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Abstract. We study the following one-person game against a random
graph: the Player’s goal is to 2-colour a random sequence of edges
e1, e2, . . . of a complete graph on n vertices, avoiding a monochromatic
triangle for as long as possible. The game is over when a monochro-
matic triangle is created. The online version of the game requires that
the Player should colour each edge when it comes, before looking at the
next edge.

While it is not hard to prove that the expected length of this game
is about n4/3, the proof of the upper bound suggests the following re-
laxation: instead of colouring online, the random graph is generated in
only two rounds, and the Player colours the edges of the first round
before the edges of the second round are generated. Given the size of
the first round, how many edges can there be in the second round if the
Player is to win with reasonable probability? In the extreme case, when
the first round consists of a random graph with cn3/2 edges, where c is
a positive constant, we show that the Player can win only if constantly
many edges are generated in the second round.

The analysis of the two-round version of the game is based on a
delicate lemma concerning edge-coloured random graphs.

1. Introduction

In this paper, we study Ramsey one-person triangle avoidance games
against a random graph. In all versions of our game, the goal of the player,
called throughout the Painter, is to colour randomly generated edges, using
a given number of colours, without creating a monochromatic triangle. In-
formally, the length of the game is the maximum number of edges on which
the Painter can win with large probability. We distinguish three versions of
the game: online, two-round, and offline.
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1.1. The three games. In the online version of our game, the Painter
receives a random sequence of edges, and she has to colour each edge as it
comes, avoiding monochromatic triangles as long as possible.

It turns out that, when the number of colours available to the Painter
is r = 2, this game is quite easy to analyse; indeed, a fairly simple ‘local’
argument shows that this game typically lasts for Θ(n4/3) steps.

We observe that the length of the game is not so sharply determined.
When the Painter has seen only o(n4/3) edges, she is essentially certain
to be safe; she is most unlikely to survive up to ωn4/3 edges, for any ω
with ω = ω(n) → ∞ as n → ∞; but, for any c > 0, she has probability
bounded away from 0 and 1 of surviving up to cn4/3 edges.

What happens if the Painter has a mercy period? That is, suppose she
is allowed not to colour the first, say, N0 edges online, but may wait to see
all of them before committing herself to the colour of those edges. Clearly,
she should be able to survive longer, because her initial colouring can be
cleverer.

Instead of switching back to the online version after the mercy period
of N0 edges, let us simply suppose that another N1 random edges are now
presented to the Painter. If she is able to extend her initial colouring of
the N0 edges to the union of the N0 and the N1 edges still avoiding triangles,
she wins; otherwise, she loses. This is the two-round version of our game.

We shall analyse the two-round game with N0 = cn3/2, for c a small
positive constant. (We shall see in a moment why this is the interesting
choice for N0.) The result here is that, with such a value of N0, if the Painter
has r = 2 colours available, then typically she can win only if N1 = O(1):
for any N1 = N1(n) that tends to infinity, the probability that the Painter
wins tends to 0.

We shall also show that, ifN0 = cn3/2 and r = 3 colours are available, then
the breakpoint for N1 is of order n: if N1 = o(n), then the Painter typically
wins; ifN1 = ωn, where ω = ω(n) tends to infinity, then the Painter typically
loses. If N1 = Θ(n), then she wins with probability bounded away from 0
and 1. Note that, as in the online game, the transition is not sharp.

We finally turn to the offline version of our game. In the offline game, an
n-vertex graph G(n,N) with a fixed number of edges N = N(n) is generated
uniformly at random and is presented to the Painter; her task is to colour
the edges of G(n,N) avoiding monochromatic triangles.

The reader familiar with the theory of random graphs will immediately see
that the analysis of this game amounts exactly to determining the threshold
for the Ramsey property Rr, which consists of all graphs such that every
r-colouring of their edges results in a monochromatic triangle.

The threshold for the property Rr has been investigated for some time
now. In particular, it has been proved that there exist constants cr and Cr
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such that

lim
n→∞

P[G(n,N) ∈ Rr] =

{
1 if N > Crn

3/2

0 if N < crn
3/2.

(1)

The above threshold of n3/2 was first proved for r = 2 in [19] (see also [8]),
and then validated for arbitrary r ≥ 2 in [20]. It is interesting to note that
the dependence on r is not present in the exponent of n, but only in the
constants.

Returning to the case r = 2, the proof in [19] leaves a wide gap between c2

and C2. Using a criterion from [10] for the existence of sharp thresholds,
that gap was recently annihilated in [9]. In the usual parlance, the Ramsey
property R2 admits a sharp threshold. We shall come back to this in Sec-
tion 2. Note that the existence of a sharp threshold for R2 means that the
offlline game for r = 2 colours has a sharply determined value, unlike the
online and the two-round games.

The result in (1) makes the two-round game with N0 of order n3/2 quite
interesting. Note that the game would be trivial if N0 > Crn

3/2, for in that
case the chances of the Painter surviving even the first round are rather
slim. On the other hand, if N0 = cn3/2 with c < cr, then the Painter may
be happy, because she has a very good chance of being able to colour the
edges of the first round. However, our result (Theorem 6 below) shows that,
at least for r = 2, her happiness is short-lived: regardless of how small c is,
the fact that she has to colour those N0 edges before seeing the final graph
makes it very unlikely that she will succeed in colouring even as few as,
say, N1 = log log log n further edges! This is in contrast to the fact that,
if N0 +N1 < crn

3/2, then, typically, G(n,N0 +N1) may be 2-edge-coloured
avoiding monochromatic triangles (see (1)).

We mention in passing that, in Section 2, we shall attempt to explain how
the two-round version of our game naturally arose from a technical part of
the proof of the existence of a sharp threshold for R2.

Interestingly enough, both the two-round and online versions of our Ram-
sey game are much more sensitive to the number of colours available to the
Painter than the offline one is. Recall that, for example, in the two-round
game, while for r = 2 colours the survival time is O(1), for r = 3 colours
the survival time is of order n. For the online, 3-colour game, we have a
lower bound of roughly n7/5 for its length, which is much larger than for
two colours. At this point, we do not have a matching upper bound for the
3-colour game.

1.2. Organization. This paper is organized as follows. In Section 2 we
briefly discuss the proof of the existence of a sharp threshold for the prop-
erty R2, and its relation to this paper. In Section 3, we state and prove
our results on Ramsey games. As it turns out, most of the work will go
into proving a certain delicate lemma (Lemma 4); Section 4 will be entirely
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devoted to proving this lemma. In Section 5, we briefly discuss some open
problems.

1.3. Notation and terminology. Our notation is fairly standard. We
let [n] = {1, . . . , n}. We write [X]k for the family of k-element subsets of X.
Let G be a graph. If x is a vertex of G, then NG(x) = N(G;x) denotes the
neighbourhood of x in G. If U ⊆ V (G), we write G[U ] for the subgraph
of G induced by U . Thus, E(G[U ]) = E(G) ∩ [U ]2. We put eG(U) for
|E(G[U ])|, the number of edges induced by U in G. If U , W ⊆ V (G) are
disjoint, then G[U,W ] stands for the bipartite graph with vertex classes U
and W naturally induced by U and W in G. We write EG(U,W ) for the
set of edges of G with one endvertex in U and the other in W . That
is EG(U,W ) = E(G[U,W ]). We let eG(U,W ) = |EG(U,W )|. We sometimes
identify a graph with its edge set.

A colouring of the edges of a graph will be called proper if it does not
contain a monochromatic triangle.

We shall consider the three standard models for random graphs: the
binomial random graphs G(n, p), the uniform random graphs G(n,N), and
the random graph processes G0 ⊆ · · · ⊆ G(n2)

, which naturally correspond
to random permutations e1, . . . , e(n2)

of the edges of the complete graph
on [n]. In particular, if we stop a random graph process at time t, we
obtain a random graph in the uniform model G(n, t). When convenient,
we switch between these models without discussion. A rule of thumb is
that most results can be “translated” back and forth between the binomial
and uniform models, provided N ∼ p

(
n
2

)
. For more on the (asymptotic)

equivalence of these models and on random graphs in general, we refer the
reader to [6] and [12].

Most of the time, we have a parameter n and we are interested in the case
in which n→∞. As usual, we use the term ‘asymptotically almost surely’
(a.a.s.) to mean ‘with probability tending to 1 as n → ∞’. Therefore, we
often tacitly assume that n is large enough (for instance, for some inequalities
to hold). Also, we drop the b c and d e from our formulae when they are
not important. This will simplify the exposition considerably.

Our logarithms are natural logarithms.

Acknowledgements. We thank Svante Janson for his interest and sugges-
tions. Part of this work was done when some of the authors were at the
meeting Combinatorics, Probability, and Computing, at the Mathematisches
Forschungs Institut Oberwolfach.

2. Sharp thresholds

Recall that R2 consists of all graphs such that every 2-colouring of their
edges results in a monochromatic triangle. The main result in [9] is the
following theorem, asserting that property R2 admits a sharp threshold.
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Theorem 1. There exists a function b = b(n) such that for all ε > 0 we
have

lim
n→∞

P[G(n, p) ∈ R2] =

{
1 if p > (1 + ε)b(n)/

√
n

0 if p < (1− ε)b(n)/
√
n.

As the proof of Theorem 1 has some implications with respect to the
two-round version of our game, we give a very brief outline of it here. (The
remainder of this paper does not depend on this section.)

The proof of Theorem 1 is based on a consequence of Friedgut’s criterion
from [10], which says that in order for R2 to have a sharp threshold it is
sufficient that for any choice of the constants c, α, and ξ > 0, and for any
balanced graph M with average degree 4 there is a graph property G such
that G(n, p) ∈ G a.a.s., where p = c/

√
n, and such that, for all n-vertex

graphs G ∈ G with sufficiently large n,
(*) if P[G ∪M∗ ∈ R2] > α, then P[G ∪G(n, ξp) ∈ R2] → 1 as n → ∞,

where M∗ is a random copy of M in the complete graph Kn.
It can be proved in at least two ways that a graph with average degree 4
cannot be a member of R2 (see [9, 18]) and hence M 6∈ R2. Thus, if
G 6∈ R2 as well, then the assumption of the above implication indicates a
very complex structure of G, which in a sense must be close to possessing
property R2. This closeness leads, after 50+ pages of proof involving a
special, tailor-cut regularity lemma, to the conclusion that, for some λ > 0,
there exists a family K of subgraphs of G such that

(i) |K| = 2o(n
3/2),

(ii) for all K ∈ K, we have |E(K)| > λcn3/2,
and, most importantly,

(iii) for every proper 2-colouring of the edges of G, there is a K ∈ K that
is monochromatic.

