
Ramsey-Based Analysis of Parity Automata

Oliver Friedmann1 and Martin Lange2

1 Dept. of Computer Science, Ludwig-Maximilians-University of Munich, Germany
2 School of Electr. Eng. and Computer Science, University of Kassel, Germany

Abstract. Parity automata are a generalisation of Büchi automata that
have some interesting advantages over the latter, e.g. determinisability,
succinctness and the ability to express certain acceptance conditions like
the intersection of a Büchi and a co-Büchi condition directly as a par-
ity condition. Decision problems like universality and inclusion for such
automata are PSPACE-complete and have originally been tackled via
explicit complementation only. Ramsey-based methods are a later devel-
opment that avoids explicit complementation but relies on an applica-
tion of Ramsey’s Theorem for its correctness. In this paper we develop
new and explicit Ramsey-based algorithms for the universality and inclu-
sion problem for nondeterministic parity automata. We compare them
to Ramsey-based algorithms which are obtained from translating par-
ity automata into Büchi automata first and then applying the known
Ramsey-based analysis procedures to the resulting automata. We show
that the speed-up in the asymptotic worst-case gained through the new
and direct methods is exponential in the number of priorities in the par-
ity automata. We also show that the new algorithms are much more
efficient in practice.

1 Introduction

Nondeterministic Büchi automata (NBA) are the most well-known type of fi-
nite automata that work on infinite words. Much of their popularity is owed
to two facts. (1) Their acceptance condition is conceptually very simple: a run
is accepting iff it visits a certain subset of states infinitely often. (2) Despite
this simplicity they form an expressively complete specification formalism with
respect to Monadic Second-Order Logic [4], i.e. they accept exactly the regular
languages of infinite words.

A lot of attention has been paid to the algorithmic treatment of fundamental
decision and computation problems for regular languages represented by NBA.
The complementation problem is combinatorially much more difficult than that
for NFA. The fundamental difference is the fact that determinisation for NBA
is provably impossible, and particularly a simple procedure like the powerset
construction for NFA fails for finite automata on infinite words equipped with
any reasonable acceptance condition, not just the Büchi condition. This has
brought out numerous work on the complementation (and also determinisation)
problem for NBA [4, 13, 8, 14, 9].

Clearly, other problems that generalise complementation in some way – e.g.
universality, inclusion, equivalence – are also combinatorially challenging. For in-
stance, in order to check whether L(A) ⊆ L(B) holds for two NBA A und B, one
would complement B to some B, build an automaton that accepts its language
intersected with L(A) – which is relatively simple using a small enhancement of
the usual product construction for NFA – and check the result for emptiness. In
the most complex steps of this procedure, one can choose among several com-
plementation procedures. This choice was often made on the basis of worst-case
analysis or modern aspects like symbolic implementability. For instance, Klar-
lund’s procedure [8] runs in optimal time of 2O(n logn) while Kupferman and
Vardi’s [9] can be made to work with BDDs at the expense of running in time

2O(n2). Büchi’s procedure [4] was not seen as practical which may also be caused
by the fact that the literature falsely accused it of having doubly exponential
running time whereas a careful analysis shows that it can be made to run in
time 2O(n2) as well.

Büchi’s proof of correctness for his complementation procedure uses Ram-
sey’s Theorem [12]. For a long time this has been regarded as a tool to handle
the combinatorial difficulty in the correctness proof without much algorithmic
value for the complementation problem, hence the focus on other procedures
for practical applications. It was Ben-Amram, Jones and Lee [10] who first sug-
gested to use this principle for a practical application in termination analysis
called size-change termination which could have also been solved using Büchi
complementation. They state that “for practical usage [. . .] the simple algo-
rithm seems more promising than [. . .] the solution based on ω-automata”. The
term “simple algorithm” refers to a procedure that builds a set of finite graphs
through a composition operation and searches for an idempotent graph with
certain properties in it. This is basically a direct usage of the computational
content of Ramsey’s Theorem for this particular decision problem. Henceforth,
such simple algorithms will be said to be Ramsey-based.

Next, Dax et al. [5] introduced this Ramsey-based method to the domain
of temporal logic: they gave an algorithm checking validity for a formula of
the linear-time µ-calculus (µ-TL) [3], a temporal fixpoint logic extending the
standard LTL [11]. These problems had – until then – solely been approached
using automata-theoretic machinery, i.e. explicitly using the complementation
problem for NBA [16]. Dax et al. showed that the Ramsey-based method can
outperform those using automata explictly. Since µ-TL is also expressively com-
plete for regular languages, and there is a linear translation from NBA to µ-TL
– mapping universality to validity – this also defines a Ramsey-based method
for the universality problem for NBA. After that, Fogarty and Vardi have made
this connection explicit and also investigated its practical use for the NBA uni-
versality problem in general [6, 7]. The apparent use has then inspired work on
further optimisations of this Ramsey-based approach to NBA universality and
NBA inclusion [1].

Büchi automata are the simplest but not the only type of automaton on infi-
nite words. Notably, the literature also considers the syntactically more general

Muller, Rabin, Streett and parity automata, all of them expressively complete
w.r.t. ω-regular languages. Here we consider nondeterministic parity automata
(NPA) which are computationally most elegant among those models. There are
several reasons for considering NPA as a generalisation of NBA.

