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ABSTRACT 
The variable and uncertain nature of wind generation 

presents a new concern to power system operators. One of the 
biggest concerns associated with integrating a large amount of 
wind power into the grid is the ability to handle large ramps in 
wind power output. Large ramps can significantly influence 
system economics and reliability, on which power system 
operators place primary emphasis. The Wind Forecasting 
Improvement Project (WFIP) was performed to improve wind 
power forecasts and determine the value of these improvements 
to grid operators. This paper evaluates the performance of 
improved short-term wind power ramp forecasting. The study is 
performed for the Electric Reliability Council of Texas 
(ERCOT) by comparing the experimental WFIP forecast to the 
current short-term wind power forecast (STWPF). Four types of 
significant wind power ramps are employed in the study; these 
are based on the power change magnitude, direction, and 
duration. The swinging door algorithm is adopted to extract 
ramp events from actual and forecasted wind power time series. 
The results show that the experimental short-term wind power 
forecasts improve the accuracy of the wind power ramp 
forecasting, especially during the summer. 

Keywords: Wind forecasting, grid integration, ramp 

forecasting, performance diagram, swinging door algorithm 
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INTRODUCTION 
Wind energy is becoming an increasingly important source 

of renewable energy in the electric power system. Currently, 

wind power meets 3.78% of U.S. electricity demand [1], with 

some systems (such as in Texas) having instantaneous wind 

power penetrations up to 28% [2]. Wind power has a maximum 

upper availability limit that is both variable and uncertain at 

multiple timescales. More generally, the variability and 

uncertainty of wind generation presents a primary concern to 

system operators. Thus, wind power forecasting plays an 

important part in power system operations given the increasing 

amount of wind power integrated in the electrical system. 

Although the current power system is capable of handling small 

amounts of uncertainty and variability, ramp (or extreme) 

events—sudden and large changes in wind power—are a 

critical issue. Improving the accuracy of wind power 

forecasting is expected to reduce the discrepancy between the 

forecast and actual wind power output, thereby enhancing the 

performance of wind power ramp forecasting and reducing 

wind integration costs. 

Overview of Wind Forecasting 
Wind forecast models can be broadly divided into two 

categories [3]: (i) forecasting based on the analysis of historical 

time series of wind; and (ii) forecasting based on numerical 

weather prediction (NWP) models. The first type of forecast 

model generally provides reasonable results in the estimation of 

long-term horizons, such as mean monthly, quarterly, and 

annual wind speed. In addition, statistical and machine learning 

techniques that utilize historical data have been shown to work 

well for forecast horizons less than one hour [4, 5]. For short-



 

2 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

term horizons more than one hour (daily or hourly forecasts), 
the impact of atmospheric dynamics becomes more important 
and NWP models—such as the Advanced Regional Prediction 
System (ARPS) [6, 7], the Weather Research & Forecasting 
Model (WRF) [8], and Global Forecast System (GFS) [9]— 
become more suitable. Short-term wind power forecasting 
(between 1 hour and 72 hours) is uniquely helpful in power 
system planning for the unit commitment and economic 
dispatch process. A variety of topics on short-term wind power 
forecasting have been studied in the literature, including 
distributions of wind power forecast errors [10-13], 
uncertainties in wind forecasting [13-15], and wind power ramp 
forecasting [16-21]. The focus of this paper is to investigate the 
impacts of improved wind power forecasting on wind ramp 
forecasting performance. 

Overview of Ramp Forecasting 
One of the biggest concerns associated with integrating a 

large amount of wind power into the grid is the ability to handle 
large ramps in wind power output. For example, a large down 
ramp event occurred in the Electric Reliability Council of Texas 
(ERCOT) system on February 26, 2008, that caused a system 
emergency [22]. Different time and geographic scales influence 
wind ramps, and there can be both up and down ramps with 
varying levels of severity. There are two main ways in which 
inaccurate forecasting of ramp events can lead to large errors: 
ramp magnitude and timing errors. The magnitude error is 
defined as an event that is forecasted to occur at an expected 
time but with significantly different magnitude. In ramp timing 
errors, the actual ramp in power significantly leads/lags the 
forecasted ramp time.  

