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ABSTRACT Our approach to contrast enhancement (CE) of images is based on natural scene

statistics (NSS). We show, in this paper, that the average intensity distribution of natural images can be

linearly approximated to the ramp distribution in an ordered histogram domain as the contrast increases.

Based on this finding, we propose ramp distribution-based global and local CE algorithms. The ramp

distribution-based slant thresholding (RDST) algorithm is proposed as a global CE method which uses slant

thresholding in an ordered histogram domain to yield a contrast-enhanced image. Also, the ramp distribution-

based adaptive slant thresholding (RDAST) algorithm is proposed as a local CEmethod. It adaptively adjusts

a slant angle of the ramp distribution in each block to suppress noise amplification in uniform regions and

maximizes contrast in non-uniform regions. The RDAST also employs a scaled global modified histogram

to minimize sensitivity to block size changes. Moreover, we propose a metric to measure the amount of

over-contrast in an image to evaluate all CE algorithms more correctly. The experimental results show that

the proposed algorithms have better or competitive performance as well as computational efficiency.

INDEX TERMS Image enhancement, contrast enhancement, ramp distribution, over-contrast measure.

I. INTRODUCTION

Thanks to the proliferation of digital imaging devices such

as cameras and smartphones, taking and sharing photos have

become a daily routine. According to people’s desire to

get high-quality images and vendors’ effort to provide a

high quality of experience, a number of image-enhancing

techniques have been actively studied. Considering the fact

that contrast is an important factor in the human percep-

tion of image quality, applying the contrast enhancement

(CE) method is one of the most effective ways to enhance

images.

Improving the contrast not only makes the image more

visually pleasing but also helps us to understand the contents

of the image. For example, it canmake us distinguish interest-

ing objects from improved backgrounds. Besides, CE is often

adopted as a pre-processing step for many computer vision

problems including object recognition [1], [2], object-of-

interest image segmentation [3], [4] medical images enhance-

ment to detect and interpret diseases [5], [6].

The associate editor coordinating the review of this manuscript and
approving it for publication was Po Yang.

A. MOTIVATION

Natural scene statistics (NSS) models have been devel-

oped based on the hypothesis that natural images pos-

sess certain regular statistical properties, and they have

proven to be powerful tools driving various image/computer

vision applications [7]. To our best knowledge, however,

to date no effort has been applied towards modeling

NSS for CE. We propose to use the the ramp dis-

tribution as a model of NSS for improving contrast.

Intuitively, this is the distribution that increases with a con-

stant slant angle defined in the ordered histogram domain as

shown in Fig. 1(a).

We carried out NSS using the SUN database [8] con-

taining 108,754 images. The normalized input histograms,

i.e., probability distribution function (PDF), of all images

in the database are transformed into the ordered histogram

domain by sorting non-zero gray-levels according to its fre-

quency. To calculate averages of sorted PDFs, the dynamic

range of the ordered histogram domain is adjusted to

have the entire dynamic range of the input image using a

bi-linear interpolation method. Results of averages of sorted

PDFs according to quantized contrast amounts are shown

in Fig. 1(a), where the contrast amounts of images are
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FIGURE 1. The ramp distribution in natural scene statistics. (a) Averages
of sorted PDFs (ASP) according to contrast amounts (EMEG) and the ramp
distribution. (b) A boxplot of RMSE values1 according to EMEG values.

measured by using the expected measure of enhancement

by gradient (EMEG) [20]. Figure 1(b) shows a boxplot of

the root-mean-square-errors (RMSE) values1 according to

EMEG, where the RMSE values are calculated between

sorted PDFs and the ramp distribution. We demonstrate that

the average distribution of the natural images in the ordered

histogram domain can be linearly approximated to the ramp

distribution as contrast increases as shown in Fig. 1(a).

It is more evidently observed in Fig. 1(b) that the more the

contrast amount, the smaller the values of RMSE. It means

that the contrast-enhanced images as a result of CE meth-

ods should be close to the ramp distribution in the ordered

histogram domain to follow NSS. By doing this, it is possi-

ble to produce contrast-improved images while maintaining

naturalness. This finding motivates us to employ the ramp

distribution for CE.

B. CONTRIBUTIONS

• A new global CE algorithm of ramp distribution-based

slant thresholding (RDST) is proposed. It employs the

new threshold strategy of slant thresholding, which

automatically determines threshold values in an ordered

histogram domain. The differences between the con-

ventional and the proposed thresholding technique are

discussed.

• Further, a new local CE algorithm of ramp distribution-

based adaptive slant thresholding (RDAST) is proposed.

Conventional local CE methods often produce exces-

sively amplified noise in uniform regions and are sensi-

tive to block size settings resulting in blocking artifacts.

To address these issues, the RDAST automatically con-

trols the levels of CE for each block by adjusting a slant

angle of the ramp distribution and utilizes a scaled global

histogram to minimize the effect to block size changes.

• We have investigated the limitation of image quality

assessment (IQA) metrics for contrast-changed images

in the viewpoint of the overshoot effect. As a result,

we have found that even state-of-the-art IQA metrics

1A value of RMSE =

√
1
L

∑L
l=1

(
hs(l)−hr (l)

HW

)2
. Detailed notations are

presented in Section III-B.

for contrast-changed images cannot correctly evaluate

the overly contrasted images. To deal with this problem,

we propose an over-contrast measure (OCM) to quantify

the amount of over-contrast in an image. It measures

amplified detail amounts in the uniform regions by using

the guided filter. The proposedOCMhelps us to evaluate

the quality of contrast-changed images more accurately.

The rest of this paper is organized as follows. Literature

survey on related work is presented in Section II. Section III

describes the proposed CE algorithms. Section IV shows

the proposed over-contrast measure, and Section V presents

quantitative and qualitative comparisons of the proposed

algorithms with state-of-the-art CE algorithms. Finally, con-

cluding remarks are given in Section VI.