1. Succinctness. Many properties can be expressed more succinctly with NPA
than with NBA. Consider, for instance the language L0 of all words over the
alphabet {a, b, c} that also contains infinitely many b’s when they contain
infinitely many a’s. This can be accepted by an NPA with three states in
which they signal the last letter that has been seen. A b is then signaled with
priority 2, an a with priority 1 and a c with priority 0. A similarly straight-
forward construction of an NBA for this language results in 5 states, and it
does not look like a 3-state NBA for this language exists.

2. Determinisability. L0 can be accepted by a deterministic parity automaton
(DPA) but not by a deterministic Büchi automaton. In general, DPA are
expressively complete whilst deterministic DBA are not.

3. Expressiveness. Certain acceptance conditions can be formulated as a parity
condition but not as a Büchi condition, i.e. certain automata can be regarded
as an NPA but not as an NBA.3 For instance, the intersection of a Büchi
condition with a co-Büchi condition stating that certain states should be seen
infinitely often while others should only be seen finitely often, can easily be
encoded by a parity condition with priorities {1, 2, 3}, compare this to L0

above.

In this paper we develop Ramsey-based algorithms for NPA. These extend corre-
sponding methods for NBA. The benefit of this extension is empirically shown:
it is known that NPA can be translated to NBA at a moderate blow-up. We
compare the new methods for NPA with the old methods for NBA obtained un-
der this translation showing that the new methods are not only asymptotically
faster but also behave better in practice. Furthermore, there is a reduction from
the inclusion problem to universality that can be made to work for various types
of automata including NBA and NPA. We show that this does not alleviate the
use of a direct method for NPA inclusion: performing the reduction to universal-
ity and then applying the universality method for NPA is again asymptotically
and practically worse. In essence, the Ramsey-based methods developed in this
paper are justified by their superiority over reductions to existing methods both
in theory and in practice.

2 Preliminaries

As usual, for a finite alphabet Σ we write Σ∗ / Σ+ / Σω to denote the set of
all finite / finite non-empty / infinite words over Σ. An infinite word w ∈ Σω is
regular if there are u ∈ Σ∗ and v ∈ Σ+ s.t. w = uvω. If w is a finite word then
|w| denotes its length.

3 Note that their language is still NBA-recognisable, but this may require a different
underlying automaton.

A nondeterministic parity automaton (NPA) is a A = (Q,Σ, q0, δ, Ω) where
Q is a finite set of states, Σ is a finite alphabet, q0 ∈ Q is a designated starting
state, δ ⊆ Q × Σ × Q is the transition relation, and Ω : Q → N is the priority
function.

A run of A on a word w = a0a1a2 . . . ∈ Σω is a sequence ρ = q0, q1, . . . s.t.
q0 is the designated starting state and for all i ∈ N we have: (qi, ai, qi+1) ∈ δ. It
is accepting if max{Ω(q) | ∀i ∈ N.∃j ≥ 1.qj = q} is even. The language of A is
L(A) = {w | there is an accepting run of A on w}.

We introduce two important complexity measures for an NPA. The size of
A is |A| = |Q|. The index of A is idx (A) = |{Ω(q) | q ∈ Q}|, i.e. the number of
distinct priorities used in A. Clearly we always have idx (A) ≤ |A|.

NPA are a natural generalisation of the well-known nondeterministic Büchi
automata which are traditionally defined using the concept of acceptance state
rather than a priority function. An accepting run is one that visists the accep-
tance set infinitely often. The definition used in the following is easily seen to
be equivalent to that. A nondeterministic Büchi automaton (NBA) is a special
kind of an NPA of index 2, s.t. Ω(q) ∈ {1, 2} for all q ∈ Q.

An ω-regular language or just regular language for short is a language that can
be accepted by an NBA. It is known that NPA, despite being a generalisation,
do not accept more than the regular languages.

Proposition 1. For every NPA A of size n and index k there is an NBA B of
size ≤ n · c s.t. L(A) = L(B) where c = k

2 + 1 if k is even and c = dk2 e if k is
odd.

We quickly sketch the idea behind this construction because it is used in the
comparison of the direct Ramsey-based methods for NPA with those for NBA. It
is based on the fact that a run ρ = q0, q1, . . . of an NPA on a word is accepting iff
there is an i ∈ N and an even priority p s.t. for all j ≥ i we have Ω(qj) ≤ p, and
Ω(qj) = p for infinitely many j. Thus, the required NBA can be constructed as
follows. It contains a copy of A with the starting state and no final states. It also
has, for every even priority p, a copy of A in which only states with priorities
at most p are preserved, and those with priority p are final. The transitions in
each copy are as they are in A. Also, there are transitions from every state in
the original copy to its successors in the additional copies if they exist. This way,
the NBA can mimick an accepting run of the NPA by staying in the original
non-final copy until no greater priorities than the one causing acceptance are
seen, and then it changes into the respective copy verifying that this priority is
being seen infinitely often, and no greater one is being seen anymore.

