire first row, including the page containing the secret S.

Similarly, accessing a value in A2 activates the entire third row,

again including the page that contains S. Thus, by repeatedly

accessing A0 and A2, the attacker can indirectly use the victim

pages containing S for hammering, despite not having any

permissions to access them.

Hammering. By hammering the attacker-controlled pages A0

and A2, the attacker induces analog disturbance and interaction

between S and A1. Page A1 also belongs to the attacker, who

can therefore detect bit flips in it. From these bit flips, the

attacker can infer the values of bits in S.

Reading Secret Bit Values. Given a page P , we denote

by P [i] the i-th bit in P , where i ∈ {0, 1, . . . , 32766, 32767}.
At a high level, given a known flippable bit A1[i] in the page

A1, we can read the corresponding bit S[i] (i.e., the bit at the

same offset within the frame) in S as follows:

1) Initialize. Assuming that the bits are true cells, the attacker

first populates all of A1 with ones before hammering.

2) Hammer. The attacker repeatedly reads her own pages

A0 and A2, thereby using the victim’s secret-containing

pages to perform double-sided hammering on A1.

3) Observe. After hammering, the attacker reads the value of

the bit A1[i], which is accessible to her because the page

A1 is located inside the attacker’s own private memory

space. We argue that after hammering, the value of A1[i]

is equal to the value of S[i]. Indeed, if S[i] equals 0, then

before hammering A1[i] would have been in the center of a

0-1-0 stripe configuration. Since A1[i] sits in the center of

a flippable stripe configuration, A1[i] will flip from one to

zero after hammering. Conversely, if S[i] equal to 1, then

A1[i] will be in the center of a 1-1-1 uniform configuration,

and will retain its value of 1 after hammering. Thus, in

both cases, the attacker reads A1[i] from her own private

memory after hammering, which directly reveals S[i].

Double-sided RAMBleed. In the case of anti-cells, the

only change we make is that in step 1, we populate A1 with

zeros instead of ones. Thus, by observing bit flips in her own

pages, the attacker can deduce the values of surrounding cells.

Since the secret S surrounds A1 from both sides, we call this

“double-sided RAMBleed”.

Single Sided RAMBleed. Figure 3b presents the memory

layout for what we call “single-sided RAMBleed”, which

differs from the double-side case only in the bottom right

700



�������	
��	���
�������� ����������

�����������������	
��	���
��������

����������� �����	���
��������

��	 

(a) Double-sided Rambleed. Here, the sampling page (A1) is
sandwiched between two copies of S.

�������	
��	���
�������� ����������

������������������	
��	���
��������

����������� ���	
	���
��������

��	 

(b) Single-sided Rambleed. Here, the sampling page (A1) is
neighbored by the secret-containing page (S) on a single side.

Fig. 3: Page layout for reading out the victim’s secret. Each cell represents a 4 KiB page, meaning that each row represents

an 8 KiB row in a DRAM bank. The attacker repeatedly accesses her row activation pages A0 and A2, activating the top and

bottom rows. She then reads out corresponding bits in page S by observing bit flips in the sampling page A1.

frame; instead of another copy of S, an arbitrary page R1

resides below A1. With this configuration, we can still read

out bits of S by following the same steps as in the double-

sided scenario, albeit with reduced accuracy. The reduction

in accuracy is because the value of R1[i] may differ from

that of S[i]. Assuming a uniform distribution of bits in R1,

in half of the cases, the starting configuration is one of 1-

1-0 and 0-1-1, which are neither striped nor uniform. With

such configurations, bits tend to flip less than with striped

configurations introducing uncertainty to the read values. Yet,

in half of the cases R1[i]=S[i], resulting in the same outcome

as for the double-sided RAMBleed scenario.

While double-sided RAMBleed maximizes the disturbance

interactions between the secret bits and A1, it is also more

challenging to execute in practice because it requires two

copies of the same data in memory. Nevertheless, in Sec-

tion VII we show how an attacker can reliably obtain two

copies of S, demonstrating an end-to-end attack on OpenSSH.

V. MEMORY MASSAGING

The descriptions from Section IV assume that the attacker can

place the victim’s secrets in the layout shown in Figure 3,

where A0–A2 are allocated to the attacker, and that the

attacker knows which bits can flip and in which direction. We

now present novel memory massaging primitives that achieve

both goals without requiring elevated permissions or special

operating system configuration settings (i.e., avoiding huge

pages, page map access, memory deduplication).

A. Obtaining Physically Consecutive Pages

As we can see in Figure 3, the attack requires pages located

in three consecutive 8 KiB rows in the same bank. While

this task was previously achieved using the Android ION

allocator [61], no such interface is available in non-Android

Linux. Instead, we exploit the Linux buddy allocator [17] to

allocate a 2 MiB block of physically consecutive memory. As

the same-row-index size (See Section II-A) on our system is

256 KiB, we are guaranteed to be able to build the layout of

Figure 3 using some of the pages in the block provided by

the allocator. We now proceed to provide a short overview of

Linux’s buddy allocator. See Gorman [17] for further details.

Linux Buddy Allocator. Linux uses the buddy allocator to

allocate physical memory upon requests from userspace. The

kernel stores memory in physically consecutive blocks that

are arranged by order, where the nth order block consists of

4096 · 2n physically consecutive bytes. The kernel maintains

free lists for blocks of orders between 0 and 10. To reduce

fragmentation, the buddy allocator always attempts to serve

requests using the smallest available blocks. If no small block

is available, the allocator splits the next smallest block into

two “buddy” halves. These halves are coalesced into one block

when they are both free again.

The user space interface to the buddy allocator, however,

can only make requests for blocks of order 0. If, for example,

a user program requests 16 KiB, the buddy allocator treats

this as four requests for one 4 KiB block each. This means

that irrespective of their size, user space requests are first

handled from the free list of 0 order blocks. Only once the

allocator runs out of free 0 order blocks, it will start serving

memory requests by splitting larger blocks to generate new 0

order blocks. Thus, while obtaining a virtually consecutive

2 MiB block is trivial and only requires a single memory

allocation, obtaining a physically consecutive block requires

a more careful strategy, which we now describe.

Obtaining a Physically Consecutive 2 MiB Block. We now

exploit the deterministic behavior of the buddy allocator to

coerce the kernel into providing us with physically consecutive

memory, using the following steps:

• Phase 1: Exhausting Small Blocks. First, we al-

locate memory using the mmap system call with the

MAP POPULATE flag, which ensures that the kernel ea-

gerly allocates the pages in physical memory, instead of

the default lazy strategy that waits for them to be accessed

first. Next, we use the /proc/pagetypeinfo interface

to monitor available block sizes in the kernel free lists, and

continue to allocate memory until less than 2 MiB of free

space remains in blocks of order less than 10.

