
RAMP Gold: An FPGA-based Architecture Simulator for
Multiprocessors

Zhangxi Tan, Andrew Waterman, Rimas Avizienis, Yunsup Lee, Henry Cook,
David Patterson, Krste Asanović

The Parallel Computing Laboratory
CS Division, EECS Department, University of California, Berkeley

{xtan,waterman,rimas,yunsup,hcook,pattrsn,krste}@eecs.berkeley.edu

ABSTRACT

We present RAMP Gold, an economical FPGA-based archi-
tecture simulator that allows rapid early design-space explo-
ration of manycore systems. The RAMP Gold prototype is
a high-throughput, cycle-accurate full-system simulator that
runs on a single Xilinx Virtex-5 FPGA board, and which
simulates a 64-core shared-memory target machine capable
of booting real operating systems. To improve FPGA imple-
mentation efficiency, functionality and timing are modeled
separately and host multithreading is used in both mod-
els. We evaluate the prototype’s performance using a mod-
ern parallel benchmark suite running on our manycore re-
search operating system, achieving two orders of magnitude
speedup compared to a widely-used software-based architec-
ture simulator.

Categories and Subject Descriptors

C.5.3 [Computer System Implementation]: Micropro-
cessors; I.6.8 [Simulation and Modeling]: Discrete Event

General Terms

Design, Performance, Experimentation

Keywords

Multiprocessors, FPGA, Simulation

1. INTRODUCTION
Evaluating new architectural ideas with hardware proto-

typing is often prohibitively expensive. Computer architects
have therefore employed simulation for early-stage microar-
chitectural experiments, such as exploring the memory hier-
archy design space. Software simulators [4, 8, 19, 20] have
been the most popular approach because of their low cost,
simplicity, and extensibility. Furthermore, in the earlier era
of exponentially increasing uniprocessor performance, soft-
ware simulators became correspondingly faster without any
software engineering effort.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2010, June 13-18, 2010, Anaheim, California, USA
Copyright 2010 ACM ACM 978-1-4503-0002-5 ...$10.00.

Unfortunately, the shift to multicore architectures [3] both
increases the complexity of systems that architects want
to model while largely eliminating the single-thread perfor-
mance improvements that software simulators have relied
upon for scaling. Worse yet, cycle-accurate software simula-
tors are difficult to parallelize efficiently because fine-grained
synchronization limits speedup, and relaxing this cycle-level
synchronization reduces simulation accuracy [17, 18].

FPGAs have become a promising vehicle to bridge this
simulation gap [22]. FPGA capacity has been scaling with
Moore’s Law, which perfectly matches the growth of the
core count on a single processor die. Modern FPGAs have
hundreds of SRAM blocks (e.g., Xilinx BRAM), which, as
we later discuss, are essential for efficient timing model-
ing. Moreover, cycle-level synchronization is much faster
on FPGAs than in software.

In this paper, we present RAMP Gold, a cycle-accurate
FPGA-based architecture simulator1. RAMP Gold is ef-
ficient: we simulate a 64-core manycore system at almost
50MIPS on an off-the-shelf $750 Xilinx XUP board, achiev-
ing orders of magnitude speedup over software-based simu-
lators. At the same time, RAMP Gold maintains much of
the configurability and extensibility of software-based simu-
lators by decoupling the correct execution of the ISA from
the modeling of the simulated system’s timing.

Designing a high-throughput simulator on an FPGA is a
dramatically different exercise from prototyping the simu-
lated machine itself. We discuss the design decisions behind
RAMP Gold and its FPGA implementation, then analyze its
performance and compare it to that of Simics+GEMS [14,
15] on the popular PARSEC benchmark suite [5], showing
that while functional-only simulations run at about the same
speed on both platforms, RAMP Gold runs 263× faster on
average with detailed timing models.

2. RAMP GOLD DESIGN STRATEGY
We call the machine being simulated the target and the

machine on which the simulation runs the host. The most
intuitive approach to simulating a manycore target on an
FPGA is to replicate hardware just as in the target ma-
chine, using a soft-core processor implementation. Naively
mapping these cores to FPGAs, however, is inefficient and
inflexible. RAMP Gold’s efficient design is based on sev-
eral observations that distinguish it from other FPGA-based
simulators and soft-cores:

1RAMP Gold source code is available at
http://ramp.eecs.berkeley.edu/gold

1. FPGAs don’t implement wide multiplexers well. This
observation led to an unbypassed pipeline design that
avoids wide forwarding-path multiplexers. We found
by removing forwarding logic in a popular FPGA soft-
core processor [2], pipeline area is reduced by 26%-32%
and frequency is boosted by 18%-58% under different
CAD tool optimization strategies.