II. RELATED WORK

CE techniques can be categorized into two groups: direct

methods and indirect methods [12]. We focus on indi-

rect methods which improve the contrast by redistribut-

ing the intensities to utilize the whole dynamic range

effectively. Numerous indirect CE techniques have been

proposed [9]–[25]. It can be subdivided into global CE and

local CE methods.

A. GLOBAL CONTRAST ENHANCEMENT

Histogram equalization (HE) [9] is the most fundamental

CE method due to its simplicity and quickness. HE finds a

mapping function between input gray-levels to output gray-

levels by calculating cumulative distribution function (CDF)

from an input histogram. However, HE often produces an

over-enhanced (or under-enhanced) image especially when

there are large peaks in the input histogram which usually

correspond to homogeneous regions, resulting in a noisy

and washed-out appearance of the enhanced image. To solve

this problem, the following algorithms [10]–[22] have been

proposed.

1) HISTOGRAM MODIFICATION

Weighting and thresholding histogram equalization (WTHE)

[10] clamps an input PDF at an upper and a lower threshold.

Then, it weights all values between the thresholds using a

normalized power-law function with power index γ which is

a critical parameter controlling the degree of image enhance-

ment. Its performance is highly dependent on the values of

the parameters. Adaptive gamma correction with weighting

distribution (AGCWD) [11] is proposed based on gamma

correction [9]. It attempts to replace the fixed parameter γ

to adaptive gamma correction calculated from CDF,

i.e., γ = 1-CDF. However, AGCWD does not fully

exploit the whole dynamic range of the output image.

It also often produces the image that is too bright with loss of

details. A histogram modification framework (HMF) [12] is

proposed to use the modified histogram which is a weighted

average of an input histogramHx and a uniformly distributed

histogram Hu, i.e., Hm = (Hx + λHu)/(1 + λ). In this way,

an intermediate image is produced between the input image
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and the resulting image of HE. This method somewhat com-

pensates for the shortcomings of the HE method. However,

it cannot always guarantee image quality and artifact preven-

tion. Inspired byHMF, we proposed a ramp distribution based

histogram modification (RDHM) method [13] for infrared

images, where the ramp-distributed histogram is incorporated

into an optimization problem with a sorted histogram of the

input image to calculate a modified histogram. Although this

method may result in an improvement in perceived contrast,

it requires appropriate parameter settings.

2) IQA METRIC BASED AUTOMATIC PARAMETERS TUNING

Robust image contrast enhancement (RICE) [14] combines

Hx with its equalized histogram Heq, and its sigmoid trans-

ferred histogram Hsig to calculate Hm, i.e., Hm = (Hx +

φHeq + ψHsig)/(1 + φ + ψ). ROHIM2 [15] creates an

output image using the transfer mapping which combines

mean-shifting and logistic functions. Recently proposed

BOIEM3 [16] is designed based on a cascade combination

of AGCWD and RICE. The parameters of these algorithms

are determined by each dedicated quality assessment metric.

These methods sometimes do not produce well-improved

images. Besides, ROHIM and BOIEM take a long time to

execute with large standard deviations.

3) 2D HISTOGRAM-BASED TECHNIQUES

CE methods using a two dimensional (2D) histogram have

been developed [17]–[19] to enhance local details by increas-

ing the gray-level differences between neighboring pixels.

Recently, a method of combining two histograms (COTH)

was developed to preserve both the shape of a 1D histogram

and the statistical information of a 2D histogram. Compared

to using the only 1D histogram, 2D histogram-based methods

typically produce output with less visual distortions. How-

ever, constructing a 2D histogram is computationally expen-

sive, and the complexity increases exponentially as the size

of adjacent regions increases.

4) SPATIAL 2D HISTOGRAM-BASED TECHNIQUES

Unlike the 1D or 2D histogram-based methods, the distri-

bution of spatial locations of gray-levels of an image is

considered in [20]–[22]. Spatial entropy based CE (SECE)

[20] method uses a spatial entropy in a 2D spatial histogram.

Residual SECE [21] considers the spatial joint relation-

ships of gray-levels by introducing residual spatial entropy.

Recently, spatial mutual information and PageRank-based

CE (SMIR) [22] is proposed to use the rank vector of

gray-levels resulted from PageRank algorithm where gray-

levels are used to represent nodes in PageRank, and the

weights between nodes are computed according to spatial

mutual information. Although the performance of the SMIR

2ROHIM is an acronym for a Reduced-reference image quality metric for
contrast change based Optimal HIstogram Mapping.

3BOIEM is an acronym for a Blind image quality measure of enhanced
images based Optimized Image Enhancement Method.

is satisfactory, it requires a lot of memory and its calculation

time is irregular.

B. LOCAL CONTRAST ENHANCEMENT

The main disadvantage of global CE methods is that global

histogram information may not appropriately enhance some

parts of the image since it treats all regions of the image

equally. Therefore, local CE methods have been proposed.

Adaptive histogram equalization (AHE) [23] uses a small

rectangular block that slides sequentially over all pixels in

the input image, and the histogram of pixels within the

current position of the block is equalized. Contrast-limited

AHE (CLAHE) proposed [24] to address two main problems

of AHE: calculation time and over-enhancement. To reduce

calculation time, it divides the input image into equally-sized

blocks. The output image is obtained by applying bilinear

interpolation between processed blocks to remove possible

blocking artifacts. To address the over-enhancement problem,

it limits the peak value in the histogram of each block by

clipping the histogram at a predefined value. The clipped

pixels are redistributed to limit the slope of the CDF. The per-

formance of CLAHE is determined by the block size and the

clip-limit which are typically selected by users. Recently, dual

gamma correction based CLAHE [25] has been proposed for

dark image enhancement. This method has many parameters

that need to be set in advance, and the performance of the

algorithm also depends on the values of the parameters.