• Phase 2: Obtaining a Consecutive 2 MiB Block. Once

free space in blocks of order below 10 is less then 2 MiB,

we make two requests of size 2 MiB each. Thus, to serve the

first request after exhausting the smaller blocks, the kernel

needs to split one of the 10th order blocks (whose size

is 4 MiB each). This leaves more than 2 MiB in the free

list, where all such space comes from the newly-split 4 MiB

block, and is served in-order. Thus, the memory allocated for

701



the second request consists of consecutive physical memory

blocks, which is exactly what we require.

While the region we obtain in the second allocation is phys-

ically consecutive, this approach does not guarantee that the

obtained area will be 2 MiB-aligned in the physical memory.

Thus, to use the obtained region for Rowhammer, we require

an additional step to recover more information about the

physical address of the obtained 2 MiB region.1

Recovering Physical Addressing Bits. Next, for double-

sided hammering, we need to locate addresses in three con-

secutive rows within the same bank. As some of the physical

address bits of the 2 MiB block are used for determining the

banks of individual 4 KiB pages, we must somehow obtain

these addressing bits for every 4 KiB page in our block.

Since 2 MiB= 221 bytes, and our 2 MiB block is physically

sequential, obtaining the low 21 bits of the physical addresses

amounts to finding the block’s offset from being 2 MiB aligned

(where the low 21 bits are 0). In older Linux kernels, an

attacker could use the pagemap interface to translate virtual

addresses to physical addresses. However, in the current Linux

kernel, the interface requires root privileges due to security

concerns [55]. Instead of using the pagemap interface, we

exploit the row-buffer timing channel of Pessl et al. [49] to

recover the block offset.

Computing Offsets. To find a block’s offset from a 2 MiB

aligned address, we take advantage of the fact that our 2 MiB

block is physically contiguous and that the set of distances
between co-banked addresses uniquely defines the block’s

offset. Figure 4 illustrates this concept. The blue block is a

2 MiB aligned block originally found in the fragmented order

10 block, while the red, 2 MiB unaligned block is the region

we have obtained from our attack on the allocator. The colored

vertical stripes are 4 KiB pages, where two pages of the same

color indicate that they reside in the same bank.

The distances di, i ∈ {0, 1, 2, . . . , n} are the differences

between the addresses of the i-th page in our block and the

very next address located in the same bank. Together, the set

{d0, d1, d2, . . . , dn} forms a distance pattern for our block.

There are 512 possible offsets for a 4 KiB page within a 2 MiB

block; simulations of DRAM addressing confirm that these

patterns uniquely identify the block’s offset.

Recovering Distance Patterns. We can now use Pessl et

al.’s [49] row-buffer timing side channel to find the distances

{d0, · · · , dn} between pages located in the same bank. Once

we have uncovered enough of the distance pattern to uniquely

identify a single offset, we have succeeded in computing the

offset of our 2 MiB block. This typically occurs after finding

fewer than ten distances.

We compute a distance di by alternating read accesses

between pi and pj for j ∈ {i+1, i+2, . . . , i+2n−2, i+2n−1},
where pi is the page at the i-th offset within the block, and

1The more naive strategy of first exhausting all smaller blocks and then
using one larger request in the hope that it is served from a single large
block tends not to work in practice. Any block of order 0 released during the
exhaustion phase will be recycled before splitting the large block and will
result in a non-consecutive allocation.

��
��
��
�����
�����

�
�

�
�

�
�

��
��
����
�����
�����

������

Fig. 4: The blue block is the 2 MiB aligned block that was

originally found in the fragmented order 10 block, while the

red, 2 MiB unaligned block is the block we have obtained from

our attack on the allocator. We compute the offset by finding

the distances between co-banked pages di, i ∈ {0, 1, 2, .., n},
which uniquely identify the offset.

n is the number of pages with the same row index. We then

time how long it takes to access both addresses, and average

the results over 8,000 trials; the page that corresponds to the

greatest read time is identified as residing in the same bank as

pi. The distance di is then equal to the difference in the page

offset between the two.

The reason we search over the next two rows of any bank

(i.e., 512 KiB), and not just the next, is that the nature of

the DRAM addressing scheme means that the two co-banked

pages in consecutive rows can potentially lie anywhere within

the memory range with the same row index. When we compute

the distances, we make use of Schwarz’s [54] optimizations

for confusing the memory controller to obtain accurate timing

measurements. We empirically find over many trials that this

method works with a 100% success rate.

Recovering Bit 21. So far, we have uncovered bits 0–20

of the physical address. As Pessl et al. [49] show, however,

DRAM addressing on our system depends on bits 0–21. The

naive solution is to simply adjust our attack on the memory

allocator to obtain a physically contiguous 4 MiB block. This

solution, however, is infeasible as the buddy allocator does not

track 8 MiB blocks, and thus cannot split an 8 MiB block into

two contiguous 4 MiB blocks. Another solution is to simply

guess the value of bit 21, doubling the attack’s running time.

We can, however, overcome this through an insight into the

DRAM addressing scheme. On our system (a Haswell machine

with two DIMMs on a single channel) there are three bank
addressing bits used to select between the eight banks within

a single rank. As specified by [49], bit 21 is only used for

computing the third bank addressing bit by XORing bits 17

and 21 of the physical address. Thus, to find two physical

addresses a0, a1 located in the same bank in consecutive 8 KiB

rows, we need to ensure that

a017 ⊕ a021 = a117 ⊕ a121

where aij is the j-th least significant bit in the i-th physical

addresses (a0, a1). Then, given a physical address a0 in the

2 MiB block, when we want to find another physical address

a1 in the same bank, but located in the row above. First we set

a1 to be a0 plus the size until the next row index. Then, we

702



adjust a117 to preserve the above equation. Even though we do

not know a021 nor a121, we can examine bits 0 till 20 in a0 to

see if the addition of the size of row index done for computing

a1 had resulted in a carry for bit 21. If so, we compensate by

flipping a117 in order to preserve the above equation.

B. Memory Templating

After obtaining blocks of contiguous memory, we proceed

to search them for bits that can be flipped via Rowhammer.

We refer to this as the templating phase, which is performed

as follows. We first use our technique to obtain 2 MiB blocks

of physically contiguous memory. Then, we locate addresses

that belong to the same bank using the method described

above. Next, we perform double-sided hammering with both

1-0-1 and 0-1-0 striped configurations. Finally, we record the

locations of these flips for later use with RAMBleed.

C. Placing Secrets Near Flippable Bits

After templating memory, we exploit the determinism of the

Linux physical memory allocator to place the victim’s page in

the desired physical locations as outlined in Figure 3. While a

similar task was achieved in [61] on Android’s ION allocator

by exhausting most of the available memory to control the

placement of the victim, we achieve the same result on Linux’s

buddy allocator without memory exhaustion. Following the

convention of [61][51][58], we call this technique “Frame

Feng Shui”, as we are coercing the allocator into placing select

pages into a frame of our choosing.