2. FPGAs have plenty of RAM. This observation, com-
bined with the lack of bypass paths, led to a multi-
threaded design. Simulation performance arises from
many simulation threads per FPGA rather than from
complex simulation pipelines optimized for single-thread
performance. We call this strategy host-multithreading :
using multiple threads to simulate different target cores.
Note that host-multithreading neither implies nor pro-
hibits a multithreaded target architecture.

3. Modern FPGAs have hard-wired DSP blocks. Execu-
tion units, especially FPUs, dominate LUT resource
consumption when implementing a processor on an
FPGA. If we map functional units to DSP blocks rather
than just LUTs, we can devote more resources to tim-
ing simulation

4. DRAM accesses are relatively fast on FPGAs. Logic
in FPGAs often runs slower than DRAM because of
on-chip routing delays. This insight greatly simplifies
RAMP Gold’s host memory system, as large, associa-
tive caches are not needed for high performance.

5. FPGA primitives run faster but have longer routing

delays. FPGA primitives, such as DSPs and BRAMs,
run at high clock rates compared to random logic, but
their fixed on-die location often exacerbates routing
delays. This observation led to a deep model pipeline.

Like many software simulators [4, 8], RAMP Gold sepa-
rates the modeling of target timing and functionality. The
functional model is responsible for executing the target ISA
correctly and maintaining architectural state, while the tim-

ing model determines the time the target machine takes to
run an instruction. The benefits of this functional/timing
split are:

1. Simplified FPGA mapping of the functional model. The
separation allows complex operations to take multiple
host cycles. For example, a highly-ported register file
can be mapped to a block RAM and accessed in mul-
tiple host cycles, avoiding a large, slow mapping to
FPGA registers and muxes.

2. Improved modeling flexibility and reuse. The timing
model can be changed without modifying the func-
tional model, reducing modeling complexity and amor-
tizing the functional model’s design effort.

3. Enable a highly-configurable abstracted timing model.

Splitting timing from function allows the timing model
to be more abstract. For example, a timing model
might only contain target cache metadata. Different
cache sizes could then be simulated without resynthesis
by changing how the metadata RAMs are indexed and
masked at runtime.

3. RELATED WORK
RAMP Gold is inspired in part by several recent works

from the FPGA community. Fort et al. [9] employed multi-
threading to improve utilization of soft processors with little
area cost. Protoflex [7] is an FPGA-based full-system simu-
lator without a timing model, and is designed to provide sim-
ilar functionality to Simics [14] at FPGA-accelerated speeds.
ProtoFlex employs host multithreading to simulate multi-
ple SPARC V9 target cores with a single host pipeline but
lacks a hardware floating-point unit as it targets commer-
cial workloads like OLTP; its performance thus suffers on
arithmetic-intensive parallel programs.

HAsim [16] is another FPGA-based simulator that em-
ploys a split functional/timing architecture similar to RAMP
Gold. FAST [6] is a hybrid FPGA-based simulator, whose
timing model is in FPGAs but whose functional model is in
software. FAST requires substantial communication band-
width between the CPU and FPGA, which may limit simu-
lation scalability.

Researchers have explored many FPGA-based simulation
techniques that vary in modeling fidelity, performance, and
ease of modification. A taxonomy of these approaches and
further discussion of related work is found in [21].

4. RAMP GOLD DESIGN AND IMPLEMEN-

TATION
RAMP Gold comprises about 36,000 lines of SystemVer-

ilog with minimal third-party IP blocks. Our first produc-
tion system targets the Xilinx Virtex-5 and is deployed on
a low-cost XUP board2.

RAMP Gold employs many advanced FPGA optimiza-
tions and is designed from the ground up with reliability
in mind. We have operated five boards for two weeks at a
wide range of die temperatures—between 40 and 110 degrees
Celsius—without any hard or soft errors.

Figure 1 shows the structure of RAMP Gold. The tim-
ing and functional models are both host-multithreaded. The
functional model maintains architected state and correctly
executes the ISA. The timing model determines how much
time an instruction takes to execute in the target machine
and schedules threads to execute on the functional model ac-
cordingly. The interface between the functional and timing
models is designed to be simple and extensible to facilitate
rapid evaluation of alternative target memory hierarchies
and microarchitectures.