Now, all we need is for every K to have a triangle T = T (K) in G(n, ξp) such
that each of the edges of T connects the endpoints of a path of length two
in K. Then, if K is monochromatic, there is no way to extend the colouring
of G to a proper colouring of G ∪ G(n, ξp). To establish the existence of
T = T (K) above, we define for a graph F the base graph Base(F ) on the
vertex set V (F ) as follows: a pair e of vertices of F is an edge of Base(F ) if
it forms a triangle with two edges of F .

Since G is essentially a pseudorandom graph resembling G(n, c/
√
n),

Lemma 2 below, proved in [9], which we believe is of independent inter-
est, implies that there are plenty of triangles in the base of each K ∈ K.
Given two real numbers 0 < λ < 1 and 0 < a < 1/6, we say that a graph G
has property T (λ, a) if, for any subgraph F of G with at least λ|E(G)| edges,
the graph Base(F ) contains at least a|V (G)|3 triangles.

Lemma 2. For any λ > 0, there exists a > 0 such that if np2 ≥ λ then,
with probability 1− o(1), the random graph G(n, p) has property T (λ, a).
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Finally, a standard application of Janson’s inequality [11] yields for any
given K that with probability 1 − 2−Θ(n3/2) there is a triangle T (K) in
Base(K) ∩ G(n, ξp). This, together with (i) and (iii) above completes the
proof of (*).

The convergence
P[G ∪G(n, ξp) ∈ R2]→ 1

may be viewed as a statement about a two-round Ramsey game against a
random graph. This explains why Lemma 2 and a related result, Lemma 4
given below, are useful tools in studying such games.

3. Ramsey triangle avoidance games

This section contains our main results. In Section 3.1 below, we prove a
relatively simple result for the online version of the Ramsey game. In Sec-
tion 3.2, we state two results on the two-round game, together with their
proofs, pending a major technical lemma, Lemma 4, which will be proved
in Section 4.

3.1. The online game. Consider the random graph process

e1, . . . , e(n2)

on n vertices (see Section 1.3), revealing its edges one by one, and the follow-
ing one-person game related to it. The Painter’s task is to 2-colour the edges
online, with colours red and blue, say, and not to create a monochromatic
triangle for as long as she can. Here online means that the Painter has to
decide on the colour of ei before ei+1 is generated. The game is over when
a monochromatic triangle is created (this does happen if n ≥ 6). For how
long can she stay in the game with probability approaching 1 as n→∞?

More formally, for each strategy π of the Painter, let Xπ be the length of
the game, i.e., Xπ is the largest index N such that e1, . . . , eN contains no
monochromatic triangle. The goal of the game is to choose a strategy that
maximizes E(Xπ). By a strategy we mean a complete set of rules assigning
a colour to the next edge.

Since e1, . . . , eN is exactly the random graph G(n,N), clearly, by (1), an
upper bound on the expected duration of the game is C2n

3/2. We shall soon
show that the threshold for the length of the online game is in fact much
smaller.

A crucial tool in our investigation is the base graph Base(F ) of a graph F .
Recall that a pair e of vertices of F is an edge in Base(F ) if it forms a
triangle with two edges of F . Now consider an online 2-colouring of the
edges e1, . . . , e(n2)

. Let Ri and Bi be the sets of the edges ej (j ≤ i) coloured
so far with colours red and blue, respectively. The Painter is stuck if and
only if

ei+1 ∈ Base(Ri) ∩ Base(Bi).
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Similarly, the game is bound to be over by time j if for some i < j, the inter-
section of the set of edges {ei+1, . . . , ej} with Base(Ri) (or with Base(Bi))
contains a triangle.

Let us begin with a trivial lower bound. As long as N = o(n6/5), there is
a.a.s. no copy of a diamond in e1, . . . , eN , that is, a K4 with an edge omitted,
and the Painter never gets stuck until the Nth edge, since

ei+1 6∈ Base(Ri) ∩ Base(Bi)

for each i < N .
But she can do better: as long as N = o(n4/3) a.a.s. neither a copy

of K4 nor a copy of the pyramid graph (see Figure 1) has emerged, and
so Base(G(n,N)) does not contain a triangle. Hence the greedy strategy π0

of colouring each edge red, unless such a move would create a red K3, is
successful. Indeed, the base of RN , which is a subgraph of Base(G(n,N)),
is triangle-free, and no blue triangle will be created. We have just proved
that a.a.s. Xπ0 > n4/3/ω for any ω = ω(n) with ω →∞.

Figure 1. The pyramid, the enhanced pyramid, and the
double pyramid

Quite surprisingly, n4/3 is the right threshold for the length of the random
online triangle avoidance game.

Theorem 3. For every ω with ω = ω(n) → ∞ as n → ∞ and for every
strategy π of the Painter, a.a.s. Xπ < ωn4/3.

Proof. We relax the online regime by allowing a mercy period of N0 = n4/3

steps; i.e., only after that many edges are generated, do they have to be
coloured by the Painter. We shall argue that no matter how they are
coloured, the Painter loses a.a.s. after another (ω − 1)n4/3 edges. This is
nothing else but a two-round exposure technique (see [12]), with a colouring
in between.

The aim is to show that a.a.s. every subgraph of G(n,N0) with at least
half of the edges (the majority colour) has at least Ω(n2) triangles in its
base. Then, by the second moment method, any ωn4/3 additional random
edges will a.a.s. contain at least one of these triangles and the game will be
over.

A.a.s. the number of copies of K2,3 in G(n,N0), denoted by X(K2,3), is
smaller than, say, n log n. Let R be the majority colour in G(n,N0) and
let d1, . . . , dn be the degree sequence in R. Then the number of triangles in
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the base of R is at least
n∑
i=1

(
di
3

)
−X(K2,3) ≥ n

(
N0/n

3

)
−X(K2,3) = Ω(n2),

where the last equation holds a.a.s. �

The reader will have no difficulty in verifying that the proofs above show
that, for any c > 0, the Painter has probability bounded away from 0 and 1
of surviving up to cn4/3 edges.

With three colours at hand the Painter can survive quite a bit longer.
The painter may use the natural greedy strategy, say π1, which colours an
edge red if possible, otherwise blue if possible, and finally yellow if none of
red and blue will do. Using π1, the painter gets stuck only if a copy of the
double pyramid, or of the enhanced pyramid (see Figure 1), or of K5 with
an edge omitted has emerged. Since such subgraphs a.a.s. do not appear in
the random graph with o(n7/5) edges, we obtain that P(Xπ1 > n7/5/ω)→ 1.
However, we do not know whether this is the right threshold.

3.2. The two-round game. The proof of Theorem 3 bridges the online
and the two-round game, which we now define formally. Given two inte-
gers N0 and N1, first, N0 edges are generated randomly (let G0 = G(n,N0)
be the graph defined by these edges), and the Painter colours them properly
with r colours (if possible), that is, avoiding monochromatic triangles. Then
a second round of N1 random edges (graph G1) is thrown in and the Painter
wins if her colouring of G0 has an extension to a proper colouring of G0∪G1

(if G0 cannot be properly coloured, the Painter already lost at that stage).
For a given strategy π of the Painter, let Pπ(r,N0, N1) be the probability

that the Painter wins the game when using π. Here, by a strategy, we mean
an assignment of an r-edge-colouring to every graph with N0 edges. Thus,
the goal of the Painter is to find a strategy π that maximizes Pπ(r,N0, N1).
Let

P ∗(r,N0, N1) = max
π

Pπ(r,N0, N1).

The above proof of Theorem 3 gives that P ∗(2, n4/3, ωn4/3) = o(1), be-
cause the base of the majority colour in G0 = G(n, n4/3) contains Θ(n2)
triangles. This simple argument may be extended to a wider range of N0

(for r = 2), namely,
n7/6 ≤ N0 ≤ cn3/2,

where here and below c is always assumed to be so small that

P(G(n, cn3/2) ∈ R2) = o(1).

Indeed, along similar lines, one may easily prove that there are are Θ(N3
0 /n

2)
triangles in the base graph of the majority colour of G0 = G(n,N0), and
consequently, arguing as in the proof of Theorem 3, we have

P ∗(2, N0, ωn
8/3/N0) = o(1).
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In particular, in the most extreme case, we obtain that the number of trian-
gles in the base graph of the majority colour of G0 = G(n, cn3/2) is Θ(n5/2),
and thus P ∗(2, cn3/2, ωn7/6) = o(1).

Using Lemma 2 with λ = min{c2, 1/2} and with F consisting of the edges
coloured by the majority colour, we can improve the above and conclude
that in fact a.a.s., for any 2-edge-colouring of G(n, cn3/2), the number of
triangles in the base graph of the majority colour is of maximal possible
order Θ(n3). By the second moment method this yields that

P ∗(2, cn3/2, ωn) = o(1)

(a triangle is needed in the base of one colour). To improve this any further
we need to find a stronger tool.

As we have just seen, Lemma 2, put in the colouring context, says that
the base of the majority colour is rich in triangles. A powerful extension of
that result, Lemma 4 below, which is the main technical result of this paper,
implies that the same is true for the intersection of the bases of two colours,
provided the colouring is proper. This result not only settles the two-round
game for r = 2, but also for r = 3, the other interesting case.

Lemma 4. For all c > 0, there are constants α and β > 0 such that
with p = c/

√
n the random graph G = G(n, p) a.a.s. satisfies the following

property. For every proper 3-colouring E(G) = R∪B∪Y of the edges of G,
there are two colours, say R and B, such that, letting

I = Base(R) ∩ Base(B), (2)

we have
(i) |E(I)| ≥ αn2

and, in fact,
(ii) the graph I contains at least βn3 triangles.

Remark 5. Note that Lemma 2 is not a special case of the seemingly
stronger Lemma 4. In Lemma 2 the parameter λ may be arbitrarily small,
while in Lemma 4 the assumption that the colouring must be proper sets
an implicit lower bound on the size of the second largest colour (see (44)).
In particular, it seems that Lemma 4 cannot replace Lemma 2 in the proof
of Theorem 1 in [9].

Nevertheless, the proof of Lemma 4, besides some new ideas, uses the ideas
from the proof of Lemma 2. The relation between the proofs of Lemmas 2
and 4 is briefly discussed in Section 4.2.

Taking Lemma 2 for granted, we are ready to state and prove our results
for the two-round game.