III. PROPOSED ALGORITHMS

A. PROBLEM DEFINITION

Let X = {X(i, j)|1 ≤ i ≤ H , 1 ≤ j ≤ W } be an gray-scale

input image with size of H × W pixels, where X(i, j) is a

gray-level (intensity) xk of a pixel location (i, j), andX(i, j) ∈

[x1, xK ],∀(i, j). Let X = {x1, x2, . . . , xK } be the sorted set

of all possible K gray-levels that exist in an input image X

where x1 < x2 < . . . < xK , K is the number of distinct gray-

levels. LetY = {Y(i, j)|1 ≤ i ≤ H , 1 ≤ j ≤ W } be the output

image and Y be a sorted list of output gray-levels Y =

{y1, y2, . . . , yK } where y1 ≤ y2 ≤ . . . ≤ yK , and Y(i, j) ∈

[y1, yK ],∀(i, j). The goal of the CE algorithm is to produce

the output image Y that not only has improved contrast but

also looks natural. The output image can be obtained as Y =

f (X) = {f (X(i, j)) | ∀X(i, j) ∈ X} , where f (·) is a mapping

function between X and Y .

B. GLOBAL APPROACH

The histogram of an input image X is calculated as Hx =

{hx(k)|1 ≤ k ≤ K }, where hx(k) is the number of occurrences

of the kth gray-level xk . To deal with over-enhancement

of noise in homogeneous regions, a traditional approach of

Plateau HE [26] calculates a modified histogram Hm =

{hm(k)|1 ≤ k ≤ K } as follows:

hm(k) =

{
T , if hx(k) > T ,

hx(k), otherwise,
(1)
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where T is a threshold value. It is difficult to determine T

because all images have different shapes of Hx . Moreover,

Plateau HE cannot improve the contrast effectively since

it applies the same threshold value to the input histogram.

To obtain effectively contrast-enhanced images, it should

be considered in the thresholding process that a gray-level

belonging to a high frequency of occurrence should have a

higher threshold than the lower ones. It can be achieved by

introducing the ramp-distributed histogram Hr .

LetHs = {hs(l)|1 ≤ l ≤ L} be the sorted set of all non-zero

hx(k) in ascending order, where hs(l) is an lth element of the

sorted set and L is the total number of all non-zero hx(k). Let

Hr = {hr (l)|1 ≤ l ≤ L} be defined as the ramp-distributed

histogram that increases with a constant slant angle, where∑L
l=1 hr (l) = HW and hr (l) is computed as 4

hr (l) =
2HW

L(L + 1)
l. (2)

Then, the target histogram can be calculated as

ht (l) =

{
hr (l), if hs(l) > hr (l),

hs(l), otherwise.
(3)

We call this thresholding process as slant thresholding. The

modified histogram Hm is calculated according to

hm(k) = ht {9(l)} , (4)

where 9(·) is a function of index mapping between l and

k obtained from the sorting process. The modified

histogram Hm is normalized to give the PDF as

pdf (k) = hm(k)

/ K∑

k=1

hm(k), (5)

and the CDF is defined as

cdf (k) =

K∑

k=1

pdf (k). (6)

Using the CDF, xk is mapped to yk according to

yk = ⌊cdf (k)(28 − 1) + 0.5⌋. (7)

Figure 2 illustrates the proposed ramp distribution-based

slant thresholding (RDST) algorithm. A visible light image

from dataset [30] is shown in Fig. 2(a) and its his-

togram Hx in Fig. 2(b). Hs is the sorted histogram of the

non-zero gray-levels in Hx in ascending order as shown

in Fig. 2(d). The target histogram Ht is acquired by using

slant thresholding as shown in Fig. 2(d) and the resul-

tant modified histogram Hm is shown in Fig. 2(b). The

mapping function for the RDST algorithm is presented

in Fig. 2(f). For comparison, we draw the mapping function

of HE and its result image in Fig. 2(f) and (c) respectively.

The output image of HE has significantly increased noise in

uniform regions. On the other hand, the proposed RDST not

only produces a contrast-enhanced image having a natural

appearance but also effectively suppresses noise amplifica-

tion in uniform regions compared to HE.

4The proof of Eq. (2) is presented in Appendix.

FIGURE 2. Illustrations of the proposed RDST algorithm. (a) The input
image from [30]. (b) An input histogram Hx and a modified
histogram Hm. (c) A result of HE. (d) A sorted histogram Hs, a target
histogram Ht , and the ramp-distributed histogram. (e) A result of RDST.
(f) Corresponding mapping functions.

C. LOCAL APPROACH

1) PROPOSED LOCAL ALGORITHM

The flowchart of the proposed ramp distribution-based adap-

tive slant thresholding (RDAST) is presented in Fig. 3. The

details of the procedure are as follows.

First, the input image X is divided into M × N non-

overlapping blocks. A bth block can be denoted as Xb ={
Xb(m, n)|1 ≤ m ≤ M , 1 ≤ n ≤ N

}
, where b ∈ [1,B] and B

is the total number of blocks.

Second, let hbx = {hbx(k)|1 ≤ k ≤ K } be defined as

a local histogram of the gray-level xk in a bth block. Let

hbs =
{
hbs (l)|1 ≤ l ≤ L

}
be the sorted set of all possible hbx(k)

in ascending order, where hbs (l) is an element of the sorted

set of the bth block and we set L to K . Note that we use

all possible gray-levels in local processing by setting L to

K rather than the total number of all non-zero hbx to prevent

over-enhancement. Let hbr =
{
hbr (l)|1 ≤ l ≤ L

}
be defined

as an adjusted ramp-distributed histogram, where

hbr (l) = α
2MN

L(L + 1)
l. (8)

α is a parameter for adjusting the slant angle. For blocks in

uniform regions, it is desirable to set α to a low value to avoid

excessive enhancement. On the other hand, it is better to set

α to a higher value for blocks in non-uniform regions so that

the texture and details can be effectively enhanced. There-

fore, it is necessary to adjust α adaptively according to the
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FIGURE 3. Flowchart of the proposed RDAST algorithm.

complexity of each block. To measure the complexity of a

block, we employed spatial information which has been com-

monly used as the basis for estimating image complexity [40].