We are particularly interested in the following decision problems for NPA.

– UnivP: Given an NPA A, decide whether or not L(A) = Σω.
– InclP: Given NPA A and B, decide whether or not L(A) ⊆ L(B).

The complexity of these problems for NBA is well known; they are PSPACE-
complete [14]. Together with Prop. 1 and the fact that every NBA is an NPA
we immediately obtain the following.

Proposition 2. UnivP and InclP are PSPACE-complete.

3 The Ramsey-Based Method for Parity Automata

In this section we describe how to decide universality and inclusion for NPA
directly using a Ramsey-based method. We compare the results with the obvious
method of translating NPA into NBA first and then using the Ramsey-based
methods for NBA. We focus on universality first; inclusion proves to be just a
small extension of this. The completeness proofs rely on the following theorem.
For any linear order (A,<) let A2

< := {(a, b) | a, b ∈ A, a < b}.
Theorem 1 (Ramsey, 1928). Let F be a finite set and c : N2

< → F . Then
there is an M ⊆ N and an f ∈ F such that |M | = ∞ and c(i, j) = f for all
i, j ∈M with i < j.

3.1 Universality for NPA

For the remainder of this section fix an NPA A = (Q,Σ, q0, δ, Ω) as well as
n := |A| and k := idx (A). Let P = {Ω(q) | q ∈ Q} be the set of all A-priorities.

Words as Partial Functions from State Pairs to Priorities. We will use
two total orders on the extension of N by one element †. The first one is denoted
≤ and is the ordinary total order of type ω + 1. Thus, we have 0 < 1 < . . . < †.
The reward ordering � is defined by † . . . 3 ≺ 1 ≺ 0 ≺ 2 ≺ 4 ≺ . . . This reward
ordering reflects the intuition of how valuable a priority of an NPA’s state is for
acceptance: even priorities are generally better than odd ones, and the bigger
an even one the better, while small odd priorities are better than bigger ones
because it is easier to subsume them in a run with an even priority elsewhere.
Note that † is maximal for ≤ but minimal for �.

Definition 1. A box 4 is a partial function of type Q×Q 99K P . We will some-
times write f(q, q′) = † to denote that the value of the box f on the argument
pair (q, q′) is undefined.

Let f, g be two boxes. Its composition f ◦ g is the box defined by

(f ◦ g)(q, q′) := max
�
{max
≤
{f(q, q′′), g(q′′, q′)} | q′′ ∈ Q}

Note that the maxima are taken with respect to the two different total orders.

We will associate with every finite word w ∈ Σ∗ a box [w] : Q×Q 99K P by
induction on the length of w. The base cases for words of length 0 and 1 are the
following.

[ε](q, q′) =

{
Ω(q) , if q = q′

† , otherwise

[a](q, q′) =

{
max
≤
{Ω(q), Ω(q′)} , if q′ ∈ δ(q, a)

† , otherwise

4 See their graphical representation in Fig. 1 for an idea about the choice of this name.

q1

q2

q31

2

3

a, b

a

a

b

ab

q3

q2

q1

q3

q2

q1
1

3
2

3

a

q3

q2

q1

q3

q2

q1
1

2

3

b

q3

q2

q1

q3

q2

q1
1

2

3

ab

Fig. 1. An NPA with three of its boxes: [a], [b], and [ab].

We then use box composition in order to lift this to arbitrary words: [av] :=
[a] ◦ [v].

Associativity of the composition operation is not hard to establish.

Lemma 1. For all boxes f, g, h we have f ◦ (g ◦ h) = (f ◦ g) ◦ h.

With BA we denote the set of all boxes defined by any word w.r.t. the NPA
A: BA = {[w] | w ∈ Σ∗}. It will be used as a search space in order to decide
universality of A.

Example 1. Boxes and the concept of composition can be visualised greatly.
One regards the states in Q as in- and out-ports of a connector. There can be
connections between in-ports and out-ports, and these connections are labeled
with a priority.

Fig. 1 shows an NPA with three states having the priorities 1, 2, 3. It also
shows the boxes [a] and [b] w.r.t. to this NPA as well as their composition [ab]
which, intuitively, is obtained by merging the out-ports of [a] with the in-ports
of [b]. The priority of a merged connection is the maximum w.r.t. ≤ of the two
connections that are being merged. Note that this may result in more than one
connection, for instance between q1 and q2 which can go via q2 or q3. In the
composition, only the one with the maximum w.r.t. � survives, i.e. the one with
priority 2 rather than 3.

Definition 2. A box [w] is idempotent if [w] ◦ [w] = [w], where this equality is
to be understood as equality of partial functions.

Let [w] be a box and q ∈ Q. We write q[w] for the set of all q′ that are
connected to q in this box, i.e. q[w] = {q′ | [w](q, q′) 6= †}. Furthermore for some
Q′ ⊆ Q let Q′[w] :=

⋃
q′∈Q′ q

′[w].
A box [w] is called bad w.r.t. some Q′ ⊆ Q if for all q ∈ Q′[w] we have:

[w](q, q) is either undefined or odd. A good box is a box that is not bad. In other
words, in a bad box w.r.t. some Q′ one considers first all connections from any
input q′ to any output q, and then all the connections from such a q to itself.
We will consider bad boxes only in the context of idempotent boxes. Hence, this
considers all connections in an infinite iteration of [w] that are reachable from
some q′ ∈ Q′.