Based on three key characteristics—direction, duration, and 
magnitude—ramps can be defined, characterized, and 
identified. Ferreria et al. [16] provided an overview of different 
ramp definitions and approaches in ramp event forecasting. 
Greaves et al. [17] defined a ramp as a change in wind power 
output that is at least 50% of the installed wind capacity and 
occurs within a time span of 4 hours or less. Zheng and Kusiak 
[19] employed the rate of change of wind power output over a 
10-minute interval to define ramps. Potter et al. [23] defined a 
ramp event as the change in power between two consecutive 
hours that is greater than or equal to 10% of the installed wind 
capacity. In a report by AWS Truewind [24], the up and down 
ramps were differently defined: (i) a down ramp occurs if the 
power changes at least 15% of total capacity within one hour; 
and (ii) an up ramp occurs if the power changes at least 20% of 
total capacity within 1 hour. AWS Truewind also analyzed the 
ERCOT system, which defines a ramp event as a change of 
20% or more of the rated capacity in any 30-minute period 
[25].  

Research Motivation and Objectives 
The U.S. Department of Energy funded the Wind 

Forecasting Improvement Project (WFIP) [26], which was 
performed to improve short-term wind power forecasts and 
determine the value of these improvements to grid operators. 
Large ramps can significantly influence system economics and 
reliability, on which power system operators place primary 

emphasis. This paper evaluates the performance of wind ramp 
forecasting based on improved short-term wind power 
forecasting. The analysis is performed for ERCOT by 
comparing the experimental WFIP forecast to the current short-
term wind power forecast (STWPF). 

The following topics are discussed in the remainder of the 
paper: (i) the WFIP analyzed regions and forecasting system; 
(ii) a statistical analysis comparing the performance of the 
WFIP to the current STWPF for ERCOT; (iii) the ramp 
forecasting methodology and the metrics for assessing ramp 
forecasting; and (iv) results and discussion of the ramp event 
forecasting through improved WFIP wind forecasts. 

WIND FORECASTING IMPROVEMENT PROJECT 
WFIP encompassed two study regions: the northern study 

region and the southern study region [26]. In this paper, the 
performance of wind power ramp forecasting based on the 
improved wind forecasting is analyzed for the southern study 
region. 

WFIP Southern Study Region 
The WFIP southern study region covers most of the ERCOT 

service area, as shown in Fig. 1. As of March 2012, ERCOT 
had 9,838 MW of wind capacity installed. The WFIP study 
region included 8,296 MW of wind capacity spread throughout 
84 wind power plants. Day-ahead (DA) and 1- to 6-hour-ahead 
(1HA to 6HA) wind power forecasts were generated by using 
both the WFIP and STWPF systems for a nearly 12-month 
period from October 2011 to mid-September 2012. Actual and 
forecast load data at the same wind forecast timescales for the 
12-month period were obtained from ERCOT. 

 
FIGURE 1. WFIP: SOUTHERN STUDY REGION IN ERCOT 

[26] 

Wind Forecasting System 
The current wind forecasting system used by ERCOT is the 

baseline for this study. The WFIP experimental forecast system 
consists of an ensemble of high-resolution rapid-update NWP 
models. Each of these ensemble members incorporates a variety 
of model configurations, physics parameterizations, and data 
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assimilation techniques. The purpose of integrating all of these 
ensemble members into one system is to construct an optimized 
composite forecast able to predict forecast uncertainty and 
assess the relative performance of different modeling 
approaches. Figure 2 shows the overall framework of the wind 
power forecasting system. The ensemble members include [27]: 

i. The National Oceanic and Atmospheric Administration’s 
3-km High-Resolution Rapid Refresh (HRRR) updated 
hourly; 

ii. Nine NWP models updated every 2 hours on a 5-km grid: 
(a) Three configurations of the Advanced Regional 

Prediction System (ARPS); 
(b) Three configurations of the Weather Research & 

Forecasting (WRF) model; 
(c) Three configurations of the Mesoscale Atmospheric 

Simulations System (MASS); and 
iii. Oklahoma University’s version of ARPS updated every 6 

hours on a 2-km grid. 
The data from additional sensors deployed for this project, 

as well as the data from a set of participating wind power plants 
within Texas, were assimilated into most of the ensemble 
members; however, the data from the project sensors were 
withheld from some ensemble members to gauge their impact 
on the forecasts [27]. 