The ratio of the block’s complexity with respect to the overall

image complexity is used to calculate α as follows

α =

1
MN

∑M
m=1

∑N
n=1X

b
SI (m, n)

1
HW

∑H
i=1

∑W
j=1XSI (i, j)

, (9)

where XSI is a spatial information map calculated as

XSI (i, j) =
(
X2
x(i, j) + X2

y(i, j)
) 1
2 . (10)

Xx and Xy denote gray-scale images filtered with horizontal

and vertical Sobel kernels, respectively. According to the

level of the complexity of input blocks, the parameter α

automatically adjusts the slant angle of the ramp distribution

in each block as shown in Fig. 4(c1)-(c3). As a result, details

are significantly improved in the blocks of the non-uniform

regions as shown in Fig. 4(d1). It becomes clearer when

compared to the results of RDST as shown in Fig. 4(e1).

Moreover, noise amplification is effectively suppressed in the

block of the uniform regions as shown in Fig. 4(d3).

Third, the local modified histogram hbm = {hbm(k)|1 ≤ k ≤

K } can be calculated as

hbm(ψ(l)) =

{
hbr (l), if hbs (l) > hbr (l),

(1 − β)h
g
m(ψ(l)) + βhbs (l), otherwise,

(11)

where ψ(·) is a function of index mapping between l and k

obtained from a sorting process of a local histogram hbx(k).

h
g
m is a scaled global histogram calculated as

hgm(k) = hm(k) × (MN/HW ). (12)

β is a weighting factor between h
g
m and hbs . We set β equals to

the ratio of the area occupied by the sorted histogram in the

area of a right triangle with the base of L + 1 and the height

FIGURE 4. Comparisons of three sample blocks and corresponding
histograms. (a1)-(a3) Sample blocks. (b1)-(b3) Corresponding input
histograms hb

x and modified histograms hb
m. (c1)-(c3) Corresponding

sorted histograms hb
s and adjusted ramp-distributed histograms hb

r .
(d1)-(d3) Corresponding results of RDAST. (e1)-(e3) Corresponding results
of RDST for comparisons.

of hbs (L) as

β̂ =

∑L
l=1 h

b
s (l)∑L

l=1 l
(
hbs (L)/L

) =
MN

1
2
(L + 1)hbs (L)

, (13)

and β = min(β̂, 1). Note that the maximum value of β is

limited to 1 to prevent underflowwhen calculating hbm in (11).
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FIGURE 5. Effect of block size on CLAHE and RDAST. (a)-(d) CLAHE results
according to the different block sizes of 128×128, 32×32, 8×8, and
2×2 respectively. (e)-(h) RDAST results according to the different block
sizes of 128×128, 32×32, 8×8, and 2×2 respectively.

As the uniformity of the block increases, the histogram

distribution becomes narrower and higher as shown

in Fig. 4(b1)-(b3). As a result, the value of β is decreased, and

a higher weight is assigned to h
g
m. Therefore, the gray-levels

of the block in uniform regions are determined by considering

the distribution of global gray-levels. In this way, it is possible

to minimize sensitivity to block size changes and prevent

blocking artifacts.

Next, contrast-enhanced blocks can be obtained by apply-

ing (5)-(7) to each block by using hbm. Finally, output

image Y is obtained by applying bilinear interpolation

between contrast-enhanced blocks to remove possible block-

ing artifacts. Refer to [24] for further information regarding

bi-linear interpolation.

2) PARAMETER ANALYSIS OF RDAST

The parameters used in RDAST are designed to be auto-

matically adjusted, so no parameters are required for man-

ual adjustment except the block size. The performance of

the existing local CE methods depends on the block size

because only local histogram information is used to deter-

mine the gray-levels of each block. Therefore, the smaller

the block size, the greater the blocking artifacts and distor-

tion. However, to minimize sensitivity to block size changes,

the RDAST utilizes the scaled global histogram h
g
m to deter-

mine the gray-levels of each modified block histogram hbm.

For example, Fig. 5 shows the results of CLAHE and

RDAST according to the different block sizes. CLAHE gen-

erated unrealistic images as the block size decreased. On the

other hand, RDAST produced reasonably consistent quality

images.

IV. OVER-CONTRAST MEASURE

A. LIMITATIONS OF METRICS FOR CONTRAST-CHANGED

IMAGES

Evaluating the perceptual quality of an image is a funda-

mental problem, and various metrics have been proposed

for image quality assessment (IQA). However, it has been

reported that these metrics have the overshoot effect, content

dependency, and the range effect, so they have limitations

in evaluating image quality correctly [36], [37]. We have

investigated IQA metrics for contrast-changed images in the

FIGURE 6. Amount of contrast (EMEG) versus perceived qualities (MOS)
of three sample images. Each parenthesis indicates a sub-figure in Fig 8.
For example, (a1) indicates Fig. 8(a1).

FIGURE 7. Amount of contrast (EMEG) versus CPCQI values of three
sample images. Each parenthesis indicates a sub-figure in Fig 8. For
example, (a1) indicates Fig. 8(a1).

viewpoint of the overshoot effect, which is more closely

related to the major limitation of the metrics’ performance.

The overshoot effect means that the quality of a

processed image increases according to strength (e.g., sharp-

ening amount), but after reaching the optimal point, the qual-

ity starts dropping [36]. The CCID2014 dataset [30] which

was constructed to develop IQA metrics of contrast-changed

images was chosen to investigate the problem. Throughout

many experiments, we found that the overshoot effect is

more correlated with EMEG [20] (refer to Section V-B.3

for details about EMEG) rather than other contrast measures

such as root mean square contrast (RMSC) [41], a measure

of enhancement (EME) and its variants [32]. The overshoot

effect is observed in all images of CCID2014. For example,

the changes of perceived qualities, i.e., mean opinion scores

(MOS), versus the amount of contrast (EMEG) for three

images, are shown in Fig. 6, where the points of optimal con-

trast are marked. Figure 7 shows the CPCQI values according

to EMEG. To clearly see the limitation of the performance

of IQA metrics, we added overly contrasted images obtained

by setting the AHE algorithm to have different block sizes:

256×256, 128×128, 64×64, and 32×32 as shown in Fig. 8.