Theorem 6. For any ω with ω = ω(n)→∞ as n→∞, we have

P ∗(2, cn3/2, ω) = o(1).
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Proof. This follows immediately from Lemma 4(i) (with Y = ∅), since a.a.s.
at least one of the ω new edges will fall into I. �

Finally, let us consider the two-round game for r > 2 and N0 = cn3/2.
If r ≥ 4, then a trivial conservative strategy is to use only two colours for G0

and then another two colours forG1. This, together with the threshold result
from [20] settles the game at Θ(n3/2), i.e., there exist constants b and B > 0
for which we have

lim
n→∞

P ∗(r, cn3/2, N1) =

{
1 if N1 < bn3/2

0 if N1 > Bn3/2.

In the remaining case r = 3, we have the following, complete solution.

Theorem 7. We have

lim
n→∞

P ∗(3, cn3/2, N1) =

{
1 if N1 � n

0 if N1 � n.

Proof. The ‘1-statement’, that is, the fact that P ∗(3, cn3/2, N1)→ 1 as n→
∞, follows by using only two colours for G0, and then exclusively the third
colour for G1. As long as N1 = o(n), a.a.s. there will not be any trian-
gles in G1. The 0-statement follows from the second moment method and
Lemma 4(ii). �

We remark that the proof above shows that P ∗(3, cn3/2, c′n) is bounded
away from 0 and 1 for any c′ > 0.

4. Pairs at distance two in red and blue

Our aim in this section is to prove Lemma 4. On the way we shall come
close to proving Lemma 2 (see Section 4.2). However, we refer the reader
to [9] for the complete proof of Lemma 2.

Let us introduce a piece of terminology. Let % and d be positive reals. We
say that a graph H is (%, d)-dense if, for all U ⊆ V (H) with |U | ≥ %|V (H)|,
we have

eH(U) ≥ d
(
|U |
2

)
.

An easy averaging argument shows that, when verifying this property, it
suffices to check only all subsets U of cardinality |U | = d%|V (H)|e.

We now state a strengthening of Lemma 4, which, together with an easy
property of (%, d)-dense graphs, implies Lemma 4.

Lemma 8. For all c > 0, there is a constant d > 0 such that, for any % > 0,
there is a constant σ1 > 0 such that for p = c/

√
n the random graph G =

G(n, p) a.a.s. satisfies the following property. For every proper 3-colouring
E(G) = R ∪ B ∪ Y of the edges of G, there are two colours, say R and B,
for which, letting

I = Base(R) ∩ Base(B),
there exists a set U ⊆ V (G) such that
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(i) |U | ≥ σ1n and
(ii) I[U ] is (%, d)-dense.

Graphs that are (%, d)-dense for small % are ‘rich in subgraphs’; in partic-
ular, the following result holds [21].

Lemma 9. For all d > 0 there exist %, n0, and c0 > 0 such that every
(%, d)-dense graph on n ≥ n0 vertices contains at least c0n

3 triangles.

With Lemmas 8 and 9 at hand, it is easy to prove Lemma 4.

Proof of Lemma 4. Given c > 0, Lemma 8 gives us a constant d > 0. By
Lemma 9 we obtain constants %, n0, and c0 > 0 such that any u-vertex
(%, d)-dense graph with u ≥ n0 contains at least c0u

3 triangles. We now feed
this constant % > 0 to Lemma 8, to get a constant σ1 > 0.

We claim that the choice of

α =
1
3
dσ2

1 (3)

and
β = c0σ

3
1, (4)

will do in Lemma 4.
To prove our claim, suppose we have a proper 3-colouring of the edges

of G = G(n, p). By Lemma 8, a.a.s. there are two colours, say R and B,
and a set U ⊆ V (G), |U | ≥ σ1n, for which I[U ] = (Base(R) ∩ Base(B))[U ]
is (%, d)-dense. Then

|E(I)| ≥ |E(I[U ])| ≥ d
(
|U |
2

)
≥ 1

3
d|U |2 ≥

(
1
3
dσ2

1

)
n2 = αn2.

Moreover, by the choice of % > 0 and c0, we deduce from Lemma 9 that the
number of triangles in the (%, d)-dense graph I[U ] is at least

c0|U |3 ≥ c0σ
3
1n

3 = βn3.

Lemma 4 is proved. �

Let us now briefly comment on the organization of this section. The proof
of Lemma 8 fills the remainder of this section, and will require considerable
work. This proof is based on some technical, auxiliary results presented in
Section 4.1 and proved in Section 4.3. The actual proof of Lemma 8 is given
in Section 4.2.

4.1. Auxiliary lemmas. In this section, we state three lemmas that will
be crucial in the proof of Lemma 8.

Throughout this section, we assume that

p =
c√
n
,

where 0 < c ≤ 1/5 is an arbitrary constant that we fix once and for all.
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Let H be a graph. A pair of disjoint sets U , V ⊆ V (H) will be called
(p, λ;H, ε)-lower semi-regular, or (p, λ;H, ε)-semi-regular for short, if, for
all U ′ ⊆ U , V ′ ⊆ V , with |U ′| ≥ ε|U | and |V ′| ≥ ε|V |, we have

eH(U ′, V ′)
p|U ′||V ′|

≥ λ.

Our first auxiliary lemma, Lemma 10, concerns the existence of a certain
substructure in a properly edge-coloured G(n, p). A tripartite graph on
vertex sets Z, U , and W with no edge between Z and W will be called an
amalgam (of two bipartite graphs). The amalgam guaranteed by Lemma 10
in a properly edge-coloured G(n, p) satisfies certain properties with respect
to its size, colouring and structure (see Figure 2).

Z

W |W | = σ0n

|Z| = σ0n

|U | ≥ σ1n

(p, λ;J, ε)-semi-regular

(p, λ;J, ε)-semi-regular

U

J0 ⊆ R

J1 ⊆ B

Figure 2. The amalgam given by Lemma 10

Lemma 10. Let σ0 = (1/200)c2 and λ = (1/30)c2. For any ε > 0, there
is a constant σ1 > 0 for which the following assertion holds a.a.s. for G =
G(n, p). Suppose

E(G) = R ∪B ∪ Y (5)
is a proper colouring of the edges of G. Then there exist two colours, say R
and B, and a subgraph J of G as follows:

(i) the vertex set of J is the union of three pairwise disjoint sets Z, U ,
and W , with |Z| = |W | = σ0n and |U | ≥ σ1n,

(ii) we have EJ(Z,U) ⊆ R and EJ(U,W ) ⊆ B,
(iii) the pairs (Z,U) and (U,W ) are (p, λ;J, ε)-semi-regular.

For convenience, let J0 = J [Z,U ] and J1 = J [U,W ] be the bipartite
graphs induced by the pairs (Z,U) and (U,W ) in J . Basically, our second
lemma concerns the graph J0 in Lemma 10.

Recall that, for a graph F , we write Base(F ) for the graph whose edges are
the pairs of vertices {x, y} ⊆ V (F ) that are joined by a path of length 2 in F .
To investigate the ‘density’ of Base(F ), we shall concentrate on some suitable
bipartite subgraphs of F . Suppose F0 is a bipartite subgraph of F , with ver-
tex classes U and W . We shall write BU (F0) for the subgraph Base(F0)[U ]
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of Base(F0) induced by the vertex class U . For convenience, we shall often
simply write BU (F0) instead of E(BU (F0)). Explicitly, we have

BU (F0) =
{
{u, u′} ⊆ U : ∃w ∈W with {u,w}, {u′, w} ∈ F0

}
.

Note that, clearly, BU (F0) ⊆ Base(F ).

Lemma 11. For all positive constants σ0, λ, and %, there exists a con-
stant ε > 0 such that a.a.s. G = G(n, p) satisfies the following property. For
all bipartite subgraphs J0 = (Z,U ;E) of G with

(i) |Z| = σ0n and u = |U | ≥ n/ log n, and such that
(ii) (Z,U) is (p, λ;J0, ε)-semi-regular,

the graph Base(J0)[U ] = BU (J0) is (%, d′)-dense, where

d′ = min
{

1
4
λ2c2σ0,

1
16
λ4

}
. (6)

As an immediate consequence of Lemmas 10 and 11 we conclude that
a.a.s.G = G(n, p) contains an amalgam J that satisfies (i)–(iii) of Lemma 10
and such that Base(J0)[U ] = BU (J0) is (%, d′)-dense. Suppose that I[U ] =
(Base(R) ∩ Base(B))[U ] is not (%, d)-dense for some d to be chosen later
(cf. (24)). Then, because

I[U ] = (Base(R) ∩ Base(B))[U ] ⊇ (Base(J0) ∩ Base(J1))[U ],

the graph (Base(J0) ∩ Base(J1))[U ] is not (%, d)-dense either. This means
that there exists a set U∗ ⊆ U , with u∗ = |U∗| ≥ %|U |, such that

|(Base(J0) ∩ Base(J1))[U∗]| < d

(
u∗

2

)
.

The subset U∗ generates a subamalgam H of J , which, as our next result
shows, is very rare among all amalgams of that size. Consequently, it will
follow that a.a.s. G(n, p) does not contain such an amalgam H, contradicting
the assumption that I[U ] is not (%, d)-dense.

Now come the details. Let Z, U∗, and W be three pairwise disjoint sets
of vertices. Suppose we have constants

σ0, λ, τ , and ε′ > 0

and integers
n, T and T ′.

Suppose
|Z| = |W | = σ0n and |U∗| ≥ n/ log n.

We now let
B(Z,U∗,W ;σ0, λ, τ, ε

′;n, T, T ′) (7)

be the family of amalgams H on Z ∪U∗ ∪W satisfying the following condi-
tions:
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(i) E(H) = EH(Z,U∗) ∪ EH(U∗,W ), where

|EH(Z,U∗)| = T ′ and |EH(U∗,W )| = T,

and
∆(H) ≤ 2c

√
n, (8)

(ii) the pairs (Z,U∗) and (U∗,W ) are (p, λ;H, ε′)-semi-regular,
(iii) letting H0 = H[Z,U∗] and H1 = H[U∗,W ], we have

|BU∗(H0)| ≥ τ
(
|U∗|

2

)
,

and
(iv) we have

|BU∗(H0) ∩BU∗(H1)| < d

(
|U∗|

2

)
, (9)

where d is as in (24).
We may now state our third and final auxiliary lemma.

Lemma 12. For all positive constants σ0, λ, τ , and α ≤ 1, there exist
constants ε′ > 0 and n0 such that, with the notation as above, for all n ≥ n0

and all T and T ′, we have

|B(Z,U∗,W ;σ0, λ, τ, ε
′;n, T, T ′)| ≤ αT

(
|Z||U∗|
T ′

)(
|W ||U∗|

T

)
.