4.1 Functional Model
The functional model is a 64-thread feed-through pipeline

with each thread simulating an independent target core. The
functional model supports the full SPARC V8 ISA in hard-
ware, including floating point and precise exceptions. It also
has sufficient hardware to run an operating system, includ-
ing MMUs, timers, and interrupt controllers. We have val-
idated the functional model using the SPARC V8 certifica-
tion suite from SPARC International, and we can boot the
Linux 2.6.21 kernel as well as ROS, a prototype manycore
research operating system [10, 13]. The functional model
has been highly optimized for the Virtex-5 FPGA fabric,
and employs the following mapping optimizations:

2The Xilinx Virtex-5 OpenSPARC Evaluation Platform
costs academics $750. http://www.digilentinc.com/

Bank 0

L2 Tags

M

S

H

R

=

Fetch P
Architecture

State

(x64)

Frontend

Link

RX TX

Frontend App Server
Gigabit

Ethernet

Microcode

ROM
Decode

 P8 direct-mapped private

host I$ (x64)
 P

2x16 2-way

private ITLB

(x64)

Target Register File Access

 P
Architecture

Register File

(x64)

Integer ALU

Simple ALU

IDIV/IMUL

Pipelined FPU

DP
FPU

SP-DP
Conv

FP-
INT

Conv

 MMU P
2x16 2-way

private DTLB

(x64)

D
D

R
2

 M
e

m
o

ry
 C

o
n

tr
o

ll
e

r

Exception/Write Back

 PIO Devices
(x64)

16KB
unified
host D$

64-entry
MSHR

Thread Scheduler

Target

Cycle

Count

Scoreboard

 PL1 I$

Tag

==

Timing Model

Config Reg

 PL1 D$

Tag

Timing Model

Config Reg

<INST, PC,

PADDR>

L2 Tags

M

S

H

R

=

L2 Tags

M

S

H

R

=

L2 Tags

M

S

H

R

=

Bank 0

Bank 1

DRAM TimingQoS

DRAM TimingQoS

DRAM TimingQoS

DRAM TimingQoS

Timing Model

Config Reg

From functional
model I/O bus

CPU Timing
Model

Banked L2
Timing Model

DRAM Channel
Timing Model

2
2

5
 M

H
z
/2

G
B

 S
O

D
IM

M

Functional Model Timing Model

Bank 2

Bank 3

Figure 1: RAMP Gold Structure.

1. Routing-optimized pipeline: The functional pipeline is
13 stages long. Some pipeline stages are dedicated to
signal routing to BRAMs and DSPs.

2. Microcode for complex operations: The functional/timing
split allows us to implement the functional pipeline as
a microcode engine. Complex SPARC operations, such
as atomic memory instructions and traps, are handled
using microcode in multiple pipeline passes. The mi-
crocode engine also makes it easier to prototype exten-
sions to the ISA.

3. DSP-mapped ALU: DSP blocks in FPGAs have been
greatly enhanced in recent generations to support log-
ical operations and pattern detection, in addition to
traditional multiply-accumulate operations. We mapped
the integer ALU and flag generation to two Virtex-5
DSPs and the FPU to fourteen DSPs.

4. Simple host cache and TLB: Each thread has a pri-
vate direct-mapped 256-byte instruction cache, a 32-
entry instruction TLB, and a 32-entry data TLB. 64
threads share a small 16KB lockup-free direct-mapped
data cache that supports up to 64 outstanding misses.
The host caches and TLBs have no effect on the tar-
get timing — they exist solely to accelerate functional
simulation. The unusually small host data cache is
a deliberate, albeit peculiar, design decision that we
discuss in the next section.

5. Fine-tuned block RAM mappings: RAMP Gold is a
BRAM-dominated design. In the functional model,
the register files, host caches, and TLBs are manu-
ally mapped to BRAMs for optimal resource usage.
In addition, we double-clocked all BRAMs for higher
bandwidth. Each BRAM is protected by either ECC
or parity for longer and larger scale experiements that
require many FPGAs, as the BRAM soft-error rate of
65 nm Xilinx FPGAs nearly doubles compared to the
90 nm generation [12].