Exploiting Linux’s Buddy Allocator. The buddy allocator

stores blocks of equal order in a first-in-last-out (FILO) stack-

like data structure, and upon receipt of a request of order n,

the allocator returns the most recently freed block from the

n-th order’s bucket. Thus, if we assume that the victim, after

being triggered, allocates a predictable number of pages before

allocating the secret-containing page, we can force Linux’s

memory allocator to place the victim’s secret containing page

in a page frame of our choice by the following:

• Step 1: Dummy Allocations. The attacker allocates n
4 KiB pages by calling mmap with the MAP POPULATE
flag, where n is the number of pages that the victim will

allocate before allocating its secret containing page.

• Step 2: Deallocation. The attacker inspects her own

address space and chooses the target page frame for the

victim’s secret to land on (one that neighbors the flippable

bits). Next, the attacker calls munmap and deallocates

the selected frame. The attacker then immediately unmaps

all the pages mapped during Step 1. After doing so, the

allocator’s stack-like data structure for the 0th order blocks

will have the n pages on top, followed by the target page.

• Step 3: Triggering the Victim. After Steps 1 and

2, the attacker immediately triggers the victim process,

letting it perform its memory allocations. In Section VII,

we accomplish this by initiating an SSH connection, which

is served by the SSH daemon. After being triggered, the

victim allocates n pages, which then land in the frames

vacated by the pages mapped in Step 1. Finally, the victim

allocates its secret-containing page, which then lands in the

desired frame, as it will be located on top of the allocator’s

stack-like data structure for 0th order blocks at this point.

D. Putting It All Together

With the above techniques in place, we can now describe

our end-to-end attack. which consists of two phases.

Offline. The attack starts by allocating 2 MiB blocks and

dividing them into physically consecutive pages as described

in Section V-A. The attacker then templates her blocks and

locates Rowhammer induced bit flips using the methodology

described in Section V-B. Notice that this phase is done offline,

entirely within the attacker’s address space, and without any

interaction with the victim. Finally, after the attacker obtains

enough Rowhammer induced bit flips to read the victim’s

secret, the attacker begins the online phase described below.

Online. In this step, the attacker uses Frame Feng Shui to get

the victim to place his secret in the physical memory locations

desired by the attacker (e.g., using the layout in Figure 3).

The attacker then performs the RAMBleed attack described in

Section IV-C to exploit the data-dependency with the victim’s

bits, and subsequently deduces some of their values. Finally,

the attacker repeats the online phase step until a sufficient

number of secret bits where leaked from the victim (e.g.,

around 66% percent of the victim’s RSA secret key, which

is sufficient to mathematically recover of the remaining bits).

VI. EXPERIMENTAL EVALUATION

To measure RAMBleed’s capacity as a read side channel,

we measure the rate and accuracy of RAMBleed’s ability

to extract bits across process boundaries and address spaces

under ideal conditions and predictable victim behavior.

Next, after evaluating both double-sided and single-sided

RAMBleed, in Section VII we evaluate RAMBleed against

an OpenSSH 7.9 server (which is a popular SSH server),

extracting the server’s secret RSA signing keys.

The Victim Process. In the proof-of-concept victim code,

the victim waits for an incoming TCP connection, and then

copies the secret key into a freshly allocated page (using an

anonymous mmap) upon each TCP connection request. This

behavior is akin to a server that runs a decryption routine every

time the attacker makes a request, thereby using its secret key.

The Attacker Process. The attacking process uses the tech-

niques described in Section V-A to obtain 2 MiB physically

consecutive blocks, and subsequently templates memory for

flippable cells using the methods outlined in Section V-B.

Finally, the attacker uses Frame Feng Shui to place the secret-

containing page above and below a flippable bit (for single-

sided, we only place it above). Concretely, we accomplish this

by unmapping the target location and then initiating a TCP

connection with the victim. Since n = 0 in this case, meaning

that the secret is the first allocation upon context switching,

the secret-containing page should land in the recently vacated

frame. The attacker then hammers the surrounding rows and

leaks the secret bits by reading out the flips from its own page.

We run both processes as taskset with the same CPU affinity.

703



Type Read Accuracy Percents
Overall False Positive False Negative

Double-sided 90% 5% 15%
Single-sided 74% 19% 29%

TABLE I: “false positive” events, where a uniform configu-

ration still flips are more rare than “false negative” events, in

which a striped configuration refuses to flip.

Hardware. We use an HP Prodesk 600 desktop running

Ubuntu 18.04, featuring an i5-4570 CPU and two Axiom

DDR3 4 GiB 1333 MHz non-ECC DIMMs, model number

51264Y3D3N13811, in a single-channel configuration.

Experimental Results. While [13] report that bit flips are

deterministic with regards to the surrounding bits (i.e. a bit

flips if and only if it is in a striped configuration), on our

systems we observe the more general case where the bit flips

are probabilistic. Next, the probability of a bit flip highly

depends on the type of configuration (striped or uniform). This

uncertainty adds noise to our read-channel, which we handle

with a variant of the Heninger-Shacham technique [24].

Memory Templating. The time required to template memory

and find the needed flips is entirely dependent upon how easily

the underlying DIMMs yield bit flips. While [37] and [21]

report finding thousands of flips within minutes, we found

flips at a more modest rate of 41 flips per minute.

Reading Secret Bits. After templating the memory with

a striped 0-1-0 pattern, our experimental code can read out

the victim’s secret at a rate of 3–4 bits/second. As we can

see from the results in Table I, this works with 90% accuracy

overall, and 95% accuracy when it comes to identifying 1-bits.

This is because “false positive” events, that is, when a 1-1-

1 uniform configuration still results in the center bit flipping

from one to zero, are much rarer than “false negative” events,

in which a 0-1-0 stripe refuses to flip. We can then template

with the opposite stripe pattern (1-0-1) and achieve a 95%

accuracy rate on the zero-valued bits.

VII. ATTACKING OPENSSH

To demonstrate the practical risk that RAMBleed poses to

memory confidentiality, in this section we present an end-to-

end attack against OpenSSH 7.9 that allows an unprivileged

attacker to extract the server’s 2048-bit RSA private signing

key. This key is what allows an SSH server to authenticate

itself to incoming connections. As such, a break of this key

enables the attacker to masquerade as the server, thereby

allowing her to conduct man-in-the-middle (MITM) attacks

and decrypt all traffic from the compromised sessions.

At a high level, our attack operates by coercing the server’s

SSH daemon to repeatedly allocate and place its private key

material at vulnerable physical locations. We then use double-

sided RAMBleed to recover a portion of the bits that make

up the server’s RSA key. Finally, we utilize the mathematical

redundancy in RSA keys to correct for errors in extracted

bits, as well as recover missing bits that we were unable to

read directly. Before describing our attacks, we now describe

how OpenSSH manages and uses its keys in response to

incoming SSH requests, and how we adapted the techniques

from Section V to specifically target OpenSSH.