Example 2. It is easy to verify that [ab] in Fig. 1 is idempotent. Note that any
run in the NPA of Fig. 1 under the word abab is also possible under ab already,
which is essentially what idempotency of [ab] means.

Furthermore, [ab] is bad for any subset of {q1, q2, q3}, since following connec-
tions from any of them in [ab] can only lead to a subset of {q1, q2}, and both
connections from such a state to itself are labeled with an odd priority. Note
that the word (ab)ω cannot be accepted from any state in the NPA in Fig. 1
which is essentially what badness and idempotency of [ab] means.

In order to prove correctness of the universality check to be presented, we
need to relate boxes to runs. We write q w−−→ p q

′ if state q′ is reachable from q in
the transition graph of A on a path whose labels compose to w s.t. the highest
(w.r.t. ≤) priority seen on this path is p. A proof of the following lemma is given
in the appendix.

Lemma 2. Let w ∈ Σ∗, q, q′ ∈ Q, and p ∈ P . If [w](q, q′) = p then q w−−→ p q
′.

The converse direction is not true. Suppose that q
w−−→ p q

′ holds. Then we
need not necessarily have [w](q, q′) = p. simply because there may be different
paths from q to q′ in A under w, and p may only be the maximal priority on
one of them. However, [w] only stores one maximal priority over all such paths,
namely the greatest one w.r.t. �. Thus, we have a statement that is weaker than
the converse of Lemma 2 but still sufficient to prove correctness of the search
procedures in the next section. Its proof is also given in the appendix.

Lemma 3. Let w ∈ Σ∗, q, q′ ∈ Q, and p ∈ P . If q
w−−→ p q

′ then there is a p′ s.t.
p � p′ and [w](q, q′) = p′.

Non-Universality Via Relation Testing. The following characterises (non)-
universality of an NPA A in terms of the elements of BA.

Theorem 2. L(A) 6= Σω iff there are boxes [u] and [v] s.t. [v] is idempotent
and bad w.r.t. q0[u].

Proof. “⇐” Suppose that [v] is idempotent and bad w.r.t. q0[u]. We claim that
uvω 6∈ L(A). For the sake of contradiction assume that uvω ∈ L(A). Let q0, q1, . . .
be an accepting run of A on uvω. Let l = |u| and k = |v|. Clearly, we have
q0

u−→ p ql for some p ∈ P . According to Lemma 3 we also have [u](q0, ql) = p′

for some p′ ∈ P with p � p′.
Since there are only finitely many states, there must be some state q that

appears infinitely often in the sequence ql, ql+k, ql+2k, Let i0, i1, . . . denote
the infinite ascending sequence of indices s.t. ql+ijk = q for all j. Let pj =
max
≤
{Ω(ql+ijk), . . . , Ω(ql+ij+1k)}. By assumption the run is accepting, hence,

infinitely many pj must be even.

Let now j be arbitrary s.t. pj is even. It follows that q vij+1−ij−−−−−−→ pj q, and, by
Lemma 3, that [vij+1−ij](q, q) = p for some p � pj . Since pj is even, p must be

even, too. Hence, [vij+1−ij] is good for q. But since [v] is idempotent, it follows
that [vij+1−ij] = [v], and this contradicts the assumption that [v] is bad w.r.t.
q0[u].

“⇒” Suppose that L(A) 6= Σω, i.e. there is a word w = a0a1 . . . 6∈ L(A).
Consider the following colouring c : N2 → BA where N2 := {(i, j) | i ∈ N, j ∈
N, i < j}, defined by c(i, j) = [ai . . . aj−1]. Since |BA| < ∞, Thm. 1 yields an
infinite sequence i0, i1, . . . of indices and an f ∈ BA s.t. c(ij , ih) = f for all j, h
with j < h.

First define u := a0 . . . ai0−1. According to Lemma 2, for every q ∈ q0[u] we
have q0

u−→ p q for some p. Next, note that f is idempotent because

f ◦ f = c(i0, i1) ◦ c(i1, i2) = [ai0 . . . ai1−1] ◦ [ai1 . . . ai2−1] = [ai0 . . . ai2−1]

= c(i0, i2) = f

according to Lemma 1. Then define vj := aij . . . aij+1−1 for every j ∈ N. Note
that w = uv0v1v2 . . ., and that f = [vj] for every j ∈ N.