4.2 Host Memory Interface
The functional model connects to a single-channel 2 GB

DDR2 SODIMM on the XUP board running at 225 MHz
through a multiport crossbar with an asynchronous request
interface. Currently the DRAM serves only as the storage
for the target machine, but in a future revision it will also
store expanded timing metadata.

Implementing a reliable, high-speed DRAM controller is
challenging on a low-cost FPGA board because of analog sig-
nal issues and uncertainties introduced by the CAD tools.
Such design problems become more obvious with the signif-
icant memory-level parallelism offered by a multithreaded
design. We created our own DRAM controller based on the
Microsoft BEE3 design [1], and added ECC to ameliorate
signal-integrity issues. Finally, we floorplanned the mem-
ory controller to improve routing quality and mitigate the
nondeterminism introduced by CAD tools.

4.3 Timing Model
The timing model tracks the performance of the 64 tar-

get cores. Our initial target processor is an in-order single-
issue core that sustains one instruction per cycle, except for
instruction and data cache misses. Each target core has
private L1 instruction and data caches. The cores share a
lockup-free L2 cache via a nonblocking crossbar intercon-
nect. Each L2 bank connects to a DRAM controller, which
models delay through a first-come-first-serve queue with a
fixed service rate. A detailed model of cache coherence tim-
ing on realistic interconnects is among our future work; we
expect it to fit within the current design framework.

Only the timing model has to change to model a wide va-
riety of systems, amortizing the considerable design effort
of the functional model. For example, we can model per-
formance of a system with large caches by keeping only the
cache metadata in the timing model. In our current timing
model, we store all L1 and L2 cache tags in a large num-
ber of BRAMs on FPGAs and leverage the parallelism in
the circuit to perform multiple highly associative lookups in
one host cycle. On the Virtex-5 LX110T FPGA, the design

supports up to 12MB of total target cache.
Most of the timing model parameters can be configured

at runtime by writing control registers that reside on the
I/O bus. Among these are the size, block size, and associa-
tivity of L1 and L2 caches, the number of L2 cache banks
and their latencies, and DRAM bandwidth and latency. To
support dynamic cache configuration, we fix the maximum
cache sizes and associativities at synthesis time; at runtime,
we mask and shift the cache index according to the pro-
grammed configuration.

To measure target performance, we implement 657 64-bit
hardware performance counters. The 64 cores each have
10 private counters mapped to LUTRAMs, and 17 global
counters mapped to registers. Among the events we count
are target L1 and L2 cache hits, misses, and writebacks;
instructions retired by type; and target clock cycles. We also
have a number of host performance counters to measure the
simulator’s performance itself. The counters are accessed
via a ring interconnect to ease routing pressure.

The timing model largely consists of behavioral SystemVer-
ilog and relies on the memory compiler for BRAM alloca-
tion. This coding style enables the rapid prototyping of dif-
ferent microarchitectural ideas. Leveraging many high-level
language constructs in SystemVerilog, our manycore timing
model comprises only 1,000 lines of code. As an example
of its flexibility, we implemented a simplified version of the
Globally Synchronized Frames [11] framework for memory-
bandwidth QoS in about 100 lines of SystemVerilog code
and three hours of implementation effort.

4.4 Debugging and Infrastructure
To communicate with the simulator, we embed a microcode

injector into the functional pipeline, which we connect to a
front-end Linux PC via a gigabit Ethernet link. This front-
end link doubles as a debugging interface and as the simu-
lator control mechanism: we use it to start and stop simula-
tion, load programs, and modify or checkpoint architectural
state without affecting target timing. The front-end link
also allows us to forward file I/O and console system calls
to the Linux PC.

In addition to hardware simulation models, RAMP Gold
provides a systematic design and verification infrastructure.
Our target compiler toolchain is based on GCC. All user pro-
grams running in the target machine adhere to the Open-
Solaris ABI, so the same application binaries can run on
RAMP Gold and commercial SPARC machines. To help ver-
ify model functionality, the front-end server supports multi-
ple backends other than the RAMP Gold hardware, includ-
ing a fast SPARC V8 instruction set simulator written in
C++ and an interface to a Verilog simulator.

5. EVALUATION
In this section we compare RAMP Gold against a popular

software simulator.