A. Overview of OpenSSH

The OpenSSH daemon is a root-level process that binds to

port 22 and has access to a root-accessible file, which stores

the server’s RSA private key. As shown in Figure 5, when a

TCP connection arrives on port 22, the daemon spawns a child

process that handles the authentication phase of incoming SSH

connections. The child is responsible for both authenticating

the server to the client as well as authenticating the client

to the server. While the latter can be done either via public-

private key pair, or by supplying a password, the former is

done by having the server use its RSA private key to sign a

challenge issued by the client. Finally, once authentication is

complete, the child process spawns an unprivileged grandchild

for handling the user’s connection. See Figure 5.

Key Memory Management. The child process that is

spawned by the SSH demon for mutually authenticating an

incoming SSH request must first read in the server’s private

key from the key file into a temporary buffer. At this point,

the key will actually be located in memory in two places:

namely, the temporary buffer and the OS’ page cache. Un-

fortunately, we cannot read either of these memory locations

via RAMBleed. For the former, this buffer gets overwritten

immediately, before we have any chance to read even a single

bit using RAMBleed. The latter copy is also inaccessible as it

is stored inside the OS’ page cache, which is located in a static

region of physical memory that is not moved around. Luckily,

OpenSSH’s authentication process then proceeds to copy the

keys into a new buffer maintained by a global structure,

aptly named “sensitive data”. This buffer remains in physical

memory for the duration of the connection. Thus, our attack

aims to read the private key material from this structure.

We now proceed to describe our attack on OpenSSH.

B. Attack Overview

Our first step is to profile memory, looking for flippable

bits. We do this in the same manner described in Section V-B.

After finding a sufficient number of flips, we begin the reading
phase, in which we perform RAMBleed to leak a single bit at

a time. At a high level, for each templated bit, we use Frame

Feng Shui to place private key material in the configuration

shown in Figure 3, where A1 is the page containing the

flippable bit. We then perform double-sided RAMBleed to leak

the bit’s value and proceed to the next bit.

C. Overcoming OpenSSH’s Memory Allocation Pattern

To use Frame Feng Shui against OpenSSH, we must

determine the value n, which is the number of pages we

must unmap after vacating the target frame in order to cause

OpenSSH to place the secret in the targeted frame location.

Examining the behavior of OpenSSH 7.9 on our system, we

found that its allocations pattern is predictable, which allows

us to use Frame Feng Shui with a high success rate. More

704



�������	
��	���
�������� �������
��������

�������
���������������	
��	���
��������

���������� ��	
�	���
��������

�
	!

��������

		
����
��

��������

(a) The attacker initially owns both target pages T0 and T1.

�������	
��	���
�������� �������

�������
���������������	
��	���
��������

�����	���� 
���
	���
��������

��	"

��������

�#
�#������	��

�������
�		
����
��

��������

�
��
	��	�����$

(b) The attacker makes an SSH connection and performs Frame Feng
Shui to land the secret S in the target page T0, which lies above the
sampling page (A1).

�������	
��	���
�������� ����������

��������������	
��	���
��������

���������� ���	
	���
��������

�
	!

��������

�#
�#������	��
����������		
����
��

��������

�����	��	���
�$

(c) The attacker repeats the Frame Feng Shui process to land S in
the target page T1, below the sampling page (A1).

�������	
��	���
�������� ����������

�����������������	
��	���
��������

���������� �����	���
��������

��	 

��������

		
����
��

��������

(d) After achieving the double-sided RAMBleed position, the attacker
now hammers the activation pages (A0 and A2) to induce flips in the
sampling page (A1).

Fig. 5: Overview of our attack on OpenSSH

specifically, we found that OpenSSH uses the default RSA

key size of 2048 bits, with the following allocation pattern.

• First, the page containing d, the RSA private exponent, is

allocated 101 pages after the daemon accepts a new TCP

connection. See Section II-D for RSA notation.

• Next, a single page containing both p and q is allocated 102

pages after the daemon accepts a new connection.

• Finally, a single page that contains both dp and dq is

allocated 104 pages after accepting a new connection.

Furthermore, all the private key values mentioned above are lo-

cated at the same offset within their page upon every incoming

connection. Thus, we fix n = 100, 101, and 104 respectively

for d, p and q, and dp, dq . Next, to obtain the configuration in

Figure 3, we call munmap on the page above A1 and follow

it with n munmaps on random pages. We then immediately

make a TCP connection, causing the SSH daemon to make n
allocations, followed by allocating the secret-containing page,

which will then be placed in the target frame. By holding the

TCP connection open, we can repeat the process to place the

page in the frame below A1, thereby creating two copies of

the secret in memory to facilitate double-sided RAMBleed.

Accounting for Allocation Noise. The memory placement

technique described above is much more susceptible to noise,

as many CPU cycles pass between the point of the original

unmapping by the attacker and when the victim maps the

key-containing page. Thus, if any pages are allocated or

deallocated in that time frame by another process, the key-

containing pages will not be placed in the desired locations.

To minimize this noise, the attacker yields the scheduler before

performing the page deallocaitons, allowing other scheduled

system activity to execute. Next, we also use a busy loop after

unmapping the pages and before reading the bits, waiting a

fixed amount of time for OpenSSH to perform the required

allocations. We note here that if we replace the busy loop

with a sleep operation, this will likely cause the system to

schedule another process and destroy the memory layout. After

using RAMBleed to read the bit(s), we close the connections,

triggering the daemon to kill the two children.

After mitigating noise in this manner, the memory place-

ment process succeeds against OpenSSH with 83% probability.

This means that we will be in the double-sided-RAMBleed sit-

uation 0.832 = 68.89% of the time, in single-sided RAMBleed

2 · 0.83 · 0.17 = 28.22% of the time, and 0.172 = 2.39% of

the time we will be unable to place the target page near the

flipping row, resulting in random guessing. This, along with

potential for RAMBleed to misread bits, gives us an overall

accuracy of 82% when reading the OpenSSH host key.

Key Recovery. To recover the key from the noisy bits, we

use a variant of Paterson et al. [46]’s algorithm, an adaptation

of the Heninger-Shacham algorithm [24] for the case that key

bits are only known with some probability. Specifically, the

algorithm aims to reconstruct the key, bit by bit, starting from

the least significant bit. By relating the public (N, e) and

private (d, p, q, dp, and dq) key components, the algorithm

prunes potential keys and dramatically reduces the search

space. The algorithm explores a search tree of potential keys

while pruning branches that contradict known bits or have a

large number of mismatches with probabilistically recovered

705



Type Probability
Double-sided RAMBleed 68.89%
Single-sided RAMBleed 28.22%
Unable to place victim 2.39%

TABLE II: Probability of OpenSSH placing pages containing

private key material into double-sided, single-sided, or unable-

to-place situations.

bits. Our approach is similar to Paterson et al. [46], but instead

uses a depth-first search in place of a bread-first search.