It remains to be seen that f is bad w.r.t. q0[u]. Suppose that this was not
the case, i.e. it was good. Then there would be a q ∈ q′[v] for some q′ ∈ q0[u] s.t.
p = [v](q, q) is even. According to Lemma 2 we would have q0

u−→ p′ q
′ for some

p′, q′
v−→ q p

′′ for some p′′ and q
v−→ p q. This can be iterated to form an infinite

run q0, . . . , q
′, . . . , q, . . . , q, . . . on uv0v1 . . . s.t. p is the greatest priority (w.r.t. ≥)

that is seen infinitely often on this run, because it is the greatest (w.r.t. ≥) that
occurs on the parts from q to itself. Since p is even, this run would be accepting,
contradicting the assumption that w 6∈ L(A). ut

Thm. 2 can then be used to decide (non-)universality as follows, see Algo-
rithm 1. We keep generating boxes [u], [v] to see whether some [v] is idempotent
and bad w.r.t. to q0[u]. If this is the case then uvω cannot be accepted by the
NPA. Finiteness of the space of all boxes guarantees termination. Algorithm UP
uses a set V in order to store such boxes [v] whereas boxes [u] need not be stored
explicitly. It suffices to store all states which can be reached from the initial state
under some u ∈ Σ∗. A set R is maintained in order to track all states that are
reachable from the initial state with corresponding witnessing words, since in a
non-universality check they all need to be tested for non-extendability with a
loop.

Note that using sets of boxes is not necessarily the most clever way of imple-
menting this algorithm. One can use priority lists etc. in order to avoid testing
the same pair of boxes multiple times in line 7. Also, the step in line 14 is
meant to remove pairs (u,Q′) from R only for as long as there is still another
(v,Q′′) ∈ R.

At last, we analyse the asymptotic complexity of testing NPA universality
this way.

Theorem 3. For an NPA A with |A| = n and idx (A) = k, algorithm UP tests

universality in time O(22((n
2 log k)+n)).

Algorithm 1 UP for UnivP

1: R← {(ε, {q0})}
2: V ← {[a] | a ∈ Σ}
3: R′ ← ∅
4: V ′ ← ∅
5: while R 6= R′ or V 6= V ′ do
6: for [v] ∈ V that are idempotent do
7: if ∃(u,Q′) ∈ R s.t. [v] bad w.r.t. Q′ then
8: return “L(A) is not universal: uvω 6∈ L(A)”
9: end if

10: end for
11: R′ ← R
12: V ′ ← V
13: R← R ∪ {(uv,Q′[v]) | (u,Q′) ∈ R, [v] ∈ V }
14: reduce R s.t. it contains at most one (u,Q′) for every Q′ ⊆ Q
15: V ← V ∪ V ◦ V
16: end while
17: return “L(A) is universal”

Proof. First observe that the set of boxes V can only increase (or stay the same)

in an iteration of the algorithm, hence there can be at most (k + 1)n
2

many
different sets V in a run. Second, observe that the set of reachable state sets
R can only increase modulo inclusion in an iteration of the algorithm, hence,
there cannot be more than 2n many different sets R in a run. It follows that the
number of iterations is bounded by (k + 1)n

2

+ 2n = O(2n
2 log k).

The number of iterations of the inner loop is bounded by |V | · |R|, which is

(k + 1)n
2 · 2n = O(2(n

2 log k)+n) in the worst case. The other operations in the
outer loop can be easily bounded by the same term. ut

Remember that an NBA is just an NPA with priorities 1, 2. Hence, algorithm
UP can be restricted to NBA as input as well. In order to refer to it later, we call
this restriction UB. It cannot be distinguished from UP in terms of pseudo code.
The difference is that the search space is only of size 2n

2 log 3. We also remark
that UB coincides with the previously known Ramsey-based universality test for
NBA [7].

3.2 Inclusion for NPA

There is a conceptually simple but evidently not well-known reduction from the
inclusion problem to the universality problem for finite automata which can also
be made to work for NPA. A proof sketch is given in the appendix.

Proposition 3. Let A1 and A2 be two NPA over some alphabet Σ, s.t. Ai has
size ni states, ei transitions and index ki for i ∈ {1, 2}. There is an NPA A
with 4 +n1 + k1 +n2 states and index max{2, k1, k2} over some alphabet ∆ with
|∆| = e1 s.t. L(A) = Σω iff L(A1) ⊆ L(A2).

This construction, when applied to two NBA, does not necessarily yield an
NBA. With a minor modification though it can also be used to reduce InclB to
UnivB. The resulting automaton would have 3n2 + n1 + 1 states.

This, together with Thm. 3 clearly yields a Ramsey-based algorithm for the
inclusion problem for NPA. However, there is also a direct method which is
asymptotically better. For the remainder of this section fix two NPA A =
(QA, Σ, qA0 , δ

A, ΩA) and B = (QB, Σ, qB0 , δ
B, ΩB). We are interested to know

whether or not L(A) ⊆ L(B) holds. Let PA := {ΩA(q) | q ∈ QA} be the set of
all priorities occurring in A and PB be defined likewise.

Remember that in the previous section we associated to every word w ∈ Σ∗
a unique box [w]. This is not possible anymore; a word can be associated with
several objects of type

QA × PA ×QA ×
(
QB ×QB → PB

)
.

Thus, such an object is obtained by extending a box for B—as defined in the
previous section—with two states and a priority of A. We call these objects
typed boxes because the two states of QA act as input and output types for the
composition on them. A typed box of the form (q, p, q′, [w]) is written q[w]q

′

p .