We observe that Lemma 12 above may be interpreted as a statement
concerning the uniform space of amalgams of bipartite graphs on vertex
sets Z, U∗, and W and number of edges T ′ and T . Indeed, Lemma 12 tells
us that the probability that a random element from this space should be
an element of the family in (7) is at most αT for any given α > 0, if n is
sufficiently large and ε′ is sufficiently small.

Hence, one may say that the members H in the family in (7) are extremely
rare, as long as T is large (which will turn out to be our case). We now use
this fact to show that the random graph G(n, p) is quite unlikely to contain
such rare graphs H.

Given σ0, λ, τ , ε′ > 0, and n, let us call an amalgam

H = (Z,U∗,W ;EH(Z,U∗), EH(U∗,W ))

rare if |Z| = |W | = σ0n,

u∗ = |U∗| ≥ n/ log n, (10)

∆(H) ≤ 2c
√
n, (11)

and (ii)–(iv) from the definition of the family in (7) hold. Note that if H is
rare, then, setting |EH(Z,U∗)| = T ′ and |EH(U∗,W )| = T , we have

T, T ′ ≥ λp|Z||U∗| = λp|W ||U∗| = λσ0pn|U∗| = λσ0pnu
∗, (12)
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and hence, as (10) holds, we have

T, T ′ � n log n. (13)

On the other hand, we observe that, by (11), we have T ′ ≤ 2c
√
n|U∗|, and

hence, using (12), we have

T

T ′
≥ λp|U∗||W |

2c
√
n|U∗|

=
λ(c/
√
n)σ0n

2c
√
n

=
1
2
λσ0. (14)

in every rare amalgam. Finally, we invoke Lemma 12 with the constants σ0,
λ, and τ above and

α =
(
λ

2e

)4/λσ0

. (15)

Lemma 12 then gives us a constant ε′ = ε′(L12) > 0.
After having done this preliminary work, we state and prove the following

crucial claim.

Claim 13. A.a.s., G = G(n, p) contains no rare amalgam with parame-
ters σ0, λ, τ , and ε′.

Proof. We shall deduce this claim from Lemma 12. We start by setting

ϑ0 = αλσ0/4 and ϑ1 = α1/2. (16)

Note that (16) gives that

ϑ1 < ϑ0 =
λ

2e
. (17)

Since T ≥ (λσ0/2)T ′ (see (14)), we have

αT = αT/2αT/2 = ϑ
(2/λσ0)T
0 ϑT1 ≤ ϑT

′
0 ϑ

T
1 . (18)

We are now ready to show that a.a.s. no rare amalgam occurs as a subgraph
in G = G(n, p). We shall use the first moment method. The expected
number of such subgraphs is∑

|B(Z,U∗,W ;σ0, λ, τ, ε
′;n, T, T ′)|pT+T ′ , (19)

where the sum is over all choices of Z, U∗, W ⊆ V (G) and over all choices
of T and T ′. We use Lemma 12, (12), (13), (17), and (18), to estimate (19).
Below, we write

∑
u∗ for the sum over n/ log n ≤ u∗ ≤ n and

∑
T, T ′ for the
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sum over T , T ′ ≥ λσ0pnu
∗ (see (12)). The quantity in (19) is at most∑

u∗

∑
T, T ′

nu
∗
n2σ0nαT

(
σ0nu

∗

T ′

)(
σ0nu

∗

T

)
pT
′+T

≤
∑
u∗

∑
T, T ′

n3nϑT
′

0 ϑ
T
1

(
eσ0nu

∗

T ′

)T ′ (eσ0nu
∗

T

)T
pT
′+T

=
∑
u∗

∑
T, T ′

n3n

(
ϑ0
eσ0pnu

∗

T ′

)T ′ (
ϑ1
eσ0pnu

∗

T

)T
≤
∑
u∗

∑
T, T ′

n3n
(
ϑ0
e

λ

)T ′ (
ϑ1
e

λ

)T
≤ n4n

∑
T, T ′

(
1
2

)T+T ′

≤ n4n(n2)22−ωn logn

for some ω = ω(n) with ω →∞ as n→∞ (see (13)). We conclude that the
expectation in (19) is o(1), and Claim 13 follows by Markov’s inequality. �

4.2. Proof of Lemma 8. We shall use Lemmas 10, 11, and 12 to prove
Lemma 8.

Let c > 0 be given. A moment’s thought shows that the almost sure
property asserted for G = G(n, p) is increasing, and therefore we may sup-
pose that c ≤ 1/5 (for details concerning this argument, for instance see [12,
Lemma 1.10]). To define the constant d whose existence is guaranteed in
Lemma 8, we proceed as follows. Let

σ0 =
1

200
c2, (20)

λ =
1
30
c2, (21)

(22)

and

τ = min
{

1
4
λ2c2σ0,

1
16
λ4

}
. (23)

We then set

d =
1

800
λ2c2σ0τ

2, (24)

and claim that this choice for d will do.
To prove our claim above, let an arbitrary 0 < % ≤ 1 be given. We

have to prove the existence of a suitable constant σ1 > 0. To this end, we
first invoke Lemma 11 with the constants σ0, λ, and % above, to obtain a
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constant ε(L11) > 0. Moreover, we invoke Lemma 12 with the constants σ0,
λ, and τ above and

α =
(
λ

2e

)4/λσ0

. (25)

Lemma 12 then gives us a constant ε′(L12) > 0.
We now let

ε = min{ε(L11), %ε′(L12)}. (26)

Finally, we invoke Lemma 10 for the value of ε in (26) to obtain

σ1 = σ1(L10) > 0. (27)

We claim that σ1 chosen above will do in Lemma 8. In the remainder of
this proof, we verify this claim.

For later convenience, let

ε′ =
ε

%
. (28)

Observe that, by the choice of ε′ in (28), Lemma 12 tells us that the family

B(Z,U∗,W ;σ0, λ, τ, ε
′;n, T, T ′) (29)

is ‘small’. In fact, we have already proved that, with this choice of ε′ ≤
ε′(L12), a.a.s. G(n, p) contains no rare amalgam with parameters σ0, λ, τ ,
and ε′ (see Claim 13).

We now proceed to prove that the value of σ1 given in (27) will do in
Lemma 8. To that end, suppose that we have a colouring E(G) = R∪B∪Y
of G = G(n, p) with no monochromatic triangles.

It follows easily from the Chernoff bound that a.a.s.

∆(G) ≤ 2c
√
n, (30)

and hence we shall assume that (30) holds for G. By Claim 13, we may also
suppose that G contains no rare amalgam with parameters σ0, λ, τ , and ε′.
Finally, we may suppose that G satisfies the almost sure properties given
in Lemmas 10 and 11. We shall now show that G must then contain the
required set U .

Since G satisfies the conclusion of Lemma 10, there is an amalgam J ⊆ G
as in the statement of that lemma. We follow the notation of Lemma 10, so
that, e.g., V (J) = Z ∪ U ∪W (see Figure 2 as well).

Clearly, we have |U | ≥ σ1n, and hence condition (i) in Lemma 8 holds.
Hence, the proof of Lemma 8 will be finished if we prove the following fact.

Fact 14. The graph I[U ] is (%, d)-dense.

Proof. Our proof strategy has already been unveiled just after the statement
of Lemma 11. Here we give all the details..

Let J0 = J [Z,U ] and J1 = J [U,W ]. Since G satisfies the conclusion of
Lemma 11, the graph Base(J0)[U ] = BU (J0) is (%, τ)-dense.
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We now claim that (Base(J0)∩Base(J1))[U ] = BU (J0)∩BU (J1) is (%, d)-
dense. Note that, then, I[U ] must be (%, d)-dense, because

I[U ] = (Base(R) ∩ Base(B))[U ]

⊇ (Base(J0) ∩ Base(J1))[U ] = BU (J0) ∩BU (J1).

Suppose for a contradiction that BU (J0) ∩ BU (J1) is not (%, d)-dense, and
let U∗ ⊆ U be a witness to this fact, that is, suppose that

|U∗| ≥ %|U | (31)

and

|(BU (J0) ∩BU (J1)) ∩ [U∗]2| < d

(
|U∗|

2

)
. (32)

We let H be the subgraph of J induced by Z ∪ U∗ ∪W . Also, let H0 =
H[Z,U∗] and H1 = H[U∗,W ], and let T ′ = |E(H0)| and T = |E(H1)|.

Since (Z,U) and (U,W ) are (p, λ;J, ε)-semi-regular, by the choice of ε′

(see (28)) and (31), we have that (Z,U∗) and (U∗,W ) are (p, λ;H, ε′)-semi-
regular.

We already know that BU (J0) is (%, τ)-dense, so that

|BU∗(H0)| = |BU (J0) ∩ [U∗]2| ≥ τ
(
|U∗|

2

)
. (33)

However, we may deduce from (32) that

|BU∗(H0) ∩BU∗(H1)| = |(BU (J0) ∩BU (J1)) ∩ [U∗]2| < d

(
|U∗|

2

)
.

The crucial observation now is that the graph H is a rare amalgam with
parameters σ0, λ, τ , and ε′. Indeed, it only remains to check (10) and (11).
Both are clear: we have |U∗| = %|U | ≥ %σ1n� n/ log n, and hence (10) does
hold. Inequality (11) follows trivially, as ∆(H) ≤ ∆(G) ≤ 2c

√
n (see (30)).

We have reached a contradiction, for we supposed that G contains no
rare amalgam with the parameters above. This contradiction completes the
proof of Fact 14. �

As observed before, Fact 14 completes the proof of Lemma 8.

Comments on the proof of Lemma 2. We observed in the beginning of Sec-
tion 4 that we would come close to proving Lemma 2. We may now expand
on this remark a little (we shall be sketchy).

Suppose p = c/
√
n, where c > 0 is an arbitrary constant, and con-

sider G = G(n, p). Furthermore, suppose F ⊆ E(G) has cardinality at
least λ|E(G)| for some fixed λ > 0. We wish to show that Base(F ) con-
tains cn3 triangles, for some constant c > 0.

Recall that Lemma 10 asserts the existence of a certain substructure in
a G(n, p) (an ‘amalgam’ of two bipartite graphs) whose edges have been
properly 3 coloured (see Figure 2). In the case in which we have a subset
of edges F of G = G(n, p) as above, one may prove the existence, within F ,



RAMSEY GAMES & ONE-ARMED BANDITS 19

of the ‘upper half’ of the amalgam in Figure 2. In fact, using the notation
introduced immediately after the statement of Lemma 10, one may prove
the existence of the graph J0. (The proof is roughly speaking ‘contained’ in
the proof of Lemma 10.)