Through a series of simulations on random RSA 2048

bit keys, we empirically found that our amended Heninger-

Shacham algorithm requires 68% recovery of the private key

material (d, p, q, dp, dq) with an 82% accuracy. This implies

that 4200 distinct bits of private key material is sufficient to

extract the complete key.

D. Overall Attack Performance

Memory Templating. We begin our attack by locating the

flippable bits in the memory of the target machine. Using the

techniques presented in Sections IV and V, we profiled the

machine’s memory to locate Rowhammer induced bit flips. We

note here that the time required to template memory and find

the required flips is entirely dependent upon the susceptibility

of underlying DIMMs to Rowhammer attacks. While [21, 37]

report finding thousands of flips within minutes, we found

flips at a more modest rate of 41 flips per minute, giving us a

running time of 34 hours to locate the 84K bit flips required

for the next phase of the attack.2

We note here that this phase can be performed ahead of time

and with user level permissions, without the need to interact

with the victim application or its secrets.

Removing Useless Bits. Next, we note that not all of these

bitflips are useful for key extraction. First, given OpenSSH

memory layout and the location of the key elements in their

respective pages, only a 6144
32768 = 3

16 fraction of the bits

(corresponding to offsets of d, p, q, dp and dq) are useful for

key recovery. Out of the 84K bit flips recovered in the previous

phase, this leaves approximately 15750 bits flips which have

the potential to reveal bits of the secret key. Next, we note

that these bit flips also contain repetitions in their locations in

the page, meaning that two or more bit flips might actually

correspond to the same bit of the secret key. After removing

such duplicates, we are left with 4.2K bit flips in distinct

locations that are useful for key extraction.

Reading Private Key Material. After placing the key

containing pages in the desired locations to achieve one of the

RAMBleed configurations, we then proceed to hammer A0 and

A2 (See Figure 3). We have no way of determining if we are in

the double-sided, single-sided, or unable-to-place RAMBleed

situation, but given the probabilities in Section VII-C, it is

likely that the bit flip in A1 will depend upon the secret bit

values. Overall, this process resulted in recovering 68% of the

2We empirically found that 84K bit flips was approximately the threshold
for locating 4200 usable, unique, flippable bits.

private key, or 4200 key bits, at a rate of 0.31 bits/second at

an accuracy rate of 82% against OpenSSH. We conjecture that

the deceased accuracy is due to the combined noise from both

the inaccuracy of RAMBleed and Frame Feng Shui.

Key Recovery. As mentioned above, we recover 68% of the

key bits with 82% accuracy. Using our amended Heninger-

Shacham algorithm, we recover the entire RSA private key in

about 3 minutes on a consumer laptop (Dell XPS 15 featuring

an Intel i7-6700 3.4 GHz CPU and 32 GiB of RAM).

VIII. RAMBLEED ON ECC MEMORY

In this section we show how to use RAMBleed to read

secret information stored on DIMMs that use ECC memory.

Unlike Section IV, which shows how RAMBleed can exploit

visible bit flips to read secret information, here we show how

an attacker can exploit bit flips that were successfully corrected

by ECC to read information from the victim’s address space.

We begin by providing background on ECC memory.

A. ECC Memory Background

Memory manufacturers originally designed ECC memory

for correcting rare, spontaneous bit flips, such as those caused

by cosmic rays. As such, ECC memory uses error correcting

codes that can only correct a small number of bits in a single

code word, typically only one or two. This is commonly known

as SECDED (Single error correction double error detection).

Correction Mechanism. When an ECC enabled system

writes data to DRAM, the memory controller writes both the

data bits and an additional string of bits, called the check bits.

These bits offer the redundancy that enables detection and

correction of errors. Together, the data and check bits make up

a codeword, where the typical sizes for data and check bits are

64 and 8 bits, respectively. Upon serving of a read request from

DRAM, the memory controller reads both the data and check

bits, and checks for errors. If an uncorrectable error is detected,

the controller typically crashes the machine, rather than letting

the software operate on corrupted data. Alternately, if the error

can be corrected, the memory controller first corrects the error,

and only then passes the corrected value to the software. We

note that ECC correction and detection occurs only during

read requests, and that a bit flip will go undetected until a

codeword is read from the DIMM.

Detecting Bit Flips. As Cojocar et al. [13] describe, this

synchronous error correction results in a timing side channel

that allows an attacker to determine if a single-bit error has

occurred. They found that the overhead incurred by correctable

bit flips is on the order of hundreds of thousands of cycles,

which the attacker can easily measure.

Concretely, we can detect the presence of a bit flip in

any given word by measuring the read latency from the

word. When we read from a word with a single-bit error, the

hardware must first complete the ECC algorithm, and often log

the error in the firmware log, before the value from the read is

returned. If we observe a much longer read latency, it indicates

that a bit flip occurred sometime after the last time that the

same 64 bit word was read from. This effect is illustrated in

706



��������������������������� �

Fig. 6: Read latencies for the 64-bit words in a single

page. When ECC corrects an error, the latency is 5 orders

of magnitude greater than the common case. This can be seen

by the peak for the 186th word, which indicates a bit flip.

Figure 6; after performing double-sided hammering on the two

aggressor rows, we read from the victim row and observe a

crisp peak for the 186th word, clearly indicating a bit flip.

B. RAMBleed on ECC Memory

We now show how we can leverage the ability to detect the

presence of corrected bit flips to read information from the

victim’s address space. To the best of our knowledge, this is

the first demonstration of security implications of corrected bit

flips.

Experimental Setup. Following the Intel-1 setup of

Cojocar et al. [13], we demonstrate the RAMBleed attack on

ECC memory on a Supermicro X10SLL-F motherboard (BIOS

version 3.0a) equipped with an Intel Xeon E3-1270 v3 CPU

and a using a pair of Kingston 8GB 1333 MHz ECC DIMMs,

model number KVR1333D3E9SK2.

Templating. As with the non-ECC attack, we begin by first

templating memory to locate bit flips. We do so in much the

same manner of [13], only with an algorithmic improvement

for determining which bit in a row is the flippable bit.

Cojocar et al. [13] locate bit flips by performing double

sided Rowhammer, and then using the timing side channel to

locate a word containing a bit flip. They determine which of

the 64 bits flipped by setting exactly one of the bits to its

charged state, while all the rest are discharged. This results in

the targeted bit being in the middle of a striped configuration,

while all the other bits in the word are part of a uniform

configuration. Next, a long read latency indicates that the

single charged bit flipped. Finally, they repeat the process for

each bit to determine which bits can be flipped.