 

FIGURE 2. OVERALL FRAMEWORK OF THE WIND 
POWER FORECASTING SYSTEM [27] 

A model output statistics (MOS) procedure was applied to 
the forecasts from each NWP system. The MOS is designed to 
correct systematic errors of relevant NWP meteorological 
variables (e.g., wind speed and direction) at forecast sites. The 
MOS output for the individual NWP systems was then used as 
input to an optimized ensemble model (OEM), which created a 
composite deterministic or probabilistic forecast from the set of 
MOS-adjusted NWP forecasts. In addition to the NWP 
forecasts, statistical predictions based purely on recent 
observational data were also included in the ensemble. Two 
OEM training strategies were tested: one was based on a rolling 
sample of the last 30 days; a second approach was based on a 
customized “analog” training sample. The training sample was 
constructed by matching key weather parameters of the current 
forecast period to those of cases in a historical archive. The 
objective of the regime-based approach was to weight the 
individual members of the ensemble according to their 

performance in weather patterns that were similar to the one 
expected during the forecast period. More details of the 
forecasting system can be found in [27]. 

WIND POWER FORECASTING PERFORMANCE 
COMPARISON OF WFIP AND STWPF 

Before analyzing the wind power ramp forecasting 
performance of WFIP versus STWPF, a statistical analysis was 
performed to understand the forecast improvements provided 
by WFIP.  

Statistical Metrics for Comparing WFIP to STWPF 
Three statistical metrics were adopted to compare the 

forecasting performance of WFIP and STWPF: (i) Pearson’s 
correlation coefficient, (ii) root mean square error (RMSE), (iii) 
mean absolute error (MAE), and mean bias error (MBE). 

Formulations of Statistical Metrics Pearson’s 
correlation coefficient is a measure of the correlation between 
two variables (or sets of data), expressed as: 

pp

pp
ˆ

)ˆ,cov(
σσ

ρ =  (1) 

where p  and p̂  represent the actual and forecasted wind 
power output, respectively. Pearson’s correlation coefficient is a 
global error measure metric; a larger value of Pearson’s 
correlation coefficient indicates a wind power forecast that 
more closely matches reality (i.e., has smaller errors). 

The RMSE also provides a global error measure during the 
entire forecasting period. It is given by 

∑
=

−=
N

i
ii pp

N
RMSE

1

2)ˆ(1
 (2) 

where ip  represents the actual wind power generation at the 
thi  time step, ip̂  is the corresponding wind power forecast, and 

N  is the number of points estimated in the forecasting period. 
The MAE has been widely used in regression problems and 

by the renewable energy industry to evaluate forecasting 
performance. It is given by 

∑
=

−=
N

i
ii pp

N
MAE

1

ˆ1
 (3) 

The MAE metric, unlike the RMSE metric, weights all values 
equally and thus does not add additional weight to extreme 
forecasting events. 

The MBE is expressed as 

( )∑
=

−=
N

i
ii pp

N
MBE

1

ˆ1
 (4) 

The MBE metric intends to indicate average forecasting bias. 
Understanding the overall forecasting bias (over- or 
underforecasting) would allow power system operators to better 
allocate resources to compensate for forecasting errors in the 
dispatch process. 
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A Comparison of Forecasts Using Statistical 
Metrics The values of different metrics used to evaluate the 
STWPF and WFIP wind power forecasts at multiple forecasting 
horizons are shown in Table 1. The relative RMSE and MAE 
(the RMSE and MAE divided by the wind power capacity 
8,296 MW) are shown in the table. As expected and inferable 
from the metrics of correlation coefficient, RMSE, and MAE, 
(i) the 1HA forecast performed best and the DA forecast 
performed worst; and (ii) the experimental WFIP provided 
better results than the current STWPF for all forecasting 
timescales. Table 2 shows a comparison of the performances of 
the 6HA forecasts in WFIP and STWPF for each month. It was 
observed that 6HA WFIP forecasts had smaller RMSE and 
MAE values for all 12 months. According to the MBE metric, 
the experimental WFIP forecast tended to overforecast in most 
months; and the current STWPF forecast tended to 
underforecast in most months. Although the WFIP forecast had 
less bias than the STWPF forecast in most months, relatively 
more bias was shown in the WFIP forecast in December and 
September. 