Unlike the perceived qualities, the CPCQI values increase

consistently as the EMEG values increase even in overly con-

trasted images as shown in Fig. 7. For example, the CPCQI

value of 1.19 in Fig. 8(b4) is higher than the value of 0.95
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FIGURE 8. Pristine images and its contrast-changed images of Hats, Headlight, and Market (from top to bottom). (a0)-(c0): Pristine images.
(a1)-(c1), (a2)-(c2), and (a3)-(c3) represent contrast-changed images in CCID2014 dataset [30]. (a4)-(c4) represent resulting images of AHE
with block size of 256×256, (a5)-(c5) 128×128, (a6)-(c6) 64×64, and (a7)-(c7) 32×32. Available values of MOS and CPCQI are marked.

in Fig. 8(b2). The same phenomenon has been observed

in other metrics including QRCM. It means that even the

latest metrics do not correctly evaluate the overly contrasted

images. (Refer to Section V-B for details about QRCM

and CPCQI).

B. PROPOSED OVER-CONTRAST MEASURE

Due to the limitation mentioned above, the IQA metrics for

contrast-changed images do not correctly evaluate the results

of local CE algorithms which often produce overly contrasted

images. Therefore, it is urgently required to measure the

amount of over-contrast to evaluate the overly contrasted

images correctly. Overly contrasted regions in an image can

be seen more apparently in uniform regions than in non-

uniform regions. For example, an overly contrasted image is

shown in Fig. 8(b4), where the amplified noise in the sky

which corresponds to uniform regions in its pristine image

is apparently visible, while the over-enhancement in non-

uniform regions such as rocks and houses is not noticeable.

Therefore, we measure the amount of over-contrast only in

uniform regions. The flowchart of the proposed over-contrast

measure (OCM) is shown in Fig. 9.

1) UNIFORM REGIONS DETECTION

To detect uniform regions in an original image, we used the

local standard deviation map Xσ , calculated as follows

Xσ = fstd(Xlp) = fstd(X ∗ w), (14)

where fstd(·) is a local standard deviation filter which moves

pixel-by-pixel over the entire image. At each step, the local

standard deviation is calculated within a local 5×5 square

window. To reduce noise sensitivity, we used a lowpass

filtered image Xlp which is calculated by convolving an

original image X with w. w = {wi|i = 1, 2, · · · ,N }

is an 11×11 circular-symmetric Gaussian weighting ker-

nel, with standard deviation of 1.5, normalized to unit sum,

FIGURE 9. The flowchart of the proposed over-contrast measure.

i.e.,
∑N

i=1 wi = 1. A map of uniform region U is calculated

as

U(i, j) =

{
1, if Xσ (i, j) ≤ TU ,

0, otherwise,
(15)

where TU is a threshold value. By using a standard deviation

σXlp of the lowpass filtered imageXlp, the threshold value can

be set adaptively for each image as TU = c · σXlp . The larger

the value of c, the more areas are considered to be uniform.

The value of c is empirically set to 0.03.

2) CALCULATE REFERENCE DETAIL AMOUNT

We employed the guided filter [27] (GF) to measure the detail

amount. The GF decomposes an input imageX into two parts

as follows:

X(p) = B(p) + D(p), (16)

where B is a base layer formed by homogeneous regions with

sharp edges, D is a detail layer which contains noise or tex-

tures, and p is a pixel location in an image, i.e., p = (i, j).

The GF yields an edge-preserving smoothing output B =

fGF(X,G; s, ǫ) of an input imageX by considering the content

of a guidance image G as

B(p) = ap′G(p) + bp′ ,∀p ∈ Ws(p
′), (17)

where Ws(p
′) is a square window centered at pixel p′ with a

size s. ap′ and bp′ are constants in the window Ws(p
′) which
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are obtained by minimizing a cost function E(ap′ , bp′ ) [27]

E =
∑

p∈Ws(p′)

[
(ap′G(p) + bp′ − X(p))2 + ǫa2p′

]
, (18)

where ǫ is a regularization parameter that controls the

amount of smoothing in the output image. We empirically set

s = 5 × 5 and ǫ = (0.1 × 255)2.

The guided filter output XGF is calculated by using the

original image X and itself as the guidance image as XGF =

fGF(X,X). A detail layer in uniform regions of the original

image D̃X is calculated as:

D̃X (p) = |X(p) − XGF(p)| · U(p) · (X(p)/κ), (19)

where κ = 255 is a weighting coefficient. Then, the reference

detail amount in the uniform regions of the original image is

calculated as

DX =
1

N

N∑

p=1

D̃X (p), (20)

where N is the total number of pixels in the image,

i.e., N = H ×W .

3) CALCULATE OVER-CONTRAST MEASURE

A detail layer in uniform regions of the processed image D̃Y

is calculated as

D̃Y (p) = |Y(p) − YGF (p)| · U(p) · (X(p)/κ), (21)

where YGF = fGF(Y,X). Note that we use the original image

X as the guidance image to precisely estimate the amplified

detail amount in Y.5 The detail amount of the processed

image DY is calculated as

DY =
1

N

N∑

p=1

D̃Y (p). (22)

Finally, the over-contrast measure (OCM) is calculated as

OCM = DY − DX . (23)

The value of OCM is usually positive in a contrast-enhanced

image, and it has a negative value when noise is suppressed

in uniform regions of the processed image with respect to the

original image.

To our best knowledge, this is the first time to deal with

the limitation of the performance of IQAmetrics for contrast-

changed images. Hence, there are no open datasets to evaluate

the performance of the proposed metric. Therefore, to test the

performance of OCM, we inspected the correlation between

OCM and our viewing experience. The calculated OCM

values in all datasets [28]–[31] are listed in Table 1. The

results show that OCM is well consistent with our viewing

experience. For example, HE and CLAHE often produce

excessively amplified noise in uniform regions, so their OCM

values are high in every dataset. For a more direct example,

5We also useX(p)/κ as the weighting factor in (21) to accurately estimate
the amplified detail amount in Y with respect to X.