To speed up the process of templating memory for bit

flips, we replace the single-bit iteration phase with a binary

search over the possible locations for the bit flip. That is,

after locating a word with a bit flip, we set half of the bits

to their charged state, with the other half discharged. We

then hammer the aggressor rows again, and record the read

latency. If it is long, then the bit flip lies in the half with the

charged bits; otherwise, it lies in the other half. We repeatedly

reduce the search space by half in this manner, until we have

pinpointed the location of the bit flip. Overall this speeds up

the templating phase of Cojocar et al. [13] by a factor of 10.

Reading Bits. After profiling memory and recording the pre-

cise locations of flippable bits, we use the memory massaging

and Frame Feng Shui techniques described in Section V to

achieve the double-sided RAMBleed configuration. In the non-

ECC RAMBleed case, we hammered the aggressor rows and

subsequently directly read the victim row for a Rowhammer-

induced bit flip, thereby leaking values of secret bits. With

ECC, we cannot observe the flips directly. Instead we use the

timing side channel and look for long read latencies. As such

latencies occur only due to Rowhammer-induced flips, they

can be used to reveal the value of the secret bit as described

in Section IV.

Experimental Results. We can successfully read bits via

RAMBleed against ECC memory with a 73% accuracy at

a reading rate of 0.64 bits/second in our setup. Since ECC

DIMMs are typically built using the same chips as used on

non-ECC DIMMs, but with an additional chip for storing the

check bits, we attribute the drop in accuracy to the fact that

they are simply different sets of DIMMS.

IX. MITIGATIONS

Unlike previous Rowhammer attacks which compromise

integrity, RAMBleed is an attack which compromises con-

fidentiality. Moreover, to leak information cross process and

cross address space, RAMBleed only requires that the attacker

can read and hammer her own private memory, and does not

involve any access or modification to the target’s data, code,

or address space. As such, RAMBleed can bypass software-

based integrity checks that might be applied to the target,

such as using message authentication codes (MAC) to protect

the target’s data. Moreover, techniques designed to protect

cryptographic systems against fault attacks (such as Shamir’s

countermeasure [56]) are also ineffective as they again protect

the integrity of the cryptographic computation and not its

confidentiality. Other software defenses, such as Brasser et

al.’s [8] memory partitioning scheme do not mitigate our

attack, as we are not trying to read from kernel memory.

A. Hardware Mitigations

There are, however, a few commonly proposed hardware-

based mitigations that have the potential to mitigate RAM-

Bleed. Kim et al. [34] propose PARA (probabilistc adjacent

row activation), wherein activating a row causes nearby rows

to activate with some probability. Repeated hammering of an

address then increases the likelihood that nearby victim rows

will be refreshed, thereby restoring their cells’ charges and

preventing Rowhammer. PARA has not been widely adopted,

as it can only proide a probabilistic security guarantee.

Targeted Row Refresh (TRR). The more recent LPDDR4

standard supports the ability to refresh a targeted row with

TRR, where after a row is accessed a set number of times,

the nearby rows are automatically refreshed [31]. Despite

this mitigation, [21, 61] already report the ability to induce

Rowhammer bit flips in the presence of TRR.

Increasing Refresh Intervals. Doubling DRAM refresh

rate by halving the refresh interval from 64ms to 32ms is an

attempt at reducing the number of bit flips by refreshing victim

rows. However, this is impractical on mobile systems due to

707



the increased power demands. Worse yet, Aweke et al. [2] and

Gruss et al. [21] demonstrate bit flips even under this setting.

Using Error Correcting Codes (ECC). An oft-touted

panacea for Rowhammer is the usage of ECC memory, as

any bit flip will simply be corrected by the hardware without

affecting the software layer. However, as we show in Sec-

tion VIII, the hardware error correction implementation actu-

ally produces sufficient side channel information for mounting

RAMBleed. Thus, while ECC significantly slows RAMBleed,

it does not offer complete protection.

B. Memory Encryption

One defense that does in fact protect against RAMBleed

is memory encryption. This is because RAMBleed reads bits

directly from memory, which are ciphertext bits in the case that

memory is encrypted. Trusted execution environments, such

as Intel’s Software Guard Extensions (SGX), ARM’s Trust

Zone, and AMD’s Secure Encrypted Virtualization (SEV), in

fact fully encrypt the enclave’s memory, thereby protecting

them from RAMBleed. It should be noted, however, that

some enclaves, such as SGX, perform integrity checking on

encypted memory; Jang et al. [28] and Gruss et al. [21] show

that Rowhammer induced flips in enclave memory halt the

entire machine, necessitating a power cycle.

C. Flushing Keys from Memory

For systems that use sensitive data for a short amount of

time (e.g., cryptographic keys), zeroing out the data immedi-

ately after use [22] would significantly reduce the risk from

RAMBleed. This is because RAMBleed cannot accurately read

bits of keys that do not remain in memory for at least one

refresh interval (64ms by default). While this countermeasure

is effective for protecting short lived data, it cannot by used

for data that needs to stay in memory for long durations.

D. Probabilistic Memory Allocator

Our Frame Feng Shui technique exploits the deterministic

behavior of the Linux buddy allocator to place the vic-

tim’s pages in specific locations. Consequently, introducing

a sufficient amount of non-determinism into the allocation

algorithm will prevent the attacker from placing secrets into

vulnerable locations. Such a defense would not, however,

necessarily defeat a RAMBleed attacks that use probabilistic

memory spraying techniques similar to [55]. The attacker

could potentially keep many SSH connections open at once,

and then hammer and read from the locations with the correct

RAMBleed configurations. The attacker could use the row-

buffer timing side-channel to detect the correct configurations.

X. LIMITATIONS AND FUTURE WORK

RAMBleed’s primary limitation is that it requires the victim

process to allocate memory for its secret in a predictable

manner in order to reliably read bits of interest. Otherwise,

the Frame Feng Shui process described in Section V-C will

not place the secret page in the intended frame. It may be

possible, however, to bypass this limitation by using Yarom

and Falkner’s [65] Flush and Reload technique to determine

when the secret page is about to be allocated.

Another limitation is that our attack against OpenSSH 7.9

required the the daemon to allocate the key multiple times. We

conjecture, however, that it may be possible to read secrets

even when they are never reallocated by the victim. If the

secret lies in the page cache, it is likely possible to use

Gruss et al.’s [21] memory waylaying technique to repeatedly

evict the secret and then bring it back into memory, thereby

changing its physical address. Even if it does not lie in the page

cache, the attacking process can still evict it by exhausting

enough memory to start paging memory to disk. Both of

these strategies would, however, be defeated by using Linux’s

mlock system call to lock secret pages into memory, thereby

preventing them from ever being evicted to disk.