TABLE 1. METRICS VALUES FOR EVALUATING STWPF 
AND WFIP IN A YEAR 

Metric 
Correlation 
Coefficient 

RMSE/Capacity MAE/Capacity 

STWPF WFIP STWPF WFIP STWPF WFIP 
1HA 0.96 0.99 7.24% 3.66% 5.43% 2.70% 
2HA 0.94 0.97 8.89% 6.60% 6.70% 4.91% 
3HA 0.93 0.95 9.95% 8.23% 7.53% 6.16% 
4HA 0.92 0.94 10.65% 9.22% 8.09% 6.91% 
5HA 0.91 0.93 11.12% 9.88% 8.46% 7.44% 
6HA 0.91 0.92 11.44% 10.38% 8.72% 7.82% 
DA 0.90 0.90 11.96% 11.68% 9.01% 8.64% 

TABLE 2. METRICS VALUES OF 6HA STWPF AND WFIP 
IN EACH MONTH 

Month RMSE/Capacity MAE/Capacity MBE/Capacity 
STWPF WFIP STWPF WFIP STWPF WFIP 

Oct.-11 11.44% 9.25% 8.73% 6.88% -1.03% -0.17% 
Nov.-11 10.30% 9.07% 7.84% 6.97% 1.09% 0.36% 
Dec.-11 11.86% 11.41% 9.27% 8.71% -0.04% 1.58% 
Jan.-12 11.33% 10.38% 8.73% 7.98% -1.76% -1.59% 
Feb.-12 13.56% 13.05% 10.12% 9.76% -1.16% 0.47% 
Mar.-12 12.82% 10.87% 9.99% 8.46% -2.89% 0.03% 
Apr.-12 12.24% 11.22% 9.12% 8.27% -0.59% 0.28% 
May.-12 12.51% 10.48% 9.93% 8.39% -0.38% 0.44% 
Jun.-12 11.49% 11.39% 8.91% 8.42% -1.21% 0.21% 
Jul.-12 9.36% 8.76% 6.92% 6.57% 0.52% -0.32% 

Aug.-12 9.56% 8.56% 7.53% 6.75% 1.40% 1.09% 
Sep.-12 9.20% 8.75% 7.01% 6.35% -0.34% -1.31% 

Distributions of Wind Power Forecasting Errors  
Forecasts are important considerations in committing and 

dispatching generating units. The estimation of forecast 
confidence intervals can be calculated using an assumed error 
distribution on the point forecast and based on historical data. 
An important resulting characteristic of the WFIP forecasts was 
a preferable distribution of wind power forecasts, as described 
in more detail in the next sections. 

Method for Estimating Error Distributions Multiple 
distribution types have been analyzed in the literature to 
quantify the distribution of wind power forecasting errors, 
including the hyperbolic distribution, kernel density estimation 
(KDE), the normal distribution, and the Weibull and beta 
distributions [28]. KDE was adopted in this paper to model the 
distribution of wind power forecasting errors for different 
forecasting scenarios. KDE is a nonparametric approach to 
estimate the probability density function of a random variable. 
It has been widely used in the wind energy community for wind 
speed distribution and wind power forecasting errors [13, 29, 
30]. In this paper, the Gaussian kernel is considered throughout. 
The mean integrated squared error, the most commonly used 
optimality criterion, is used in this article for bandwidth 
selection. 

Comparing the Results of Error Distributions 
Figure 3 and Fig. 4 show the distributions of wind power 
forecasting errors at different forecasting horizons by using the 
STWPF and WFIP, respectively. The wind power forecasting 
errors were normalized by the WFIP region wind capacity of 
8,296 MW in the analysis. Among DA and 1HA to 6HA 
forecasts, it was observed that the 1HA horizon performed the 
best for both the STWPF and WFIP forecasts, as indicated by 
the narrower error distribution curves. The DA forecasts in both 
the STWPF and WFIP performed the worst, as expected. As 
shown in Fig. 3 and Fig. 4, the 1HA forecasts had the largest 
probability when the forecasting error was smaller (i.e., 
pronounced peak), and the DA forecasts had the largest 
probability when the forecasting error was larger (i.e., fat tails). 
The expected observations could be partially attributed to the 
atmospheric dynamics that can be more accurately predicted 
fewer hours ahead. A comparison of the STWPF to the WFIP 
showed that the 1HA forecasts from the WFIP performed 
significantly better than the 1HA forecasts from the STWPF.  