A typed box for the empty word ε is q[ε]qΩ(q) for any q ∈ QA, a typed box

for words a of length 1 is q[a]q
′

max{Ω(q),Ω(q′)} for any (q, a, q′) ∈ δA and the

composition of two typed boxes extends the composition of boxes in the following
way:

q[u]q
′

p ◦ q
′
[v]q

′′

p′ := q[uv]q
′′

m

where m := max
≤
{p, p′}. Note that this composition is only defined if the output

type of the left component equals the input type of the right component. We
write BA,B for the space of all typed boxes for the pair A,B of NPA. A proof
of the following lemma is given in the appendix.

Lemma 4. Let w ∈ Σ∗, q, q′ ∈ QA, p ∈ PA, s, s′ ∈ QB, and p′ ∈ PB. If
q[w]q

′

p (s, s′) = p′ then q w−−→ p q
′ and s w−−→ p′ s

′.

An idempotent typed box is, as usual, a q[w]q
′

p s.t. q[w]q
′

p ◦ q[w]q
′

p = q[w]q
′

p .

Note that this necessarily requires q = q′. A bad typed box w.r.t. some Q′ ⊆ QB
is a q[w]q

′

p s.t. p is even and the underlying untyped box [w] is bad w.r.t. Q′ in

the sense of the previous section, i.e. there is a q ∈ QB s.t. [w](q, q) is undefined
or odd.

Theorem 4. We have L(A) 6⊆ L(B) iff there are u ∈ Σ∗, v ∈ Σ+ and typed

boxes qA0 [u]qp and q[v]qp′ s.t. q[v]qp′ is idempotent and bad w.r.t. qB0 [u].

Proof. “⇐” Suppose there are qA0 [u]qp and q[v]qp′ s.t. q[v]qp′ is idempotent and bad

w.r.t. qB0 [u]. Using Lemma 4 we get a run qA0 , . . . , q, . . . , q, . . . of A on uvω, s.t.
the maximal priority occurring infinitely often in this run is p′. This p′ must

be even for otherwise q[v]qp′ would not be bad. Hence, we have uvω ∈ L(A). It
remains to be seen that uvω 6∈ L(B).

Suppose q0, q1, . . . was an accepting run of B on uvω. Note that if q[v]qp′ is
idempotent and bad w.r.t. some set Q′, then so is its underlying untyped box
[v]. Thus, uvω 6∈ L(B) can be proved as in the “⇐”-part of the proof of Thm. 2.

“⇒” Suppose there is a w = a0a1 . . . ∈ L(A) ∩ L(B). Take an accepting run
q0, q1, . . . of A on w. Here we consider the colouring c : N2 → BA,B defined by
c(i, j) = qi [ai . . . aj]

qj+1
p where p is the maximal (w.r.t. ≤) priority occuring in

the sequence ΩA(qi), . . . , Ω
A(j + 1). Since BA,B is finite, Thm. 1 yields words

u ∈ Σ∗, v ∈ Σ+ s.t. q|u| [v]
q|u|
p′ is idempotent. In a way analogous to the “⇒”-part

of the proof of Thm. 2 one can show that q|u| [v]
q|u|
p′ is bad w.r.t. q0[u]. ut

Inclusion can then be tested again by searching for an idempotent bad box
w.r.t. to some set of reachable states. Here we maintain a set R of triples (u, q,Q′)
s.t. q is reachable in A from qA0 under u, and all q′ ∈ Q′ are reachable from qB0
under u in B.

Algorithm 2 IP for InclP

1: R← {(ε, qA0 , {qB0 })}
2: V ← {q[a]q

′
p | (q, a, q′) ∈ δA, p = Ω(q)}

3: R′ ← ∅
4: V ′ ← ∅
5: while R 6= R′ or V 6= V ′ do
6: for q[v]qp ∈ V that are idempotent do
7: if ∃(u, q,Q′) ∈ R s.t. q[v]qp bad w.r.t. Q′ then

8: return “L(A) 6⊆ L(B): uvω ∈ L(A) ∩ L(B)”
9: end if

10: end for
11: R′ ← R
12: V ′ ← V
13: R← R ∪ {(uv, q′, Q′[v]) | q[v]q

′
p ∈ V, (u, q,Q′) ∈ R}

14: reduce R s.t. it contains at most one (u, q,Q′) for every pair q,Q′

15: V ← V ∪ V ◦ V
16: end while
17: return “L(A) ⊆ L(B)”

Theorem 5. Algorithm 2 tests inclusion in time O(22((n
2 log k)+logm+log k′)) for

NPA A and B with m resp. n states and index k′ resp. k.

Proof. As in Thm. 3, it is not hard to see that the number of outer iter-
ations is bounded by the maximal number of typed boxes and reachability
sets. Since the number of typed boxes is an upper bound on the number of
reachability sets, we observe that the number of iterations can be bounded by
O(2(n

2 log k)+logm+log k′). The runtime of the inner loop as well as the other op-

erations can also be bounded by O(2(n
2 log k)+logm+log k′). ut

We call IB the restriction of IP to NBA only. Its search space is decreased
to m · 2(n2 log 3)+log 3.