5.1 Physical Implementation
To map RAMP Gold to the Xilinx Virtex-5 LX110T-1,

we synthesize our design with Synopsys Synplify Premier c-
200906sp1 and use Xilinx ISE 11.3 for place and route. The
core clock rate is 90MHz, with some components double-
clocked at 180MHz. It takes about 2 hours to synthesize,
place, and route the design on a mid-range workstation.

Figure 2 depicts the final layout of the placed and routed

design. Table 1 shows the detailed breakdown of resource
usage. The functional model uses 6,928 LUTs and 9,981
registers; it is thus the largest module on the FPGA. The
high register utilization (relative to LUT utilization) is due
to the functional model’s deep pipeline. Overall, RAMP
Gold utilizes 28% of the LUTs, 34% of the registers, and
90% of the BRAMs available on a LX110T FPGA.

Even though RAMP Gold takes advantage of 16 DSP
primitives, the arithmetic units still dominate resource us-
age in the functional model, especially the FPU. This result
highlights the importance of mapping arithmetic to DSP
slices, as these structures would be substantially larger if
mapped to LUTs.

As we expected, the overhead of multithreading the RAMP
Gold functional pipeline is minimal. Only 320 LUTs, 266
registers, and 20 18-Kb BRAMs are used to hold the archi-
tected state of 64 SPARC cores.

Compared to the functional model, the timing model uses
many 18-Kb BRAM resources to emulate the target’s large
cache. Since 192 BRAMs are spread across the whole FPGA,
as shown in the floorplan, we see that pipelining the timing
model to tolerate routing delay is essential.

The 657 performance counters and their interconnect con-
sume 3,543 LUTs and 4,446 registers–as many resources as
the execution units. The ring interconnect gives the place-
ment tool considerable freedom as compared to a bus, which
can be seen in the floorplan as the counters are not clustered
together but rather distributed about the FPGA.

Interestingly, the memory controller is divided into mul-
tiple regions. This results from the ad-hoc layout of the
DRAM I/O on the XUP board.

Module LUT Register BRAM DSP

Func. model 6,928 9,981 54 16
Int ALU 926 1,257 0 2

FPU 2,751 3,232 0 14
Architected state 320 266 20 0

Host Cache 760 942 18 0
Host TLB+MMU 666 754 16 0

Other 1,505 3,530 0 0

Timing model 5,612 5,893 192 0
L1 TM 1,182 2,827 64 0

L2/DRAM TM 4,430 3,066 128 0

Perf. Counters 3,543 4,446 0 0

Misc. 3,384 3,586 21 0

Overall 19,467 23,906 267 16
Percent Utilization 28% 34% 90% 25%

Table 1: RAMP Gold area breakdown on Virtex-5

LX110T

5.2 Simulation Performance Evaluation
To measure RAMP Gold’s simulation performance, we

run a subset of PARSEC [5] on top of our manycore re-
search OS. Table 2 shows the target machine configuration.
We run the same benchmarks on Virtutech Simics [14], a
popular software simulator. Simics is run with varying levels
of architectural modeling detail: pure functional simulation,
the simple Simics g-cache timing module, and the Multifacet
GEMS [15] memory hierarchy timing module, Ruby. We run

Memory
Controller

Host I$ &
ITLB

Host D$,
DTLB & MMU

Functional

Model

Func. ALU
& FPU

Performance
Counters

Timing

Model

Figure 2: RAMP Gold floorplan on a Xilinx Virtex5

LX110T device

Attribute Setting

CPUs 64 single-issue in-order cores @ 1 GHz
L1 Instruc-
tion Cache

Private, 32KB, 4-way set-associative,
128-byte lines

L1 Data
Cache

Private, 32KB, 4-way set-associative,
128-byte lines

L2 Unified
Cache

Shared, 8MB, 16-way set-associative,
128-byte lines, inclusive, 4 banks,
10 ns latency

Off-Chip
DRAM

2GB, 4×3.2GB/sec channels, 70 ns
latency

Table 2: System parameters of the target machine

simulated by RAMP Gold and Simics.

Simics on a 2.2-GHz AMD Opteron with 4GB of DRAM.
Figure 3 shows RAMP Gold’s speedup over Simics as

the number of target cores vary. RAMP Gold’s perfor-
mance improves as the number of target cores grows because
multithreading gradually improves pipeline utilization. In
contrast, Simics’ performance degrades super-linearly with
more target cores. At 8 target cores, RAMP Gold’s speedup
is modest: the geometric mean speedup is 15× over GEMS
or 10× over g-cache. When simulating 64 cores, on the other
hand, we see a geometric mean speedup of 263× over GEMS,
with a max speedup of 806×. In this configuration, RAMP
Gold is even faster than Simics functional simulation.