 

FIGURE 3. DISTRIBUTIONS OF STWPF FORECAST 
ERRORS AT DIFFERENT TIMESCALES 
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FIGURE 4. DISTRIBUTIONS OF WFIP FORECASTING 
ERRORS AT DIFFERENT TIMESCALES 

RAMP FORECASTING METHODOLOGY AND 
PERFORMANCE EVALUATION METRICS 

The study employed four definitions of significant wind 
power ramps based on the power change magnitude and 
duration. Ramp events need to be extracted from actual and 
forecast wind power series, and the swinging door algorithm 
was adopted for this purpose. A suite of metrics were proposed 
to evaluate the performance of ramp forecasting compared to 
different types of wind forecasts. 

Definitions of Significant Wind Power Ramps  
Four types of significant ramps are defined based on (i) 

ramp magnitude only; (ii) ramp magnitude and duration; (iii) 
ramp change rate; and (iv) ramp direction, magnitude, and 
duration. 

Significant Ramp Definition 1: Ramp Magnitude 
Only The first definition of a significant ramp is based on the 
magnitude of wind power change. In this paper, a significant 
ramp is defined as the change in wind power output that is 
greater than 30% of the installed wind capacity, expressed as 

( ) ( ) valt PtPtP >−∆+  (5) 

where ( )tP  is the wind power output at time t ; t∆  is the 
duration of the ramp, which is not specified in significant ramp 
definition 1; and valP  is the predefined threshold value, which 
is 30% of the wind capacity. 

Significant Ramp Definition 2: Ramp Magnitude 
and Duration The second definition defines a significant 
ramp based on both the magnitude and duration of wind power 
change. In the study, the significant ramp is defined as the 
change in wind power output that is greater than 25% of the 
installed wind capacity and occurs within a time span of 4 

hours or less, which is also expressed in Eq. (5). In the 
equation, the duration of the ramp, t∆ , is less than or equal to 

4 hours; and the threshold value, valP , is 25% of the installed 
wind capacity. 

Significant Ramp Definition 3: Ramp Change Rate 
The third definition of significant ramps is based on the change 
rate of wind power. In this paper, a significant ramp rate is 
defined as the change rate in wind power output that is greater 
than 10% of the installed wind capacity, expressed as: 

( ) ( )
val

t

t R
tPtP
>

∆

−∆+
 (6) 

where valR  is the predefined threshold value of change rate in 
wind power output. 

Significant Ramp Definition 4: Ramp Direction, 
Magnitude, and Duration The fourth definition of 
significant ramps is based on the change direction, magnitude, 
and duration of wind power output. In the paper, a significant 
up ramp is defined as the change in wind power that is greater 
than 20% of wind capacity within a time span of 4 hours or 
less; and a significant down ramp is defined as the change in 
wind power that is greater than 15% of wind capacity within a 
time span of 4 hours or less. 

( ) ( ) u
valt PtPtP >−∆+  (7) 

( ) ( ) d
valt PtPtP −<−∆+  (8) 

where u
valP  and d

valP  represent the up and down ramp threshold 
values, respectively. 

Ramp Extraction Using the Swinging Door Algorithm 
Ramps are extracted through a linear piecewise 

approximation to the original time series of data, actual, or 
forecasted wind power in this study. To determine any 
significant ramp or ramp rate as defined by definitions 1 to 4, 
the start and end points of all ramps in a given time series of 
wind power need to be identified. Toward this end, the 
swinging door algorithm is adopted to extract ramp periods in a 
series of power signals by identifying the start and end points of 
each ramp.  