FIGURE 10. Detected uniform regions of (a) Hats, (b) Headlight, and
(c) Market.

FIGURE 11. OCM measures of Fig. 8(a4)-(a7), (b4)-(b7), and (c4)-(c7) with
respect to the original images in Fig. 8(a0)-(c0).

we calculated OCM values for the overly contrasted images

generated by changing block sizes of AHE in Fig. 8. Detected

uniform regions of the three images are shown in Fig. 10.

As the block size decreases, the amount of contrast increase,

accordingly corresponding OCM values increase proportion-

ally as shown in Fig. 11. It is also well correlated with the

actual viewing experience.

V. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETUP

1) TESTING DATASETS

To evaluate our proposed algorithms, we used five datasets

of CSIQ [28], TID2013 [29], CCID2014 [30], BSDS [31].

The CSIQ image dataset contains 116 images which are

generated by altering contrast at different levels with respect

to 30 reference images. TID2013 contains 24 types of sub-

sets generated from 25 reference images considering various

kinds of distortions. We used 250 images from contrast-

changed and intensity shifted subsets. CCID2014 contains

655 images which come from the original 15 images by

contrast-alteration. BSDS contains 500 natural images from

a wide range of contents such as humans, animals, indoor,

outdoor and underwater scenes.

2) ALGORITHMS

The proposed RDST and RDAST algorithms were compared

with ten CE Algorithms: HE [9], WTHE [10], HMF [12],

AGCWD [11], SMIR [22], COTH [19], ROHIM [15],

BOIEM [16], RDHM [13] (sorted in published order), and

CLAHE [24]. CLAHE and RDAST are local CE methods

where the block size is set to ⌊W/8⌋ × ⌊H/8⌋. In CLAHE,

the clip limit was set to 0.01 × MN . Parameters of the

VOLUME 7, 2019 73011



S. Lee, C. Kim: Ramp Distribution-Based Contrast Enhancement Techniques and Over-Contrast Measure

TABLE 1. Quantitative assessment of CE algorithms using six metrics. High scores mean high performance except that OCM is the opposite.
Boldfaced fonts represent top two results among global algorithms. Each arrow represents relative performance from the lowest to
the highest: ⇓ < ↓ < ց < → < ր < ↑ < ⇑.

others were set as recommended in the corresponding papers.

Color images were converted from RGB to HSV color space.

CE methods were only applied to value components, and

then inverse color space transformation was performed to

reconstruct contrast-enhanced images in the RGB color

space.

B. QUANTITATIVE ASSESSMENT

To evaluate the quantitative performance of algorithms,

we used six IQA metrics. Discrete entropy (DE) [33], pixel

distance (PixDist) [34], and expected measure of enhance-

ment by the gradient (EMEG) [20] were used as no-reference

metrics. Quality-aware relative contrast measure (QRCM)

[22], a color considered patch-based contrast quality index

(CPCQI) [16], and our proposed over-contrast measure

(OCM) were used as full-reference metrics.

The objective assessment results of the twelve algorithms

are shown in Table 1, where high scores denote high per-

formance for all metrics except that OCM is the opposite,

and the best and the second-best performance among global

algorithms are highlighted in bold. For each row, the score of

jth algorithm Sj was normalized to calculate relative perfor-

mance as

Ŝj =
Sj − minSG

maxSG − minSG
, (24)

where maxSG and minSG represent the maximum and the

minimum scores of the global CE algorithms, respectively.

The arrows next to each score indicate the relative perfor-

mance calculated as ⇓= {Ŝj|Ŝj < 0}, ↓= {Ŝj|0 ≤ Ŝj ≤ 0.2},

ց= {Ŝj|0.2 < Ŝj ≤ 0.4}, →= {Ŝj|0.4 < Ŝj ≤ 0.6},

ր= {Ŝj|0.6 < Ŝj ≤ 0.8}, ↑= {Ŝj|0.8 < Ŝj ≤ 1}, and
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⇑= {Ŝj|Ŝj > 1}. In the case of OCM, the reverse range

was applied so that⇑ always represents the best performance.

Due to the issue mentioned at Section IV-A, the current IQA

metrics tend to give high scores to overly contrasted images.

Therefore, with the help of the OCM, we evaluate each

CE algorithms more accurately as follows:

1) THE AMOUNT OF INFORMATION

In Shannon’s information theory, discrete entropy (DE) is a

measure for the amount of information in an image as

SDE = −
∑

k

p(k)log p(k), (25)

where p(k) is the probability distribution at the kth gray-level.

A high DE indicates that the image contains more variations

and conveys more information. RDAST attained the highest

value of DE in all datasets as shown in Table 1. It means

that the resulting images of RDAST containmore information

than the results of the other methods.

2) DYNAMIC RANGE UTILIZATION

Pixel distance (PixDist) calculates the average gray-level

difference overall pixel pairs in an image as [34]

SPixDist =
1

N (N − 1)

K∑

k=1

K∑

k ′=k

p(k)p(k ′)(k ′ − k), (26)

where k, k ′ ∈ [0,K ], N is the total number of pixels in X.

A high value of PixDistmeans histogram components are uni-

formly distributed without concentrating at particular gray-

levels. Therefore, HE shows high performance of PixDist.

However, it has the lowest performance of OCM. On the

other hand, RDST not only has the best performance of

PixDist but also has better performance of OCM as shown

in Table 1. It means that the RDST makes the best use of the

given dynamic range while suppressing noise amplification

in uniform regions. RDAST also has excellent performance

of dynamic range utilization.