5.3 Host Performance Evaluation
One target cycle may be simulated using multiple host

cycles. For example, RAMP Gold takes multiple pipeline
passes to resolve a host cache miss or execute a complex
instruction. To quantify the performance impact of these
pipeline ‘replays’, we added several host performance coun-
ters. Figure 4 illustrates the detailed host cycle breakdown
running PARSEC benchmarks with 64 target cores.

The most significant overhead is timing synchronization:
not until all instructions from a given target cycle have re-
tired do we begin instruction issue for the next target cycle.
We expect most of this overhead can be recovered by more
efficient thread scheduling. The functional pipeline is also
idle when target cores are stalled. Streamcluster, for exam-
ple, has a high target cache miss rate. The functional model
is thus underutilized while target stalls are modeled.

Perhaps the most interesting result is the effectiveness of

2 3 5 10

34

6 10
21

44

106

7
15

36

69

263

0

50

100

150

200

250

300

4 8 16 32 64

S
p

e
e

d
u

p
 (

G
e

o
m

e
tr

ic
 M

e
a

n
)

Number of Cores

Functional only

Functional+cache/memory

(g-cache)
Functional+cache/memory

+coherency (GEMS)

Figure 3: Speedup of RAMP Gold over Simics.

the small host caches. Figure 5 shows that their small size—
256 bytes for instructions and 16 KB for data—sometimes
results in high miss rates, as we would expect. Neverthe-
less, host cache misses collectively account for no more than
6% of host clock cycles. DRAM’s relatively low latency—
about 20 clock cycles—and the ability of multithreading to
tolerate this latency are largely responsible for this peculiar
design point. Thus, rather than spending BRAMs on large,
associative host caches, we can dedicate these resources to
timing models. Nevertheless, providing a small cache is still
valuable to exploit the minimum 32-byte DRAM burst.

Other causes of replay include host TLB misses, floating-
point operations, integer multiplication and division, and
three-operand store instructions. Collectively, these account
for less than 10% of host cycles across these benchmarks.

We also measured host DRAM bandwidth utilization, and
found we never exceed 15% of the peak bandwidth, indicat-
ing that a single-channel memory system is sufficient for this
design for these benchmarks.

0

10

20

30

40

50

60

70

80

90

100

blackscholes bodytrack fluidanimate streamcluster swaption x264

P
e

rc
e

n
ta

g
e

 o
f

h
o

st
 e

x
e

cu
ti

o
n

 t
im

e Retire Inst.

Misc.

FPU

Microcode

Host TLB miss

Host D$ miss

Host I$ miss

Timing Sync.

Idle by target

stalls

Figure 4: Host cycle breakdown for RAMP Gold

running PARSEC.

6. DISCUSSION AND CONCLUSION
RAMP Gold’s current implementation employs a single

functional pipeline and a single timing pipeline with mod-
erate logic resource consumption on a mid-size FPGA. The
design is limited in the total cache capacity we can simulate
by the BRAM consumption of the timing model. In the fu-
ture, we plan to remove this constraint by moving the timing

0

5

10

15

20

25

30

35

40

45

blackscholes bodytrack fluidanimate streamcluster swaption x264

M
is

s
R

a
te

 (
%

)
Host I$ Miss Rate
Host D$ LD Miss Rate
Host D$ ST Miss Rate

Figure 5: RAMP Gold Host Cache Miss Rate run-

ning PARSEC

model’s target cache tags to external DRAM and using on-
chip BRAM as a “cache tag cache.” We are also interested
in using multiple functional and/or timing pipelines to pro-
vide two types of scaling: 1) weak scaling: increase number
of simulated cores with the same per-thread performance;
2) strong scaling: increase per-thread performance without
increasing simulated cores.

For many reasons, we believe the multicore revolution
means the research community needs a boost in simula-
tion performance. RAMP Gold, which simulates 64 SPARC
CPUs over 250× faster than a popular software simulator
on a $750 Xilinx Virtex-5 board, demonstrates the cost-
performance benefit of FPGA-based simulation. RAMP Gold’s
design also demonstrates that designing FPGA-based archi-
tecture simulators is dramatically different from designing
multicore processors in either ASICs or in FPGAs.