The swinging door algorithm allows for the consideration of 
a threshold parameter influencing the algorithm’s sensitivity to 
ramp variations. The only tunable parameter in the algorithm is 
the width of a “door,” represented by ε  in Fig. 5. The 
parameter ε directly characterizes the threshold sensitivity to 
noise and/or insignificant fluctuations to be specified. With a 
smaller ε  value, many small ramps will be identified; with a 
larger ε  value, only a few large ramps will be identified. It is 
important to note that the scale in Fig. 5 is arbitrary for the 
purpose of explanation, and in general the signal magnitude is 
much larger than the scale of the threshold bounds. A detailed 
description of the swinging door algorithm can be found in 
[18]. 
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FIGURE 5. THE SWINGING DOOR ALGORITHM FOR 

THE EXTRACTION OF RAMPS IN POWER FROM THE 
TIME SERIES [18] 

Figure 6 show a typical example in the extraction of ramps 
from actual wind power generation at ERCOT during a 100-
hour period. The hourly wind power data is recorded in the 
WFIP region, which is an aggregation of outputs from 84 wind 
power plants. The tolerance value, ε , is set at 2.5% of installed 
wind capacity. In the figure, the solid and dashed lines represent 
the actual wind power and the piecewise linear approximation 
(generated by the swinging door algorithm), respectively. An 
accurate piecewise linear approximation to the actual wind 
power profile is obtained as shown in Fig. 6. The figure 
presents the nature of up and down ramps with large, medium, 
and insignificant changes in power. The extracted ramps in the 
actual wind power generation are visualized by rise-run 
distributions. Figure 7 shows the bivariate distribution of all 
wind power ramps. It is observed that the distribution spreads 
within the more immediate ramp region.  

 
FIGURE 6. RAMP EXTRACTION FROM THE ACTUAL 

WIND POWER GENERATION 

 
FIGURE 7. BIVARIATE DISTRIBUTION OF ACTUAL 

WIND POWER RAMPS 

Based on the four ramp definitions, significant ramps can be 
identified. Each significant ramp is characterized by the (i) start 
and end hours; (ii) wind power at the start and end points; and 
(iii) direction of the ramp. 

Metrics of Evaluating Significant Ramp Forecasting 
Performance  

A suite of event detection metrics are used to evaluate the 
performance of ramp forecasting, including a contingency 
table, categorical statistics, and performance diagrams. 

Contingency Table The contingency table provides a 
measure of skill for forecasts of notable events [16]. To 
evaluate ramp forecasting, all forecasts and observations of 
significant wind ramps are grouped into four categories based 
on whether the forecast accurately predicts the actual ramps. 
Table 3 is a contingency table that summarizes the results of a 
ramp forecasting system. True positive (TP) represents the 
number of forecasted ramps (forecast YES) that are actually 
observed in the actual power output (observed YES); false 
positive (FP) is the number of forecasted ramps that are not 
observed in the actual wind power (observed NO); false 
negative (FN) represents the number of observed ramps 
(observed YES) that are not predicted by the wind forecasting 
system (forecast NO); true negative (TN) is the number of non-
occurring events for both observed and forecast results; and N 
is the total number of events. 

TABLE 3. CONTINGENCY TABLE FOR RAMP EVENT 
OBSERVATION AND FORECAST 

 Observed 
YES 

Observed 
NO Total 

Forecast 
YES TP (hits) FP (false 

alarm) TP+FP 

Forecast 
NO FN (misses) TN FN+TN 

Total TP+FN FP+TN N= TP+FP+ 
FN+TN 
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Categorical Statistics and Performance Diagram 

Categorical statistics provide measures of accuracy and skill for 

forecasts of notable events, such as ramps in power, detrimental 

temperatures, or rainfall. Based on the contingency table, a 

suite of metrics can be derived for ramp forecasting 

performance evaluation, given as follows. 

Probability of detection (POD) is defined as the ratio 

between the number of true positives and the number of 

observed positives, which indicates the fraction of observed 

YES events that are actually forecasted. 

FNTP

TP
POD

+
=  (9) 

Critical success index (CSI) is used to measure the fraction 

of observed and/or forecasted events that are correctly 

predicted, given by 

FPFNTP

TP
CSI

++
=  (10) 

The value of CSI is between 0 and 1, with 1 representing 

perfect prediction. The CSI considers only observed and 

forecasted ramps, excluding true negative events. 

Frequency bias score (FBIAS) measures the ratio of the 

frequency of forecasted YES events to the frequency of 

observed YES events.   