3.3 Comparing Direct and Indirect Methods

Regarding the universality problem for NPA we consider two different approaches:
(1) using algorithm UP directly, and (2) translating an NPA into an NBA and
then using UB, the restriction of UP to NBA. The asymptotic worst-case run-
times for these two approaches compare as follows. As usual, n denotes the
number of states of the input NPA, k denotes its index.

reductions algorithm runtime

(1) UP 2O(n2 log k)

(2) UnivP 7→ UnivB UB 2O(n2k2)

This shows that the direct method devised here is asymptotically much bet-
ter than the one that can be obtained from previously known reductions and
methods for NBA: (1) is polynomial in the number of occurring priorities, (2)
is exponential in the square of this number. Thus, one should expect the di-
rect method to perform much better on NPA with more than just a very small
number of priorities.

Now consider the inclusion problem between an NPA with m states and index
k′ and an NPA with n states and index k. There are even more Ramsey-based
approaches available:

1. the direct method using algorithm IP;

2. translating both NPA into NBA (Prop. 1), then using IB;

3. the reduction from inclusion to universality on the NPA side (Prop. 3), then
using algorithm UP;

4. reducing the inclusion problem for NPA to the universality problem (Prop. 3),
then translating the resulting single NPA into an NBA (Prop. 1), and testing
it for universality with algorithm UB;

5. first translating the NPA into NBA (Prop. 1), then performing the reduction
from inclusion to universality on the NBA side (Prop. 3), and finally using
algorithm UB as well.

The asymptotic worst-case runtimes are as follows.

reductions alg. runtime

(1) IP 2O(n2 log k+log(mk′))

(2) InclP 7→ InclB IB 2O((nk)2+log(mk′))

(3) InclP 7→ UnivP UP 2O((n+k+m)2+log k′)

(4) InclP 7→ UnivP 7→ UnivB UB 2O((n+k+m)2·(max{k,k′})2)

(5) InclP 7→ InclB 7→ UnivB UB 2O((nk+mk′)2)

One can vaguely say that the more reductions one uses, the worse the asymp-
totic runtime gets. Again, only the direct method devised here is polynomial in
the number of involved priorities whereas using any of the four other methods
involving a reduction of some kind results in a runtime that is exponential in at
least the number of different priorities in one of the involved automata.

4 Experimental Evaluation

The previous section argues that the direct Ramsey-based methods for parity
automata devised in this paper are asymptotically, i.e. in theory, better than the
methods one can obtain through reductions to Ramsey-based methods for Büchi
automata. In this section, we show that this is also the case in practice. Due to
space restrictions we restrict ourselves to the universality problem. Preliminary
tests with the inclusion problem also show that the direct methods outperform
those obtained by reductions.

4.1 A Random Model of Parity Automata

We extend the Tabakov-Vardi random model for NBA [15] to one for NPA. It
is parameterized by two natural numbers n > 0 and p > 0 that result in the
following automata scheme for an NPA (Q,Σ, 1, δ, Ω) where Q = {1, . . . , n},
Σ = {a, b}, and δ and Ω are chosen arbitrarly at random by the following
distribution:

– q′ ∈ δ(q, s) with probability 2
n for every 1 ≤ q, q′ ≤ n and every s = a, b, and

– Ω(q) =

{
2p′ + 1 with probability 1

2p and 0 ≤ p′ < p

2p′ + 2 with probability 1
2p and 0 ≤ p′ < p

In other words, an NPA of this model has n states, an alphabet of size two,
an expected transition density of two outgoing edges per state and symbol and
a priority assignment that maps every state to a priority based on a uniform
distribution of 1, . . . , 2p. Experimentally it can be seen that this results in an
NPA accepting the universal language with probability of approx. 50%.

4.2 Comparison in Practice

All tests have been carried out on a 64-bit machine with four quad-core OpteronTM

CPUs. The implementation does not support parallel computations, hence, each
test is run on one core only. The following tables feature the average time to
decide universality over 1000 automata of a certain parameterization of the ran-
dom model. They also show the average rounded number of boxes that have
been created during these tests.

The first benchmark measures the effect of the number of states on the run-
time. Thus, it fixes p = 2, i.e. the only priorities occurring are 1, . . . , 4. The

Benchmark 1

universal non-universal

UP UB UP UB

states time boxes time boxes time boxes time boxes

5 0.00s 21 0.01s 23 0.00s 5 0.00s 6

10 0.08s 190 0.95s 583 0.01s 53 0.04s 64

15 1.23s 817 70.39s 6, 388 0.07s 145 0.57s 272

20 3.90s 1, 497 1, 555.04s 40, 776 0.46s 401 2.98s 811

25 19.70s 3, 877 1, 867.92s 43, 728 0.90s 648 2.46s 846

30 72.62s 6, 486 — — 2.70s 1, 106 49.18s 4, 780

35 154.67s 8, 868 — — 5.11s 1, 489 59.44s 5, 901

40 221.01s 11, 318 — — 10.93s 2, 112 70.26s 6, 601

Benchmark 2

universal non-universal

UP UB UP UB

priorities time boxes time boxes time boxes time boxes

2 0.97s 745 1.14s 677 0.05s 114 0.08s 111

4 2.74s 1, 370 29.57s 5, 294 0.15s 200 0.92s 238

6 2.89s 1, 479 797.65s 13, 049 0.17s 255 1.79s 332

8 5.28s 2, 297 1, 158.08s 28, 261 0.22s 327 2.02s 511

10 3.56s 2, 226 — — 0.34s 400 6.39s 939

12 4.03s 2, 120 — — 0.33s 477 8.37s 1, 498

14 4.13s 1, 766 — — 0.23s 374 10.69s 1, 450

16 4.36s 2, 755 — — 0.31s 450 31.11s 1, 402

Fig. 2. Average runtimes and number of created boxes in the benchmarks.