With a suitable graph J0 at hand, one may apply Lemma 11, and deduce
that Base(F ) contains a (%, d)-dense, induced subgraph with at least σn
vertices, where %, d, and σ are certain positive constants. It now follows
from Lemma 9 that Base(F ) must contain cn3 triangles, for some constant c,
as required in Lemma 2.

4.3. Proof of the auxiliary lemmas. The three auxiliary lemmas stated
in Section 4.1 are proved in the first three subsections of this section. How-
ever, the hardest of the lemmas to prove, Lemma 12, will be deduced from
a new auxiliary lemma (Lemma 23), which is proved in the last subsection
of this section.

4.3.1. Proof of Lemma 10. We start with two basic lemmas.

Lemma 15. Let G be a graph on k ≥ 1 vertices and at least γ
(
k
2

)
edges,

where 0 < γ ≤ 1. Then there is a set of vertices Y ⊆ V (G) with

|Y | ≥ 1
2
γk + 1 (34)

and so that the graph G[Y ] induced by Y in G has minimum degree

δ(G[Y ]) ≥ 1
2
γk. (35)

In particular, the number of vertices of degree at least γk/2 in G is at
least γk/2 + 1.

Proof. The result holds if k ≤ 2/γ, and hence we suppose k > 2/γ. Pick a
subset Y ⊆ V (G) with |Y | ≥ 2 that maximizes the ratio |E(G[Y ])|/(|Y |−1).
Put ` = |E(G[Y ])| and y = |Y |. By the choice of Y , we have

`

y − 1
≥ γ

k − 1

(
k

2

)
=

1
2
γk. (36)

This implies that ` ≥ (γ/2)k > 1, and hence y > 2. Let v be a vertex in Y ,
and write d for its degree in G[Y ]. Then, by the choice of Y , considering
the subgraph G[Y \ {y}] (recall |Y | = y > 2 and hence |Y \ {y}| ≥ 2), we
see that

`

y − 1
≥ |E(G[Y \ {y}])|

y − 2
=
`− d
y − 2

.

This implies that d ≥ `/(y − 1) ≥ γk/2 (recall (36)). Therefore, (35) holds.
Clearly, inequality (35) implies (34). �

Lemma 16. Suppose k ≥ 1 and

E(Kk) = R ∪B ∪ Y ∪ S (37)
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is a colouring of the edges of the complete graph Kk with colours red, blue,
yellow, and sienna, with

|R|, |B| ≥ γ
(
k

2

)
and

|S| ≤ 1
8
γ2

(
k

2

)
. (38)

Then there is a vertex x in Kk and distinct colours C1, C2 ∈ {R,B, Y } such
that x is incident to at least γk/8 edges of colour C1 and at least γk/8 edges
of colour C2.

Proof. For a colour C and vertex x, let d(C, x) be the number of edges of
colour C incident to x in our colouring (37). For C = R and B, let

UC =
{
u ∈ V (Kk) : d(C, x) ≥ 1

2
γk

}
. (39)

By Lemma 15, we have |UR|, |UB| ≥ γk/2 + 1 ≥ γk/2. Clearly, we are done
if UR∩UB 6= ∅. Hence we suppose that UR∩UB = ∅. Consider the |UR||UB|
edges in E(UR, UB) = EKk(UR, UB). There is a colour C ∈ {R,B, Y } for
which we have

|E(UR, UB) ∩ C| ≥ 1
3

(|UR||UB| − |T |) .

Without loss of generality, we may assume that C 6= R. By averaging, we
may deduce that there is a vertex x ∈ UR for which we have

d(C, x) ≥ |E(UR, UB) ∩ C|
|UR|

≥ 1
3

(
|UB| −

|T |
|UR|

)
≥ 1

3

(
1
2
γk − (1/16)γ2k2

γk/2

)
=

1
8
γk,

and we are again done: x is incident to at least γk/2 ≥ γk/8 edges of
colour R and to at least γk/8 edges of colour C 6= R. �

We now recall Szemerédi’s well-known regularity lemma [23] (see also [12,
Section 8.3]). Since we are dealing with sparse graphs (that is, graphs with
a subquadratic number of edges), we shall make use of a suitable variant.
We need to introduce some definitions.

A graph H is called (p; b, β)-bounded if for all pairs of disjoint subsets
U , V ⊆ V (H) with |U |, |V | > β|V (H)| we have eH(U, V ) ≤ bp|U ||V |. A
pair U , V ⊆ V (H), U ∩ V = ∅, is called (p;H, ε)-regular if for all U ′ ⊆ U
and V ′ ⊆ V , with |U ′| ≥ ε|U | and |V ′| ≥ ε|V |, we have∣∣∣∣eH(U ′, V ′)

p|U ′||V ′|
− eH(U, V )

p|U ||V |

∣∣∣∣ ≤ ε.
Observe that we have been dealing with a ‘one-sided’ version of regularity,
namely, ‘semi-regularity’. Note that, clearly, if a pair is (p;H, ε)-regular,
then it is also (p, λ;H, ε)-semi-regular for λ = eH(U, V )/p|U ||V | − ε.
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When dealing with regular pairs, the following simple observation is often
useful.

Lemma 17. If (U, V ) is (p, λ;H, ε)-semi-regular and W ⊆ V satisfies |W | ≥
ε|V |, then more than (1 − ε)|U | vertices of U have each at least λp|W |
neighbours in W .

Let |V (H)| = n. A partition V (H) = V1 ∪ · · · ∪ Vk is (p;H, ε, k)-regular
if all but at most ε

(
k
2

)
pairs (Vi, Vj) are (p;H, ε)-regular, and, for all i =

1, . . . , k, bn/kc ≤ |Vi| ≤ dn/ke. The following sparse version of Szemerédi’s
regularity lemma will be important in what follows (for general discussions
on this lemma, see, e.g., [12, 15, 16]).

Lemma 18. For all ε > 0, b ≥ 1, and all integers m and r ≥ 1, there
exist β > 0 and K ≥ m for which the following holds. For all p and all r-
tuples of (p; b, β)-bounded graphs (H1, . . . ,Hr), with all the Hi on the same
vertex set V with |V | ≥ m, there exists a partition V = V1 ∪ · · · ∪ Vk of V
with m ≤ k ≤ K that is (p;Hi, ε, k)-regular for all 1 ≤ i ≤ r.

We are now ready to prove Lemma 10.

Proof of Lemma 10. Let ε > 0 be given. Since the smaller ε is, the stronger
is the conclusion in Lemma 10, we may suppose that

ε ≤ 1
30
. (40)

Put

δ = min
{
ε2,

1
102

λ,
1

2× 104
c4

}
and m =

16
3λ2

. (41)

Let
β = β(δ,m) and K = K(δ,m) (42)

be the constants given by Lemma 18, for the constants ε = δ, b = 2, m,
and r = 3 as above. We now let

σ1 =
1

K(δ,m)
, (43)

and claim that this choice for σ1 will do. We now proceed to prove this
claim. Thus, let the graph G and the edge-colouring E(G) = R ∪B ∪ Y be
as in the statement of Lemma 10.

The number of triangles inG is a.a.s. (1/6+o(1))(np)3 = (1/6+o(1))c3n3/2.
Also, the expected number of edges e = {a, b} together with two further ver-
tices x and y (x 6= y) with x, y ∈ N(G; a) ∩N(G; b) (that is, the number of
diamonds) is (

n

2

)(
n− 2

2

)
p5 ∼

(
1
4

+ o(1)
)
c5n3/2.

Standard variance calculations show that, by Chebyshev’s inequality, the
number of diamonds as above is a.a.s. (1/4 + o(1))c5n3/2. Therefore, the
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number of triangles in G that are ‘solitary’, that is, that share no edge with
any other triangle, is a.a.s.

1
6
c3n3/2 − 1

4
c5n3/2 ≥ 1

7
c3n3/2,

where we used that c ≤ 1/5. We may hence suppose that G contains at
least c3n3/2/7 solitary triangles.

By adjusting the notation, we may suppose that

|R| ≥ |B| ≥ |Y |.

Since we are supposing that the colouring (5) contains no monochromatic
triangle, we may deduce that |B ∪ Y | ≥ c3n3/2/7; indeed, each solitary
triangle must contain either a blue edge or a yellow edge, for otherwise it
would be entirely red. In particular, we have

|R|, |B| ≥ 1
14
c3n3/2. (44)

By Chernoff’s inequality, we may also suppose that, for each pair U ,
W ⊆ V (G) with U ∩W = ∅ and |U |, |W | ≥ n/ log n, we have

1
2
|U ||W |p ≤ eG(U,W ) = |EG(U,W )| ≤ 2|U ||W |p, (45)

and
eG(U) = |E(G[U ])| ≤ |U |2p. (46)

Moreover, we may suppose thatG and all its subgraphs are (p; 2, β)-bounded.
Let us now apply Lemma 18 to obtain a partition V (G) = V1 ∪ · · · ∪ Vk

of V (G) with m ≤ k ≤ K that is (p;F, δ, k)-regular for F = R, F = B,
and F = Y . We now state and prove a claim that will be used in what
follows.

Claim 19. Suppose F ⊆ E(G) is a subset of edges of G = G(n, p), with |F | ≥
λcn3/2. Let V1, . . . , Vk be a (p;F, δ, k)-regular partition of V (G), where m ≤
k ≤ K. Suppose for simplicity that |V1| = · · · = |Vk|. Let Φ be the set of
pairs {i, j} (1 ≤ i < j ≤ k) for which (Vi, Vj) is (p;F, δ)-regular and

eF (Vi, Vj) ≥
1
2
λp
(n
k

)2
. (47)

Then

|Φ| ≥ 5
8
λ

(
k

2

)
. (48)

Proof. Let ` = x
(
k
2

)
= |Φ| and recall that we are assuming that |Vi| = n/k

(1 ≤ i ≤ k). Using that G satisfies (45) and (46) for all ‘large’ U and W ⊆
V (G), we deduce that

λcn3/2 ≤ |F | ≤ 2`
(n
k

)2
p+

((
k

2

)
− `
)
λp

2

(n
k

)2
+ k

(n
k

)2
p,
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and so
λ ≤ x+

1
4

(1− x)λ+
1
k
.