3) DIRECT CONTRAST MEASURE

The expected measure of enhancement by gradient (EMEG)

is defined as [20]

SEMEG =
1

B

B∑

b=1

1

κ
max

(
maxXb

dx

minXb
dx

,
maxXb

dy

minXb
dy

)
, (27)

where Xb
dx and Xb

dy are the absolute-valued derivatives in

x and y direction of bth block, respectively. B is the total

number of blocks, and κ = 255 is a weighting coefficient.6

A high value of EMEG means that an enhanced image has

high contrast which we expect as a result of CE. Although

CLAHE achieves the highest performance of EMEG, its

OCM performance is low due to amplified noise in homo-

geneous regions. In contrast, the proposed RDAST has good

6 When implementing EMEG, a small constant should be added to each
denominator in (27) to prevent division by zero [20]. SEMEG ∈ [0, 1].

performance of OCM as well as high performance of EMEG

as shown in Table 1. In addition, RDST has excellent perfor-

mance of contrast improvement in terms of EMEG.

4) QUALITY-AWARE RELATIVE CONTRAST MEASURE (QRCM)

QRCM [22] is a function of relative contrast measure (RCM)

and gradient magnitude similarity map (GMS) [38] as

SQRCM = f (RCM,GMS). (28)

It employed GMS to quantify the level of distortions. There-

fore, QRCM7 provides not only measure the relative change

of contrast but also considers the distortion introduced on

the processed image relative to the original image. This abil-

ity seems to work well within global algorithms, but not

in local algorithms since the QRCM value of CLAHE is

approximately 1.5 times higher on average than the highest

QRCMvalue in global algorithms. Among global algorithms,

RDST shows the excellent performance ofQRCM. Except for

the contrast over-stretching CLAHE algorithm, the proposed

RDAST provides the best performance in terms of QRCM as

shown in Table 1.

5) THE LATEST HIGH-PERFORMANCE IQA METRIC

A patch-based contrast quality index (PCQI) [35] has

been proven to be highly correlated with subjective qual-

ity scores in contrast-changed datasets. Colorfulness-based

PCQI (CPCQI) is the extended version of PCQI that takes

into account the influence of colorfulness as [16]

SCPCQI =
1

N

N∑

i=1

qmi(i) · qcc(i) · qsd(i) · qcs(i), (29)

where qmi, qcc, qsd, and qcs, respectively, represent the sim-

ilarity between the original and processed images in terms

of mean intensity, contrast change, structural distortion, and

color saturation. Although CLAHE attains the highest value

of CPCQI, it has low performance of OCM. Except for

the CLAHE, the RDAST shows the best performance of

CPCQI. RDST also shows excellent performance in terms of

CPCQI among the global algorithms as shown in Table 1.

In summary, the proposed RDAST shows the best or supe-

rior performance in every metric. RDST also has excellent

performance. Although it does not have the best performance

of OCM, it does not generate noticeable artifacts as shown

in Figs. 12–17. This fact is also supported by our viewing

experience for all datasets.

C. QUALITATIVE ASSESSMENT

A qualitative analysis was performed on the resulting images

produced by applying the CE methods for selected images

from each dataset. The first test image is Cactus from the

CSIQ dataset [28] which has a small contrast degradation

with respect to the pristine image. The CE results with the

7SQRCM ∈ [−1, 1], where -1 and 1 refer to the full levels of contrast
degradation and improvement, respectively.
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FIGURE 12. Comparisons of CE results on Cactus image [28]. Corresponding CPCQI and OCM values are in parenthesis. Some remarkable regions are
enlarged.

FIGURE 13. Comparisons of CE results on Headlight image [29]. Corresponding CPCQI and OCM values are in parenthesis. Some remarkable regions are
enlarged with colored rectangles.

corresponding CPCQI and OCM values (in parenthesis),

histograms, and enlarged images are shown in Fig. 12. It

has a uniform background which corresponds to the high-

est peak in the input histogram. HE tries to spread out the

highest peak in the input histogram. As a result, the noise

in the background was excessively amplified, and significant

under-enhancement occurred around the stem of the flowers.

Although CLAHE generated a detail improved image, it has

noticeable noise amplification in the background with halo

artifacts. HMF, AGCWD, ROHIM, and BOIEM produced

slightly contrast altered images. It is supported by the CPCQI

values around 1. WTHE, SMIR, COTH, RDST, and RDAST

achieved significant contrast improvements in overall quality.

Among these methods, however, only RDAST generated the

detail enhanced image with suppressed noise in the back-

ground. It is also supported by the high CPCQI value and the

low OCM value.

The second image Headlight [29] and its enhancement

results are shown in Fig. 13. The input image was gener-

ated by adding a constant value to all pixels of the pristine

image. Therefore, there is a margin at the far left of the

input histogram that can be used to improve the contrast
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FIGURE 14. Comparisons of CE results on Girl image [30]. Corresponding CPCQI and OCM values are in parenthesis. Some remarkable regions are
enlarged.

FIGURE 15. Comparisons of CE results on Elephant image [31]. Corresponding CPCQI and OCM values are in parenthesis. Some remarkable regions are
enlarged.

further. However, HMF, AGCWD, ROHIM, and BOIEM did

not fully exploit the entire dynamic range. Although HE and

CLAHE fully utilized the whole dynamic range, they created

overly enhanced images with excessively amplified noise in

the sky. WTHE, SMIR, COTH, and RDST achieved contrast

enhancement, but noise in the sky also increased. However,

RDAST achieved significant contrast improvements while

effectively enhancing textured regions and suppressing noise

amplification in uniform regions.

The third image Girl [30] is shown in Fig. 14. It has the

highest peak at the rightmost side of the input histogram,

which corresponds to the background. HE produced artifacts

in the background. CLAHE produced excessively amplified

noise in the background with blocking artifacts on the face.

Among the global algorithms, RDST produced an image

with adequate brightness and contrast. The resulting image

of RDAST significantly improved the texture of the red shirt

and had no visual artifacts on the face and the backgrounds.

The fourth image Elephant [31] is shown in Fig. 15.