results are presented in the first table in Fig. 2. The average runtimes distin-
guish the two cases of NPA accepting the universal language and a non-universal
language because non-universality is much easier to establish than universality.
Note that the latter requires the creation of all boxes while the former only
needs to find a counterexample. This benchmark shows very clearly that the
direct Ramsey-based method UP for NPA is much faster in practice than the
method UB on NBA that have been obtained by translating NPA into NBA.

The second benchmark measures the effect that the number of different pri-
orites has on the runtime. It fixes n = 16, i.e. every automaton has exactly 16
states. See the second table in Fig. 2 for the results. Again, the direct method
of algorithm UP outperforms the indirect method of algorithm UB by far.

5 Conclusion and Further Work

We have presented direct Ramsey-based methods that solve the universality and
inclusion problem for nondeterministic parity automata. These direct methods
turn out to be more efficient than indirect methods obtained from translating
parity into Büchi automata and then performing the corresponding Ramsey-

based analysis on these. Also, the reduction from inclusion to universality is
equally non-viable in this context.

The work presented here can be continued into several directions. It remains
to be seen whether optimisations for Ramsey-based methods as they can be
done for NBA [1, 2] can be lifted to yield similar speed-ups in the Ramsey-based
methods for NPA.

References

1. P. A. Abdulla, Y.-F. Chen, L. Clemente, L. Hoĺık, C.-D. Hong, R. Mayr, and
T. Vojnar. Simulation subsumption in ramsey-based Büchi automata universality
and inclusion testing. In Proc. 22nd Int. Conf. on Computer Aided Verification,
CAV’10, volume 6174 of LNCS, pages 132–147. Springer, 2010.

2. P. A. Abdulla, Y.-F. Chen, L. Clemente, L. Hoĺık, C.-D. Hong, R. Mayr, and
T. Vojnar. Advanced ramsey-based Büchi automata inclusion testing. In Proc.
22nd Int. Conf. on Concurrency Theory, CONCUR’11, volume ?? of LNCS, page ??
Springer, 2011.

3. B. Banieqbal and H. Barringer. Temporal logic with fixed points. In Proc. Coll.
on Temporal Logic in Specification, volume 398 of LNCS, pages 62–73. Springer,
1989.

4. J. R. Büchi. On a decision method in restricted second order arithmetic. In Proc.
Congress on Logic, Method, and Philosophy of Science, pages 1–12, Stanford, CA,
USA, 1962. Stanford University Press.

5. C. Dax, M. Hofmann, and M. Lange. A proof system for the linear time µ-calculus.
In Proc. 26th Conf. on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS’06, volume 4337 of LNCS, pages 274–285. Springer, 2006.

6. S. Fogarty and M. Y. Vardi. Büchi complementation and size-change termination.
In Proc. 15th Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’09, volume 5505 of LNCS, pages 16–30. Springer, 2009.

7. S. Fogarty and M. Y. Vardi. Efficient Büchi universality checking. In Proc. 16th
Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’10, volume 6015 of LNCS, pages 205–220. Springer, 2010.

8. N. Klarlund. Progress measures for complementation of ω-automata with applica-
tions to temporal logic. In Proc. 32nd Annual Symp. on Foundations of Computer
Science, FOCS’91, pages 358–367. IEEE, 1991.

9. O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak.
ACM Transactions on Computational Logic, 2(3):408–429, 2001.

10. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for
program termination. ACM SIGPLAN Notices, 36(3):81–92, 2001.

11. A. Pnueli. The temporal logic of programs. In Proc. 18th Symp. on Foundations
of Computer Science, FOCS’77, pages 46–57, Providence, RI, USA, 1977. IEEE.

12. F. P. Ramsey. On a problem of formal logic. Proc. London Mathematical Society,
Series 2, 30(4):338–384, 1928.

13. S. Safra. On the complexity of ω-automata. In Proc. 29th Symp. on Foundations
of Computer Science, FOCS’88, pages 319–327. IEEE, 1988.

14. A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Büchi
automata with applications to temporal logic. Theoretical Computer Science, 49(2–
3):217–237, 1987.

15. D. Tabakov and M. Y. Vardi. Experimental evaluation of classical automata con-
structions. In In LPAR 2005, LNCS 3835, pages 396–411. Springer, 2005.

16. M. Y. Vardi. A temporal fixpoint calculus. In ACM, editor, Proc. Conf. on Princi-
ples of Programming Languages, POPL’88, pages 250–259, NY, USA, 1988. ACM
Press.