Solving the last inequality for x, we obtain x ≥ 3λ/4, because 1/k ≤ 1/m =
3λ2/16. Hence, at least

3
4
λ

(
k

2

)
− δ
(
k

2

)
≥ 5

8
λ

(
k

2

)
pairs (Vi, Vj) are (p;F, δ)-regular, each satisfying (47); that is, the set Φ
satisfies (48), as required. �

For F = R, B, and Y , let ΦF be the set of pairs {i, j} (1 ≤ i < j ≤ k)
such that (Vi, Vj) is (p;F, δ)-regular and

eF (Vi, Vj) ≥
1
2

(
1
14
c2

)
p
(n
k

)2
=

1
28
c2p
(n
k

)2
. (49)

We apply Claim 19 with F = R and B and λ = c2/14 (see (44)). That claim
tells us that

|ΦR|, |ΦB| ≥
1
25
c2

(
k

2

)
. (50)

Since
3× 1

28
c2p
(n
k

)2
≤ 1

2
p
(n
k

)2
,

the fact that (45) holds for all ‘large’ U and W ⊆ V (G) implies that if a
pair {i, j} (1 ≤ i < j ≤ k) is not a member of ΦR ∪ ΦB ∪ ΦY , then (Vi, Vj)
is not (p;F, δ)-regular for some F ∈ {R,B, Y }. Put

ΦS = [k]2 \ (ΦR ∪ ΦB ∪ ΦY ).

The observations above, the fact that V1, . . . , Vk is a (p;F, δ, k)-regular par-
tition of V (G) for F ∈ {R,B, Y }, and our choice of δ (see (41)) imply that

|ΦS | ≤ 3δ
(
k

2

)
≤ 3

2× 104
c4

(
k

2

)
<

1
8

(
1
25
c2

)2(k
2

)
. (51)

We now apply Lemma 16 to the following colouring of the edges of the
complete graph Kk on [k] = {1, . . . , k}:

E(Kk) = ΦR ∪ ΦB ∪ ΦY ∪ ΦS .

In view of (50) and (51), we may apply Lemma 16 with γ = c2/25. We then
obtain i0 ∈ [k] = V (Kk) and two disjoint sets J ′C ⊆ [k] (C = R and B, say)
with

|J ′C | ≥
1
8

(
1
25
c2

)
k =

1
200

c2k, (52)

such that, for all j ∈ J ′C , we have that

(Vi0 , Vj) is (p;C, δ)-regular (53)

and
eC(Vi0 , Vj) ≥

1
28
c2p
(n
k

)2
. (54)
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We let JC ⊆ J ′C (C = R and B) be an arbitrary subset of J ′C with |JC | =
(c2/200)k. Moreover, let

U = Vi0 , Z =
⋃
j∈JR

Vj , and W =
⋃
j∈JB

Vj ,

and let
J = R[Z,U ] ∪B[U,W ]. (55)

Claim 20. We claim that J , Z, U , and W satisfy (i), (ii), and (iii) of
Lemma 10.

Proof. We start by noticing that

|Z| = |W | = 1
200

c2k × n

k
=

1
200

c2n = σ0n.

Moreover,
|U | = n

k
≥ n

K(δ,m)
= σ1n.

Property (ii) asserted in Lemma 10 is clear from the definition of J (see (55)).
We are now left with proving (iii), that is, that (Z,U) and (U,W ) are
(p, λ;J, ε)-semi-regular. We deal with (Z,U), as the other case is analogous.

Let U ′ ⊆ U and Z ′ ⊆ Z be such that |U ′| ≥ ε|U | and |Z ′| ≥ ε|Z|. We
have to show that

eJ(U ′, Z ′)
p|U ′||Z ′|

≥ 1
30
c2 = λ. (56)

Put Z ′j = Z ′ ∩ Vj (j ∈ JR). Clearly, we have eJ(U ′, Z ′) =
∑

j∈JR eJ(U ′, Z ′j).
Therefore, we have

eJ(U ′, Z ′)
p|U ′||Z ′|

=
∑
j∈JR

eJ(U ′, Z ′j)
p|U ′||Z ′j |

×
|U ′||Z ′j |
|U ′||Z ′|

=

( ∑
j∈J ′R

+
∑
j∈J ′′R

)
eJ(U ′, Z ′j)
p|U ′||Z ′j |

×
|Z ′j |
|Z ′|

, (57)

where J ′R = {j ∈ JR : |Z ′j |/|Vj | < δ}, and J ′′R = JR \J ′R. We now claim that∑
j∈J ′′R

|Z ′j |
|Z ′|
≥ 1− ε. (58)

Indeed, ∑
j∈J ′R

|Z ′j | ≤ δ
∑
j∈J ′R

|Vj | ≤ δ|Z|.

Moreover, |Z ′| ≥ ε|Z|, and hence∑
j∈J ′R

|Z ′j | ≤ δ
(

1
ε
|Z ′|
)
≤ ε|Z ′|, (59)

as δ ≤ ε2 (see (41)). It follows from (59) that (58) does indeed hold.



RAMSEY GAMES & ONE-ARMED BANDITS 25

We now go back to (57). Clearly, the right-hand side of (57) is, by (53),
(54), and (58), at least∑

j∈J ′′R

eJ(U ′, Z ′j)
p|U ′||Z ′j |

×
|Z ′j |
|Z ′|
≥
(

1
28
c2 − δ

) ∑
j∈J ′′R

|Z ′j |
|Z ′|

≥
(

1
28
c2 − δ

)
(1− ε) ≥ 1

30
c2.

We have thus concluded that (56) does indeed hold, as required. This
concludes the proof that (Z,U) is (p, λ;J, ε)-semi-regular, and the proof
of Claim 20 is complete. �

Claim 20 completes the proof of Lemma 10. �

4.3.2. Proof of Lemma 11. We start by stating the following upper tail es-
timate from [21]. We give this result in a very general form. Given a finite
set Γ and 0 < p < 1, we denote by Γp a random binomial subset of Γ. Note
that ([n]2)p is nothing else but the random graph G(n, p). Let S ⊆ [Γ]s and
set µ = E|{S ∈ S : S ⊆ Γp}|.

Lemma 21. For all q and t > 0, with probability at least

1− exp
{
− qt

s(µ+ t)

}
there is E0 ⊆ Γp with |E0| = q such that Γp \ E0 contains fewer than µ + t
sets from S.

The above lemma implies the following result.

Corollary 22. For every c > 0, a.a.s., for each pair U , W ⊆ [n] with
U∩W = ∅, there exists E0 = E0(U,W ) ⊆ E(G(n, c/

√
n)) with |E0| = n log n

such that the bipartite subgraph of G(n, c/
√
n) \ E0 spanned between the

sets U and W contains no more than

2
(
|U |
2

)(
|W |

2

)
c4

n2

copies of the 4-cycle C4.

Proof. Apply Lemma 21 to Γ = U ×W and S, the family of the edge sets
of all 4-cycles in Γ, with s = 4, p = c/

√
n, q = n log n, and

t = µ =
(
|U |
2

)(
|W |

2

)
c4

n2
.

We omit the easy calculations. �

For more about upper tail estimates, see [14], and for further develop-
ments of the above deletion technique, see [13].

We are now ready to plunge into the proof of Lemma 11.
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Proof of Lemma 11. Let σ0, λ, and % be given. We claim that ε = min{1/18, %}
will do. Let U ′ ⊆ U be an arbitrary subset of U with

|U ′| = %|U | ≥ ε|U |.

We shall show that BU (J0) induces at least d′
(|U ′|

2

)
edges within U ′ (see (6)),

and this will prove Lemma 11.
We first observe that, by the (p, λ;J0, ε)-semi-regularity of (Z,U), at

least (1 − ε)|Z| = (1 − ε)σ0n vertices in Z send at least λp|U ′| = λp%|U |
edges into U ′.

By Corollary 22, we may suppose that we may drop a set of edges E0

from J0, with |E0| ≤ n log n, so as to guarantee that the number of 4-cycles
left within Z ∪ U ′ is at most(

|Z|
2

)(
|U ′|
2

)
c4

n2
≤ 1

2
c4σ2

0%
2u2, (60)

where u = |U |. In what follows, we work with the graph J ′0 = J0 \E0. Note
that the number of vertices in Z that are incident to at least n1/3 log n edges
in E0 is at most n2/3. Therefore, for large enough n, at least (1−3ε/2)|Z| =
(1− 3ε/2)σ0n vertices in Z send at least (3/4)λp%u edges into U ′ in J ′0.

Suppose the
(|U ′|

2

)
pairs within U ′ are e1, . . . , e(|U′|2 ). Let xi be the number

of vertices in Z that send edges to both endvertices of ei in J ′0 for all 1 ≤ i ≤(|U ′|
2

)
. Clearly, the graph BU (J ′0) ⊆ BU (J0) induces as many edges within U ′

as there are indices i for which xi > 0. Adjust the notation so that xi > 0
for 1 ≤ i ≤ N and xi = 0 for i > N . It will suffice to show that

N ≥ d′
(
|U ′|
2

)
. (61)

For large enough n, we have

∑
1≤i≤N

xi =
∑
z∈Z

(
degJ ′0(z)

2

)

≥ 1
2

(1− 2ε)σ0n

(
3
4

)2

λ2p2%2u2 ≥ 1
4
λ2c2σ0%

2u2. (62)

Let us now observe that the number of C4 in J ′0[Z,U ′] is∑
1≤i≤N

(
xi
2

)
.

By (60), we have that ∑
1≤i≤N

(
xi
2

)
≤ 1

2
c4σ2

0%
2u2. (63)
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On the other hand, by the Cauchy–Schwarz inequality, we have that∑
1≤i≤N

(
xi
2

)
≥ N

(
N−1

∑
1≤i≤N xi
2

)

=
1
2

( ∑
1≤i≤N

xi

)(
1
N

∑
1≤i≤N

xi − 1

)
. (64)

We now analyse two cases. Suppose first that
∑

1≤i≤N xi ≤ 2N . Then,
by (62), we have

N ≥ 1
2

∑
1≤i≤N

xi ≥
1
8
λ2c2σ0%

2u2 ≥ 1
4
λ2c2σ0

(
|U ′|
2

)
. (65)

Suppose now that, on the contrary, we have
∑

1≤i≤N xi > 2N . Then, by (62)
and (64), we have∑

1≤i≤N

(
xi
2

)
≥ 1

4N

( ∑
1≤i≤N

xi

)2

≥ 1
64N

λ4c4σ2
0%

4u4. (66)

Comparing (63) and (66), we deduce that
1

64N
λ4c4σ2

0%
4u4 ≤ 1

2
c4σ2

0%
2u2,

whence

N ≥ 1
32
λ4%2u2 ≥ 1

16
λ4

(
|U ′|
2

)
. (67)

Lemma 11 follows from (65) and (67). �

4.3.3. Proof of Lemma 12. In order to prove Lemma 12, we shall make use of
a further auxiliary lemma, Lemma 23 below. Let us introduce some notation
to state this lemma.