It is a slightly blurred image with a margin on the left side

of the input histogram. AGCWD produced an excessively

bright image with markedly degraded contrast. The result-

ing image of ROHIM contains visual artifacts with missing

details. CLAHE produced a severely distorted image with

halo artifacts and checkerboard effects. Among the other

methods, RDST and RDAST produced a more vivid image

with a natural look.

Next, Fig. 16 shows Flower images [28] and the cor-

responding enhancement results. Input images provide dif-

ferent levels of global contrast decrement from no global
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FIGURE 16. Contrast enhancement results on Flower images [28] with different levels of contrast decrement.

FIGURE 17. Comparisons of CE results on Bikes image [30] with different levels of brightness decrement. (File names: ‘‘img110.png’’ – ‘‘img116.png’’).

contrast decrement (row 1) to severe contrast decrement

(row 5). Therefore, It is suitable images for evaluating the

CE capability of each algorithm in contrast-degraded images.

HE and ROHIM produced noticeably distorted images

because the background gray-levels were not mapped appro-

priately. HMF, AGCWD, BOIEM, and CLAHE generated

unsatisfactory images as the contrast of the input image

decreased. Among the other methods, RDST and RDAST

improved the contrast satisfactorily even at the severely

contrast-degraded input images.

Finally, Fig. 17 shows Bikes images [30], where the bright-

ness of input images is further decreased from the first row

to the last row. Therefore, they are suitable to evaluate the

contrast improvement capability of each CE algorithm in var-

ious brightness conditions. Both HE and ROHIM produced

very serious luminance and color distortion. AGCWD also

generated an inappropriate luminance image at the last row

of the figure. The contrast enhancement capability of HMF

and BOIEM is not satisfactory. However, RDAST and RDST

consistently produce good quality images.

We also performed the popular paired comparison as a

subjective quality assessment test for 192 images (16 origi-

nal images and associated 176 images generated by eleven

CE algorithms) of Figs. 12–17. Twenty subjects consisting

of 15males and 5 females participated in the test. The subjects

were asked to select an image of higher quality between a
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TABLE 2. Subjective assessment scores of the input and each of contrast-enhanced images. Top two results are boldfaced.

TABLE 3. Comparisons of calculation times with standard deviations on
different size of images. (∗ Indicates implementation with MEX functions).

pair of images of the same scene corresponding to different

conditions. The elaborately designed software shortened the

evaluation time by scoring through simple manipulations that

select a better image by pressing the right or left arrow key.

We tabulated the vote counts, i. e., the number of times one

imagewas selected as better than any other images, in Table 2.

Note that the higher the score, the better the performance. The

average subjective rating scores indicate that the proposed

RDST and RDAST have highly competitive performance.

D. CALCULATION TIME

To provide calculation times for different size of images,

we choseCCID2014 dataset [30]which consists of 644 images

of 768×512 size. We resized the images to 1280×720,

1920×1080 (Full HD), and 3840×2160 (4K image). The

average calculation times for each algorithm are shown

in Table 3. All algorithms were implemented in MATLAB

R2014a. The algorithms which were implemented using

MEX functions to calculate an input histogram and the

mapping function between input and output gray-levels are

denoted by the asterisk (∗) in Table 3. Tests were performed

on a personal computer running 64-bit Windows 7 with

16.0 GB RAM and Intel Core i7-4940 MX 3.3 GHz CPU.

As the size of the input images increases, the processing

time for SMIR, ROHIM, and BOIEM increases dramatically.

However, the processing time of the others, including the

proposed algorithms, increase in proportion to the image

size. The proposed RDST algorithm is one of the fastest

algorithms with high performance. The processing time of

the RDAST is much faster than SMIR, and it provides the

best CE performance as shown in Table 1 and 2.

VI. CONCLUSION

We have introduced the use of ramp distribution as an

NSS model for CE and proposed two CE algorithms.

A ramp distribution-based slant thresholding (RDST) algo-

rithm is proposed as a global CE method. It employs a

slant thresholding technique to improve the contrast effec-

tively. A ramp distribution-based adaptive slant thresholding

(RDAST) algorithm is also proposed as a local CE method.

It adaptively adjusts a slant angle of the ramp distribution in

each block to avoid noise amplification in uniform regions

and to maximize contrast in non-uniform regions. RDAST

also employs a scaled global modified histogram to minimize

the effect of block size changes on the resulting image. The

parameters used in RDAST are designed to be automatically

adjusted. Besides, it can achieve a fairly consistent quality

image for various block size settings.

In order to measure the over-contrast amount with respect

to a reference image, an over-contrast measure is introduced.

The metric is based on the characteristics of the human

visual system that amplified noise in uniform regions is more

distinctive than non-uniform regions. So, the OCM uses a

local standard deviation map to detect uniform regions and
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FIGURE 18. Illustration of a ramp-distributed histogram Hr .

employs the guided filter to measure the amount of details in

uniform regions.

Quantitative and qualitative experimental tests have been

performed on a wide range of images. With the help of the

OCM, we were able to correctly evaluate all CE algorithms

including local CE algorithms. Our proposed algorithms pro-

duce better or comparable contrast-enhanced images than

state-of-the-art algorithms. Due to its simplicity and compu-

tational efficiency, the proposed RDST and RDAST can be

easily applied to a wide range of real-world applications.8

APPENDIX

PROOF OF EQUATION (2)

The total sum of Hr is equal to the area of the triangle in a

discrete domain as shown in Fig. 18. Let us divide the triangle

equally into L, then the total sum of division equals toH×W .

Therefore, HW = 1
2
(L + 1) × hr (L), then hr (L) = 2HW

L+1
.

Note that the base length of the triangle is L + 1 because it

is calculated in the discrete domain. Since hr (l) is directly

proportional to l, we can obtain the proportional expression

as l : hr (l) = L : hr (L). Therefore,

hr (l) = hr (L)
l

L
=

2HW

L + 1
×

l

L
=

2HW

L(L + 1)
l. (30)
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