FNTP

FPTP
FBIAS

+
+

=  (11) 

The ramp forecast system tends to underforecast when 

FBIAS<1, and it tends to overforecast when FBIAS>1.  

False alarm ratio (FAR) measures the fraction of predicted 

YES events that did not occur, given by 𝐹𝐹𝐹 = FP

FP + TP
(12) 

The metric success ratio (SR) is calculated from FAR by 

subtracting it from 1. SR measures the fraction of predicted 

YES events that occurred. 

The relationship among the POD, CSI, FBIAS, and FAR 

can be visualized on a performance diagram [31] based on 

1
1

11

1

−
−

+
=

FARPOD

CSI  
(13) 

FAR

POD
FBIAS

−
=

1
 (14) 

EVALUATING SIGNIFICANT RAMP FORECASTING 
PERFORMANCE BASED ON IMPROVED WIND 
POWER FORECASTS 

This section shows the effects of forecast improvement on 

wind power ramp forecasting. Greaves et al. [17] defined a true 

positive forecast as a forecast ramp with a measured ramp of 

the same direction (either up or down) within ±12 hours of the 

time of the forecast ramp. In this study, a true positive forecast 

is defined as a forecast ramp with a measured ramp of the same 

direction within ±6 hours of the time of the forecast ramp. This 

±6-hours range could provide sufficient data for temporal 

uncertainty analysis and maintain a realistic connection 

between forecast and measured significant wind ramp events. 

Annual Ramp Forecasting Performance 
Table 4 lists the number of significant up and down ramps in 

actual wind power throughout the whole year. There were more 

up ramps than down ramps for all four ramp definitions. There 

are more significant ramps of definition 4 than of the other 

three criteria.  

TABLE 4. NUMBER OF OBSERVED RAMPS 

Ramp Type Ramp 

Def. 1 

Ramp 

Def. 2 

Ramp 

Def. 3 

Ramp 

Def. 4 

Up Ramps 87 105 86 233 

Down Ramps 64 74 54 223 

A performance diagram can be used to understand whether 

the wind power forecasting is improved. Figure 8 shows the 

annual ramp forecasting performance between STWPF and 

WFIP for different forecast timescales and significant ramp 

definitions. In the performance diagrams, (i) the left axis 

represents the value of POD; (ii) the bottom axis represents the 

success ratio; (iii) the diagonal dashed lines represent FBIAS 

with the values shown on the right and top axes; and (iv) the 

solid curves show CSI with the values on the right-inside graph 

border. The figure shows the 4HA, 5HA, 6HA, and DA 

forecasts. The performance diagram shows the ramp forecast 

performance space—that is, as the forecast moves toward the 

upper right of the diagram, the overall ramp forecast metrics 

improve. 

The performance diagram in Fig. 8 compares the annual 

ramp forecasting performance of the STWPF to the WFIP for 

different forecast timescales and ramp definitions. The WFIP 

ramp forecasting performance is evaluated using four 

forecasting timescales: 4HA, 5HA, 6HA, and DA. It is 

observed in Fig. 8(a) that (i) the 4HA WFIP has a larger success 

ratio, POD, and CSI values than the 4HA STWPF; (ii) the 5HA 

WFIP also has a larger success ratio, POD, and CSI values than 

the 5HA STWPF; (iii) the ramp forecasting performance of the 

6HA WFIP and STWPF is similar; and (iv) the DA WFIP also 

has a larger success ratio, POD, and CSI values than the DA 

STWPF. Similar results are also observed from the other three 

definitions of significant ramps in Figs. 8(b)-8(d). Overall, the 

ramp forecasting based on the improved wind power forecasts 

is more accurate. The FBIAS values are smaller than one for all 

cases in Fig. 8, showing that the WFIP and STWPF ramp 

forecasting tend to underforecast.
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(a) Ramp Definition 1: Ramp magnitude only (b) Ramp Definition 2: Ramp magnitude and duration 

  
(c) Ramp Definition 3: Ramp change rate (d) Ramp Definition 4: Ramp direction, magnitude, and duration 

FIGURE 8. COMPARING ANNUAL RAMP FORECASTING PERFORMANCE OF STWPF AND WFIP FOR DIFFERENT 
FORECAST TIMESCALES AND RAMP DEFINITIONS