Next, while we demonstrated our attack on a system using

DDR3 DRAM, we do not suspect DDR4 to be a fundamental

limitation, assuming that DDR4 memory retains the property

that Rowhammer-induced bit flips are data-dependent. Our

techniques for recovering physically sequential blocks depend

only on the operating system’s memory allocation algorithm,

and are thus hardware agnostic. With regard to finding pairs of

addresses in different rows of the same bank, [49] have already

demonstrated how to reverse engineer the DRAM addressing

scheme in DDR4 systems. Furthermore, Rowhammer-induced

bit flips in DDR4 have been demonstrated by [1, 21, 37]. We

leave the composition of these results to achieve RAMBleed

on DDR4 memory to future work.

Finally, RAMBleed’s rate of reading memory is modest,

toping at around 3–4 bits per second. This allows sufficient

time for memory scrubbing countermeasures to remove short-

lived secret data from the target’s memory. We thus leave the

task of improving RAMBleed’s read rate to future work.

XI. CONCLUSION

In this paper, we have shifted Rowhammer from being a

threat only to integrity to also being a threat to confidentiality.

We demonstrated the practical severity of RAMBleed by con-

ducting and end-to-end exploit against OpenSSH 7.9, in which

we extracted the complete 2048 bit RSA private signing key.

To do so, we also developed memory massaging methods and

a technique called Frame Feng Shui that allows an attacker to

place the victim’s secret-containing pages in chosen physical

frames. By uncovering another channel for Rowhammer based

exploitation, we have highlighted the need to further explore

and understand the complete capabilities of Rowhammer.

ACKNOWLEDGMENTS

This research was partially supported by a gift from Intel.

708



REFERENCES

[1] M. T. Aga, Z. B. Aweke, and T. Austin, “When good

protections go bad: Exploiting anti-dos measures to ac-

celerate rowhammer attacks,” in 2017 IEEE International
Symposium on Hardware Oriented Security and Trust
(HOST). IEEE, 2017, pp. 8–13.

[2] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks,

Y. Oren, and T. Austin, “ANVIL: Software-based protec-

tion against next-generation Rowhammer attacks,” ACM
SIGPLAN Notices, vol. 51, no. 4, pp. 743–755, 2016.

[3] K. Bains, J. Halbert, C. Mozak, T. Schoenborn, and

Z. Greenfield, “Row hammer refresh command,” US

Patent Application 2014/0006703A1, 2014.

[4] J. Bauer, M. Gruhn, and F. C. Freiling, “Lest we forget:

Cold-boot attacks on scrambled DDR3 memory,” Digital
Investigation, vol. 16, pp. S65–S74, 2016.

[5] D. J. Bernstein, J. Breitner, D. Genkin, L. G. Bruinderink,

N. Heninger, T. Lange, C. van Vredendaal, and Y. Yarom,

“Sliding right into disaster: Left-to-right sliding windows

leak,” in International Conference on Cryptographic
Hardware and Embedded Systems (CHES), 2017, pp.

555–576.

[6] S. Bhattacharya and D. Mukhopadhyay, “Curious case of

Rowhammer: Flipping secret exponent bits using timing

analysis,” in CHES, 2016.

[7] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup

Est Machina: Memory deduplication as an advanced

exploitation vector,” in IEEE SP, 2016.

[8] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-

R. Sadeghi, “CAnt touch this: Software-only mitigation

against rowhammer attacks targeting kernel memory,” in

USENIX Security, 2017, pp. 117–130.

[9] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and

E. F. Haratsch, “Vulnerabilities in MLC NAND flash

memory programming: Experimental analysis, exploits,

and mitigation techniques,” in HPCA, 2017, pp. 49–60.

[10] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von

Berg, P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss,

“A systematic evaluation of transient execution attacks

and defenses,” arXiv, vol. 1811.05441, 2018.

[11] Y. Cheng, Z. Zhang, and S. Nepal, “Still hammerable

and exploitable: on the effectiveness of software-only

physical kernel isolation,” arXiv, vol. 1802.07060, 2018.

[12] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time

detection of cache-based side-channel attacks using hard-

ware performance counters,” Applied Soft Computing,

vol. 49, pp. 1162–1174, 2016.

[13] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Ex-

ploiting correcting codes: On the effectiveness of ECC

memory against Rowhammer attacks,” in IEEE SP, 2019.

[14] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand

pwning unit: Accelerating microarchitectural attacks with

the GPU,” in IEEE SP, 2018, pp. 195–210.

[15] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of

microarchitectural timing attacks and countermeasures on

contemporary hardware,” J. Cryptographic Engineering,

vol. 8, no. 1, pp. 1–27, 2018.

[16] Q. Ge, Y. Yarom, T. Chothia, and G. Heiser, “Time

protection: the missing OS abstraction,” in EuroSys,

2019.

[17] M. Gorman, Understanding the Linux virtual memory
manager. Prentice Hall, 2004.

[18] D. Gruss, R. Spreitzer, and S. Mangard, “Cache tem-

plate attacks: Automating attacks on inclusive last-level

caches,” in USENIX Security, 2015, pp. 897–912.

[19] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js:

A remote software-induced fault attack in JavaScript,” in

DIMVA, 2016, pp. 300–321.

[20] D. Gruss, C. Maurice, K. Wagner, and S. Mangard,

“Flush+Flush: a fast and stealthy cache attack,” in

DIMVA, 2016, pp. 279–299.

[21] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger,

S. O’Connell, W. Schoechl, and Y. Yarom, “Another flip

in the wall of Rowhammer defenses,” in IEEE SP, 2018,

pp. 245–261.

[22] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clark-

son, W. Paul, J. A. Calandrino, A. J. Feldman, J. Appel-

baum, and E. W. Felten, “Lest we remember: cold-boot

attacks on encryption keys,” CACM, vol. 52, no. 5, pp.

91–98, 2009.

[23] W. Henecka, A. May, and A. Meurer, “Correcting errors

in RSA private keys,” in CRYPTO, 2010, pp. 351–369.

[24] N. Heninger and H. Shacham, “Reconstructing RSA

private keys from random key bits,” in CRYPTO, 2009,

pp. 1–17.

[25] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth,

and B. Sunar, “Cache attacks enable bulk key recovery

on the cloud,” in CHES, 2016, pp. 368–388.

[26] Intel Corporation, “6th generation Intel processor

datasheet for S-Platforms,” 2015.

[27] G. Irazoqui, T. Eisenbarth, and B. Sunar, “MASCAT: pre-

venting microarchitectural attacks before distribution,” in

CODASPY, 2018, pp. 377–388.

[28] Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-Bomb:

Locking down the processor via Rowhammer attack,” in

SysTEX, 2017, p. 5.

[29] JEDEC Solid State Technology Association, “Low power

double data rate 4,” http://www.jedec.org/standards-

documents/docs/jesd209-4b, 2017.

[30] ——, “JEDEC. Standard No. 79-3F. DDR3 SDRAM

Specification,” 2012.

[31] ——, “Low power double data rate 4,” 2017.