Let U∗ and W be two disjoint sets of vertices. Suppose F ⊆ [U∗]2 is a
collection of pairs of vertices in U∗. For convenience, we shall often refer to
the graph with vertex set U∗ and edge set F as F as well. Suppose now
that we have constants

σ0, λ, τ , and ε′ > 0
and integers

n and T .

Suppose further that
(i) |W | = σ0n and u∗ = |U∗| ≥ n/ log n,

(ii) |F | = τ
(|U∗|

2

)
= τ

(
u∗

2

)
.

We now let
B(U∗,W ;F ;σ0, λ, τ, ε

′;n, T ) (68)
be the family of bipartite graphs H = (U∗,W ;E) satisfying the following
conditions:
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(i) |E| = T and ∆(H) = max{degH(x) : x ∈ V (H)} ≤ 2c
√
n,

(ii) (U∗,W ) is (p, λ;H, ε′)-semi-regular, and
(iii) we have

|F ∩BU∗(H)| < 1
800

λ2σ0c
2τ |F |. (69)

We are finally ready to state our auxiliary lemma, the formulation of
which is based on the notation and definitions introduced above.

Lemma 23. Let any positive constants σ0, λ, τ , and α ≤ 1 be given. Then
there exist constants ε′ > 0 and n0 such that, with the notation as above,
for all n ≥ n0 and all T , we have

|B(U∗,W ;F ;σ0, λ, τ, ε
′;n, T )| ≤ αT

(
|U∗||W |

T

)
.

As observed immediately after its statement, Lemma 12 may be thought of
as an assertion concerning the uniform space of certain amalgams. Lemma 23
is a statement concerning the uniform space of the bipartite graphs with ver-
tex classes U∗ and W . Indeed, this lemma asserts that a random element of
this space is extremely unlikely to be member of the family in (68).

The proof of Lemma 23 is postponed to Section 4.3.4. We shall now see
that Lemma 12 follows from Lemma 23 almost immediately.

Proof of Lemma 12. Let σ0, λ, τ , and α as in the statement of Lemma 12 be
given. We feed these constants to Lemma 23, and obtain a constant ε′ > 0;
we claim that this ε′ will do in Lemma 12. We prove this claim as follows.

For any graph

H ∈ B1 = B(Z,U∗,W ;σ0, λ, τ, ε
′;n, T, T ′), (70)

we let H0 = H[Z,U∗] and H1 = H[U∗,W ]. We may count the graphs as
in (70) by estimating the number of H0 that we have, and, for each fixed H0,
estimating the number of H1 that we may ‘put together with H0’ to form a
graph H in B1.

We estimate the number of graphs H0 trivially, by saying that there are
at most (

|Z||U∗|
T ′

)
(71)

such graphs. Let us now fix a graph H0 = (Z,U∗;E0) satisfying the condi-
tions (i)–(iv) in the definition of the family B1. Moreover, let

F ⊆ BU∗(H0)

with |F | = τ
(|U∗|

2

)
be fixed. We now make the following claim.

Claim 24. If H1 = (U∗,W ;E1) is so that H = H0 ∪H1 is a member of B1,
then

H1 ∈ B0 = B(U∗,W ;F ;σ0, λ, τ, ε
′;n, T ). (72)
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Proof. We have |W | = σ0n and |F | = τ
(|U∗|

2

)
. Conditions (i) and (ii) in

the definition of B0 clearly hold for H1. To check condition (iii), we observe
that, in view of (9), we have

|F ∩BU∗(H1)| ≤ |BU∗(H0) ∩BU∗(H1)|

<
1

800
λ2σ0c

2τ2

(
|U∗|

2

)
=

1
800

λ2σ0c
2τ |F |.

Therefore (69) holds and so does condition (iii) in the definition of B0. We
conclude that (72) holds. �

It now suffices to put together the bound in (71), Lemma 23, and Claim 24
to deduce that the number of graphs H as in (70) is at most

αT
(
|Z||U∗|
T ′

)(
|W ||U∗|

T

)
,

as required. �

4.3.4. Proof of Lemma 23. In this somewhat long section, we shall prove
Lemma 23, the crucial lemma in the proof of Lemma 12. We warn the reader
that this will be a fairly technical proof. The basic underlying idea in this
proof comes from a lemma in [17, Lemma 11] (see also [12, Lemma 8.30]).

We start by letting arbitrary positive constants σ0, λ, τ , and α as in the
statement of Lemma 23 be given. To prove Lemma 23, we need to define an
appropriate constant ε′ > 0. Put

α0 =
1
2
α48/λτσ0 , (73)

ε∗∗ = min
{

1
2
τ exp

{
− 1

18
λ2c2σ0

}
,
1
4
α2

0e
−8c2/σ0

}
, (74)

and let
ε′ =

1
2
τε∗∗. (75)

We claim that this choice for ε′ will do in Lemma 23. Our task for the
remainder of this section is to justify this claim.

For later reference, we observe that the following inequalities hold:

ε∗∗ = 2
ε′

τ
≤ 1

2
, (76)

ε∗∗ ≤ 1
2
τ exp

{
− 1

18
λ2c2σ0

}
, (77)

2e4c2/σ0
√
ε∗∗ ≤ α0, (78)

and
(2α0)λτσ0/48 ≤ α. (79)

Recall that we wish to estimate the number of bipartite graphs H =
(U∗,W ;E) in

B0 = B(U∗,W ;F ;σ0, λ, τ, ε
′;n, T ).
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In order to obtain this estimate, let us make the following observation about
the graphs H ∈ B0.

Lemma 25. Suppose H ∈ B0. Then H contains two edge-disjoint sub-
graphs H0 = (U∗,W ;E0) and H1 = (U∗,W ;E1) such that

H = H0 ∪H1, (80)

and so that the pair (U∗,W ) is (p, λ/3;Hi, ε
′)-semi-regular for both i = 0

and i = 1. Moreover, we have |E(H0)| = |E(H1)| = T/2.

Proof. It suffices to use the ‘probabilistic method’, taking a random parti-
tion. The result follows from standard exponential estimates for the tail of
the hypergeometric distribution. We omit the details. �

For each graph H ∈ B0, we fix a decomposition as in (80). We shall now
invoke Lemma 15, which tells us that, roughly speaking, any dense graph
contains a large subgraph with large minimum degree. We explicitly state
the result of an application of Lemma 15 to F as a fact.

Fact 26. There exists a set U∗∗ ⊆ U∗ for which we have
(i) δ(F [U∗∗]) ≥ τu∗/2, that is, the minimum degree of the graph F [U∗∗]

induced by U∗∗ in F is at least τu∗/2,
(ii) u∗∗ = |U∗∗| ≥ τu∗/2 + 1.

Proof. This follows immediately from Lemma 15 applied to the graph F . �

For the remainder of our proof, we fix U∗∗ as in Fact 26. The following
observation is clear.

Fact 27. Let H∗∗i = Hi[U∗∗,W ] (i ∈ {0, 1}) be the subgraph of Hi induced
by U∗∗ ∪W . Recall ε∗∗ = 2ε′/τ . Then (U∗∗,W ) is (p, λ/3;H∗∗i , ε

∗∗)-semi-
regular for both i = 0 and i = 1.

Proof. It suffices to recall that |U∗∗| ≥ τu∗/2 and that the pair (U∗,W ) is
(p, λ/3;Hi, ε

′)-semi-regular (i ∈ {0, 1}). �

Recall that if J is a graph and x is a vertex of J , then we write

N(J ;x) = NJ(x)

for the neighbourhood of x in J .

Remark 28. We observe thatN(H∗∗i ; v) = N(Hi; v) for any v ∈ U∗∗ and i ∈
{0, 1}. Also, clearly, we have N(H∗∗i ;w) ⊆ N(Hi;w) for any w ∈W and i ∈
{0, 1}.

We now need to fix some notation. We let

U∗∗ = {vi : 1 ≤ i ≤ u∗∗ = |U∗∗|}. (81)

Moreover, we let
Fi = N(F ; vi) ∩ U∗∗ ⊆ U∗∗ (82)
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be the neighbourhood of vi in the graph F [U∗∗]. Because of our choice of U∗∗

in Fact 26, we have

|Fi| ≥ δ(F [U∗∗]) ≥ f =
1
2
τu∗ (83)

for all 1 ≤ i ≤ u∗∗.
We now define a concept that will be important in the proof that follows.

Let sets F ∗ ⊆ U∗∗ and W0 ⊆W be given. We put

F̃ ∗ = F ∗ \
⋃

w∈W0

N(H0;w). (84)

We shall say that W0 is bad with respect to F ∗ if

|F̃ ∗| ≥ |F ∗| exp
{
− 1

18
λ2c2σ0

}
. (85)

Roughly speaking, W0 is bad with respect to F ∗ if the H0-neighbourhood
of W0 ‘bites out’ too little from F ∗. (We remark in passing that we shall
be applying this definition for ‘large’ sets W0, namely, sets W0 with |W0| ≥
λp|W |/3.)

Next, we let di (1 ≤ i ≤ u∗∗) be the degree of vi in the graph H∗∗1 =
H1[U∗∗,W ], or, equivalently, inH1. Recalling that (U∗∗,W ) is (p, λ/3;H∗∗1 , ε∗∗)-
semi-regular and that

ε∗∗ ≤ 1
2

(cf. (76)), we may suppose that
1
3
λp|W | ≤ di ≤ 2c

√
n for all 1 ≤ i ≤ u∗∗/2 (86)

(recall that ∆(H) ≤ 2c
√
n). It will be convenient to set

W (i) = N(H∗∗1 ; vi) = N(H1; vi) = {w(i)
1 , . . . , w

(i)
di
} (87)

for all 1 ≤ i ≤ u∗∗/2. We shall say that vi (1 ≤ i ≤ u∗∗/2) is bad if W (i) is
bad with respect to Fi = N(F ; vi) ∩ U∗∗.

Proof strategy, main claims, and the proof. We now briefly discuss what we
are aiming at. Recall that we are considering

H ∈ B0 = B(U∗,W ;F ;σ0, λ, τ, ε
′;n, T ). (88)

We shall use the fact that Base(H) does not contain too many edges from F .
Explicitly, we shall use that not too many edges {a, b} ∈ F are such that
there is a vertex w ∈W with both {a,w} and {w, b} edges in H (see (69)).
Note that if w ∈ N(H∗∗1 ; a) and b ∈ N(H∗∗0 ;w), then {a, b} belongs to Base(H) =
Base(H0 ∪H1). The neighbourhood W0 = N(H∗∗1 ; a) = N(H1; a) of a in H1

is bad with respect to F ∗ if

F̃ ∗ = F ∗ \
⋃

w∈W0

N(H0;w).
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is large or, equivalently, the neighbourhood

F ∗ ∩
⋃

w∈W0

N(H0;w)

of W0 within F ∗ = N(F ; a) ∩ U∗∗ in H0 is small. The vertex a is bad if its
neighbourhood W0 is bad. Roughly speaking, these definitions make it so
that a is bad if too few edges from F incident to a belong to Base(H).