Seasonal Ramp Forecasting Performance 
Figure 9 compares seasonal ramp forecasting performance 

of the 4HA STWPF to the 4HA WFIP forecasts. For all four 
significant ramp definitions in Figs. 9(a)-9(d), the ramp 
forecasting performs relatively better in fall and relatively 
worse in summer for both the WFIP and STWPF. This can be 
partially attributed to the features responsible for ramps. The 
summer tends to be more convective (mesoscale), hence it is 
more difficult to forecast (especially on the 4HA time scale) 
than the larger synoptic scale (such as fronts) features that 
cause ramps in the colder seasons. It is observed in Figs. 9(a) 
and 9(b) that during summer the ramp forecasting based on 

WFIP performs significantly better than that based on STWPF. 
However, during fall the ramp forecasting based on STWPF 
performs slightly. This significant improvement of ramp 
forecasting performance in summer based on the improved 
wind forecasts could play an important part in enhancing 
system economics and reliability because high electric demand 
is generally expected in ERCOT during the summer period. 
After comparing the ramp forecasting performance among the 
four different significant ramp definitions, it is evident that 
ramp forecasts generally have a larger success ratio, POD, and 
CSI values with Definition 4, as shown in Fig. 9(d). The FBIAS 
value is also closer to one with Definition 4.  
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(a) Ramp Definition 1: Ramp magnitude only (b) Ramp Definition 2: Ramp magnitude and duration 

  
(c) Ramp Definition 3: Ramp change rate (d) Ramp Definition 4: Ramp direction, magnitude, and duration 

FIGURE 9. COMPARING SEASONAL RAMP FORECASTING PERFORMANCE OF STWPF TO WFIP FOR 4HA FORECASTS

Monthly Ramp Forecasting Performance 
Figure 10 compares monthly ramp forecasting performance 

among the 4HA to 6HA and DA STWPF and WFIP forecasts. 
The 12 points represented by each symbol (e.g., circle) indicate 
the ramp forecasting performance in each month. It is observed 
that the values of POD and success ratio could reach one during 
some months, such as 4HA WFIP, 5HA WFIP, and 6HA 
STWPF, as shown in Fig. 10(b). It is also observed that with 

different forecasting timescales and months, the variation in the 
ramp forecasting performance based on the significant ramp 
Definition 4 is relatively less than that based on the other three 
significant ramp definitions. Although the annual ramp 
forecasting tends to underforecast (FBIAS<1 as shown in Fig. 
8), the system tends to overforecast in a few months as shown 
in Fig. 10 in the cases of FBIAS>1.
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(a) Ramp Definition 1: Ramp magnitude only (b) Ramp Definition 2: Ramp magnitude and duration 

  
(c) Ramp Definition 3: Ramp change rate (d) Ramp Definition 4: Direction, magnitude, and duration 

FIGURE 10. COMPARING MONTHLY RAMP FORECASTING PERFORMANCE OF STWPF TO WFIP FOR DIFFERENT 
FORECAST TIMESCALES AND RAMP DEFINITIONS

CONCLUSION 
This paper characterized ramp forecasting performance by 

using the experimental forecasts from the Wind Forecasting 
Improvement Project (WFIP) in place of the current Electric 
Reliability Council of Texas (ERCOT) short-term wind power 
forecast (STWPF). A suite of statistical metrics were used to 
evaluate the overall improvement of the WFIP in short-term 
wind power forecasting accuracy for different forecasting 
horizons. Statistical analyses of the results showed that in most 
seasons/months, the experimental WFIP provided better 
performance than the current STWPF for all forecasting 

horizons. An evaluation of the ramp forecasting improvement 
was performed based on four types of significant ramp 
definitions. The wind power ramps were extracted using the 
swinging door algorithm. 

The results showed that improved wind power forecasts 
could also improve the accuracy of wind power ramp 
forecasting, especially during the summer period in ERCOT. 
The results also showed that the ramp forecasting for both the 
WFIP and STWPF tended to underforecast during the whole 
year. The ramp forecasting performed relatively better with the 
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ramp Definition 4 based on the direction, magnitude, and 
duration of the ramps. 
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