7. ACKNOWLEDGMENTS
The RAMP collaboration was supported by funding from

NSF grant number CNS-0551739. The evaluation study was
funded by DARPA Award FA8650-09-C-7907. This research
was also supported by Microsoft (Award #024263) and In-
tel (Award #024894) funding and by matching funding by
U.C. Discovery (Award #DIG07-10227). Additional sup-
port comes from Par Lab affiliates National Instruments,
NEC, Nokia, NVIDIA, Samsung, and Sun Microsystems.
Special thanks to Xilinx for their continuing financial sup-
port, and donations of FPGAs and development tools. We
also appreciate the financial support provided by the Gi-
gascale Systems Research Center (GSRC). We’d also like to
thank SPARC International, Inc. for donating the SPARC
v8 verification suite.

8. REFERENCES
[1] DDR2 DRAM Controller for BEE3, online at

http://research.microsoft.com/en-us/projects/BEE3/,
2007.

[2] Leon3 Processor, http://www.gaisler.com, 2009.

[3] K. Asanović et al. A view of the parallel computing
landscape. Commun. ACM, 52(10):56–67, 2009.

[4] T. Austin et al. SimpleScalar: An Infrastructure for
Computer System Modeling. Computer, 35(2):59–67,
2002.

[5] C. Bienia et al. The PARSEC Benchmark Suite:
Characterization and Architectural Implications. In
PACT ’08, pages 72–81, New York, NY, USA, 2008.
ACM.

[6] D. Chiou et al. FPGA-Accelerated Simulation
Technologies (FAST): Fast, Full-System,
Cycle-Accurate Simulators. In MICRO ’07, pages
249–261, Washington, DC, USA, 2007.

[7] E. S. Chung et al. ProtoFlex: Towards Scalable,
Full-System Multiprocessor Simulations Using
FPGAs. ACM Trans. Reconfigurable Technol. Syst.,
2(2):1–32, 2009.

[8] J. Emer et al. Asim: A Performance Model
Framework. Computer, 35(2):68–76, 2002.

[9] B. Fort et al. A Multithreaded Soft Processor for
SoPC Area Reduction. In FCCM ’06, pages 131–142,
Washington, DC, USA, 2006.

[10] K. Klues et al. Processes and Resource Management
in a Scalable Many-core OS. In HotPar09, Berkeley,
CA, 03/2010 2010.

[11] J. W. Lee et al. Globally-Synchronized Frames for
Guaranteed Quality-of-Service in On-Chip Networks.
In ISCA ’08, pages 89–100, Washington, DC, USA,
2008.

[12] A. Lesea. Continuing experiments of atmospheric
neutron effects on deep submicron integrated circuits.
Xilinx White Paper 286, 2009.

[13] R. Liu et al. Tessellation: Space-Time Partitioning in
a Manycore Client OS. In HotPar09, Berkeley, CA,
03/2009 2009.

[14] P. S. Magnusson et al. Simics: A Full System
Simulation Platform. IEEE Computer, 35, 2002.

[15] M. M. K. Martin et al. Multifacet’s general
execution-driven multiprocessor simulator (GEMS)
toolset. SIGARCH Computer Architecture News,
33(4):92–99, 2005.

[16] P. Michael et al. A-port networks: Preserving the
timed behavior of synchronous systems for modeling
on fpgas. ACM Trans. Reconfigurable Technol. Syst.,
2(3):1–26, 2009.

[17] J. E. Miller et al. Graphite: A Distributed Parallel
Simulator for Multicores. In HPCA-16, January 2010.

[18] S. Mukherjee et al. Wisconsin Wind Tunnel II: A Fast,
Portable Parallel Architecture Simulator. IEEE

Concurrency, 8(4):12–20, 2000.

[19] V. S. Pai et al. RSIM Reference Manual. Version 1.0.
Technical Report 9705, Department of Electrical and
Computer Engineering, Rice University, July 1997.

[20] M. Rosenblum et al. Using the SimOS machine
simulator to study complex computer systems. ACM

Transactions on Modeling and Computer Simulation,
7(1):78–103, 1997.

[21] Z. Tan et al. A Case for FAME: FPGA Architecture
Model Execution. In ISCA ’10, 2010.

[22] J. Wawrzynek et al. RAMP: Research Accelerator for
Multiple Processors. IEEE Micro, 27(2):46–57, 2007.