[32] N. Karimi, A. K. Kanuparthi, X. Wang, O. Sinanoglu,

and R. Karri, “MAGIC: Malicious aging in cir-

cuits/cores,” ACM (TACO), vol. 12, no. 1, p. 5, 2015.

[33] D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural

support for mitigating row hammering in DRAM memo-

ries,” IEEE Computer Architecture Letters, vol. 14, no. 1,

pp. 9–12, 2015.

[34] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,

C. Wilkerson, K. Lai, and O. Mutlu, “Flipping bits

709



in memory without accessing them: An experimental

study of DRAM disturbance errors,” in ACM SIGARCH
Computer Architecture News, vol. 42, no. 3, 2014, pp.

361–372.

[35] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,

W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,

M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting

speculative execution,” in IEEE SP, 2019.

[36] A. Kurmus, N. Ioannou, N. Papandreou, and T. P. Parnell,

“From random block corruption to privilege escalation:

A filesystem attack vector for Rowhammer-like attacks,”

in WOOT, 2017.

[37] M. Lanteigne, “How Rowhammer could be used to

exploit weaknesses in computer hardware,” http://www.

thirdio.com/rowhammer.pdf, 2016.

[38] M. Lipp, M. T. Aga, M. Schwarz, D. Gruss, C. Mau-

rice, L. Raab, and L. Lamster, “Nethammer: Inducing

Rowhammer faults through network requests,” arXiv, vol.

1805.04956, 2018.

[39] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,

A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,

Y. Yarom, and M. Hamburg, “Meltdown: Reading kernel

memory from user space,” in USENIX Security, 2018,

pp. 973–990.

[40] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee,

“Last-level cache side-channel attacks are practical,” in

2015 IEEE Symposium on Security and Privacy, 2015,

pp. 605–622.

[41] X. Lou, F. Zhang, Z. L. Chua, Z. Liang, Y. Cheng, and

Y. Zhou, “Understanding Rowhammer attacks through

the lens of a unified reference framework,” arXiv, vol.

1901.03538, 2019.

[42] Microsoft, “Cache and memory manager improvements,”

https://docs.microsoft.com/en-us/windows-server/

administration/performance-tuning/subsystem/cache-

memory-management/improvements-in-windows-server,

Apr. 2017.

[43] P. Mosalikanti, C. Mozak, and N. A. Kurd, “High perfor-

mance DDR architecture in Intel Core processors using

32nm CMOS high-K metal-gate process,” in VLSI-DAT,

2011, pp. 154–157.

[44] K. Oonishi and N. Kunihiro, “Attacking noisy secret

CRT-RSA exponents in binary method,” in ICISC, 2018,

pp. 37–54.

[45] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks

and countermeasures: The case of AES,” in CT-RSA,

2006, pp. 1–20.

[46] K. G. Paterson, A. Polychroniadou, and D. L. Sibborn,

“A coding-theoretic approach to recovering noisy RSA

keys,” in ASIACRYPT, 2012, pp. 386–403.

[47] M. Payer, “HexPADS: a platform to detect “stealth”

attacks,” in ESSoS, 2016, pp. 138–154.

[48] C. Percival, “Cache missing for fun and profit,” in

BSDCan 2005, 2005.

[49] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Man-

gard, “DRAMA: exploiting DRAM addressing for cross-

CPU attacks,” in USENIX Security, 2016, pp. 565–581.

[50] R. Qiao and M. Seaborn, “A new approach for Rowham-

mer attacks,” in HOST, 2016, pp. 161–166.

[51] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida,

and H. Bos, “Flip feng shui: Hammering a needle in the

software stack,” in USENIX Security, 2016, pp. 1–18.

[52] Red Hat, Red Hat Enterprise Linux 7 - Virtualization
Tuning and Optimization Guide, 2017.

[53] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method

for obtaining digital signatures and public-key cryptosys-

tems,” CACM, vol. 21, no. 2, pp. 120–126, 1978.

[54] M. Schwarz, “DRAMA: Exploiting DRAM buffers for

fun and profit,” Ph.D. dissertation, Graz University of

Technology, 2016.

[55] M. Seaborn and T. Dullien, “Exploiting the DRAM

Rowhammer bug to gain kernel privileges,”

https://googleprojectzero.blogspot.com/2015/03/

exploiting-dram-rowhammer-bug-to-gain.html, 2015.

[56] A. Shamir, “Method and apparatus for protecting public

key schemes from timing and fault attacks,” US Patent

5,991,415A, 1999.

[57] K. A. Shutemov, “Pagemap: Do not leak physical

addresses to non-privileged userspace,” https://git.kernel.

org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=

ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce, Mar.

2015, retrieved on November 10, 2015.

[58] A. Sotirov, “Heap feng shui in JavaScript,” in BlackHat
Europe, 2007.

[59] A. Tatar, R. Krishnan, E. Athanasopoulos, C. Giuffrida,

H. Bos, and K. Razavi, “Throwhammer: Rowhammer

attacks over the network and defenses,” in USENIX ATC,

2018.

[60] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,

B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,

Y. Yarom, and R. Strackx, “Foreshadow: Extracting the

keys to the Intel SGX kingdom with transient out-of-

order execution,” in USENIX Security, 2018, pp. 991–

1008.

[61] V. Van Der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss,

C. Maurice, G. Vigna, H. Bos, K. Razavi, and C. Giuf-

frida, “Drammer: Deterministic Rowhammer attacks on

mobile platforms,” in CCS, 2016, pp. 1675–1689.

[62] S. Vig, S. K. Lam, S. Bhattacharya, and D. Mukhopad-

hyay, “Rapid detection of Rowhammer attacks using

dynamic skewed hash tree,” in HASP@ISCA, 2018, pp.

7:1–7:8.

[63] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin,

B. Kasikci, F. Piessens, M. Silberstein, R. Strackx, T. F.

Wenisch, and Y. Yarom, “Foreshadow-NG: Breaking the

virtual memory abstraction with transient out-of-order

execution,” https://foreshadowattack.eu/foreshadow-NG.

pdf, 2018.

[64] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One

bit flips, one cloud flops: Cross-VM row hammer attacks

and privilege escalation,” in USENIX Security, 2016.

[65] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high

710



resolution, low noise, L3 cache side-channel attack,” in

USENIX Security, 2014, pp. 719–732.

[66] Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: a

timing attack on OpenSSL constant-time RSA,” Journal
of Cryptographic Engineering, vol. 7, no. 2, pp. 99–112,

2017.

[67] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,

T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar,

“Native client: A sandbox for portable, untrusted x86

native code,” in IEEE SP, 2009, pp. 79–93.

[68] S. F. Yitbarek, M. T. Aga, R. Das, and T. Austin, “Cold

boot attacks are still hot: Security analysis of memory

scramblers in modern processors,” in HPCA, 2017, pp.

313–324.

[69] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-

time side-channel attack detection system in clouds,” in

RAID, 2016, pp. 118–140.

711