Since globally H is such that only a small number of edges from F belong
to Base(H), it must be that many vertices a are incident to too few edges
from F ∩ Base(H), and hence there are many bad vertices a.

We shall estimate from above the number of graphs H as in (88) by
proving that, if H0 is fixed, then the great majority of sets W0 ⊆ W are
good, and hence it is very atypical for a vertex a ∈ U∗∗ to be bad. However,
since many vertices a must be bad in H, this will tell us that H∗∗1 must be
quite a peculiar graph. This will imply a strong bound on the number of
graphs H∗∗1 . Summing over all choices for H0, we shall still have a strong
bound on the number of graphs H as in (88).

The following two claims make precise the ideas sketched above. Recall
that H as in (88) is fixed, and our notation is so that (86) holds.

Claim 29. For all 1 ≤ i ≤ u∗∗/2, the number of subsets W0 of W with
cardinality di = |N(H1; vi)| that are bad with respect to Fi is at most

αdi0

(
|W |
di

)
. (89)

Claim 30. More than u∗∗/4 vertices vi with 1 ≤ i ≤ u∗∗/2 are bad.

We complete the proof of Lemma 23 assuming Claims 29 and 30 above.

Completion of the proof of Lemma 23. Suppose H as in (88) is given.
(a) In view of Lemma 25, we may decompose H as a union H0 ∪ H1,

where both Hi (i ∈ {0, 1}) are such that (U∗,W ) is (p, λ/3;Hi, ε
′)-

semi-regular, and |E(H0)| = |E(H1)| = T/2.
(b) In view of Facts 26 and 27, we know that there is a set U∗∗ ⊆

U∗ satisfying (i) and (ii) of Fact 26, and such that (U∗∗,W ) is
(p, λ/3;H∗∗i , ε

∗∗)-semi-regular for H∗∗i = Hi[U∗∗,W ] for both i ∈
{0, 1}.

Using (a) and (b) above, we may estimate the cardinality of

B0 = B(U∗,W ;F ;σ0, λ, τ, ε
′;n, T )

as follows. We ‘generate’ the members H ∈ B0 in steps, as outlined below.
(1) We first fix H0, as in (a).
(2) We then define U∗∗ using F (see Fact 26).
(3) We generate H1 in two stages:

(a) We first fix a partition T/2 = T ∗∗ + (T/2− T ∗∗) of the number
of edges T/2 that we want in our graph H1.
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(b) We then generate H∗∗1 = H1[U∗∗,W ] = (U∗∗,W ;E∗∗), with
|E∗∗| = T ∗∗.

(c) We finally generate H1 − E∗∗.
In order to estimate |B0| from above, we estimate the number of ways the
steps above may be carried out. (Note that we did not require that H0

and H1 above be disjoint. Since we are after an upper bound for |B0|, this
is justified.)

Let us focus on Step 3b in the procedure above. We start by fixing a degree
sequence d = {d(v) : v ∈ U∗∗} for the vertices in U∗∗ in the graph H∗∗1 . To
generate H∗∗, it suffices to pick a member of the product∏{

[W ]d(v) : v ∈ U∗∗
}
. (90)

We shall use Claims 29 and 30 to estimate how many members from (90)
are ‘valid’ choices (i.e., choices that correspond to graphs H∗∗1 that may be
completed to graphs H1 with H = H0 ∪H1 ∈ B0).

Fact 31. The number of elements of (90) that correspond to valid graphs H∗∗1

is at most

2u
∗∗
αD0
∏{(

|W |
d(v)

)
: v ∈ U∗∗

}
, (91)

where D = (1/12)λpu∗∗|W |.

Proof. The factor 2u
∗∗

takes care of all the possibilities for which vertices
in U∗∗ are bad. We ‘gain’ the factor αD in the estimate (91) because
Claim 30 tells us that at least u∗∗/4 vertices in U∗∗ are bad, and each
bad vertex v must have a neighbourhood that is chosen from at most

α
d(v)
0

(
|W |
d(v)

)
many possibilities (cf. (89) in Claim 29). Therefore we ‘gain’ a factor of∏

{αd(v)
0 : v is a bad vertex} ≤ αD0 ,

where D = (u∗∗/4)(λ/3)p|W | = (1/12)λpu∗∗|W | (cf. (86)), and Fact 31 is
proved. �

To estimate the quantity in (91), we observe that, because ∆(H) ≤ 2c
√
n,

we have T ≤ 2c
√
n|U∗| = 2cu∗

√
n. Moreover, we recall that u∗∗ ≥ τu∗/2,

p = c/
√
n, and |W | = σ0n, and hence we have

D

T
≥ (1/12)λpu∗∗|W |

2c
√
nu∗

≥ 1
48
λτσ0.

Therefore (91) is at most

2u
∗∗
α

(λτσ0/48)T
0

∏{(
|W |
d(v)

)
: v ∈ U∗∗

}
. (92)
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We now sum (92) over all choices for d = {d(v) : v ∈ U∗∗} and over all
choices for U∗∗ ⊆ U∗. Recalling that d is a partition of T ∗∗, we see that this
sum is at most

2u
∗+u∗∗α

(λτσ0/48)T
0

(
|W ||U∗∗|
T ∗∗

)
. (93)

We now sum (93) over all choices for T ∗∗ and over all choices for H1 − E∗∗
(see Step 3c). This gives us at most

2u
∗+u∗∗α

(λτσ0/48)T
0

(
|W ||U∗|

T

)
≤ 22u∗α

(λτσ0/48)T
0

(
|W ||U∗|

T

)
. (94)

Also (cf. (12) and (13)), we have

T ≥ λpu∗|W | = λcσ0u
∗√n� u∗ log u∗. (95)

Inequality (95) gives us that (94) is at most

(2α0)(λτσ0/48)T

(
|W ||U∗|

T

)
≤ αT

(
|W ||U∗|

T

)
, (96)

where the inequality above follows from (79). Lemma 23 follows from (96).
�

Proof of the claims. We are now left with proving Claims 29 and 30.

Proof of Claim 29. Fix 1 ≤ i ≤ u∗∗/2. For simplicity, put F ∗ = Fi =
N(F ; vi) ∩ U∗∗ and let d = di = |N(H1; vi)|. Let W0 ⊆ W be a d-element
subset of W and fix and ordering w1, . . . , wd of the elements of W0. We
define a sequence

F ∗ = F (0) ⊇ · · · ⊇ F (d) = F̃ ∗ = F ∗ \
⋃

w∈W0

N(H0;w) (97)

of decreasing subsets of W , putting

F (j) = F (j−1) \N(H0;wj) = F ∗ \
⋃

1≤k≤j
N(H0;wk), (98)

for all 1 ≤ j ≤ d. Let us call the ratio

|F (j)|/|F (j−1)| (99)

the shrinking factor at j (1 ≤ j ≤ d). Observe that this factor depends only
on the sequence w1, . . . , wj . Moreover, note that we like small shrinking
factors; if we have many indices j with small shrinking factors, then W0 is
likely to be a good set, because F̃ ∗ is likely to be a small set. We make this
remark precise in what follows.

Suppose W0 is a bad set with respect to F ∗ = Fi = N(F ; vi) ∩ U∗∗.

Fact 32. The number of indices j with shrinking factor less than 1− λp/3
at j is smaller than d/2.



RAMSEY GAMES & ONE-ARMED BANDITS 35

Proof. Suppose for a contradiction that we have at least d/2 indices j with
shrinking factor less than 1− λp/3. Then

|F̃ ∗| = |F (d)| < |F ∗|
(

1− 1
3
λp

)d/2
≤ |F ∗| exp

{
−1

6
λpd

}
. (100)

Recall that p = cn−1/2 and d = di ≥ (λ/3)p|W | = (λ/3)pσ0n (see (86)). We
may deduce from (100) that

|F̃ ∗| < |F ∗| exp
{
−1

6
λ2p2σ0n

}
= |F ∗| exp

{
− 1

18
λ2c2σ0

}
, (101)

contradicting the assumption that W0 is bad with respect to F ∗ (cf. (85)
and (101)). �

Let us now fix 1 ≤ j ≤ d. When is the shrinking factor at j poor? More
precisely, when is this shrinking factor at least 1− λp/3? This is the case if
and only if

|N(H0;wj) ∩ F (j−1)| ≤ 1
3
λp|F (j−1)|. (102)

We shall now argue that (102) is atypical; that is, if (102) holds, then wj is
an ‘atypical vertex’.

Since W0 is a bad set with respect to F ∗ = Fi and (77) and (83) hold, we
have

|F (j−1)| ≥ |F̃ ∗| ≥ |F ∗| exp
{
− 1

18
λ2c2σ0

}
≥ f exp

{
− 1

18
λ2c2σ0

}
≥
(

1
2
τ exp

{
− 1

18
λ2c2σ0

})
u∗ ≥ ε∗∗|U∗∗|. (103)

Recalling that (U∗∗,W ) is (p, λ/3;H∗∗0 , ε∗∗)-semi-regular, we see that (103)
implies that the number of vertices w ∈W with

|N(H0;w) ∩ F (j−1)| < 1
3
λp|F (j−1)|

is smaller than ε∗∗|W |. We have proved the following fact.

Fact 33. For every w1, . . . , wj−1 ∈W , there is a set W (j) ⊆W of cardinal-
ity less than ε∗∗|W | such that if the shrinking factor at j for the sequence

w1, . . . , wj−1, wj

is at least 1− λp/3, then wj ∈W (j).

Let W× ⊆ W d = W × · · · × W be the collection of ordered d-tuples
(w1, . . . , wd) that have at least d/2 indices j with poor shrinking factor,
that is, with shrinking factor at least 1− λp/3. Fact 33 implies that

|W×| ≤ 2d(ε∗∗)d/2|W |d. (104)

Now let W ⊆ [W ]d be the set of d-element subsets of W that are bad with
respect to F ∗. We wish to show that |W| satisfies (89).
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Fact 32 implies that, if W0 ∈ W, then any ordered d-tuple (w1, . . . , wd)
with W0 = {w1, . . . , wd} belongs to W× (that is, any ordering of a member
of W is in W×). This and (104) give that

d!|W| ≤ |W×| ≤ 2d(ε∗∗)d/2|W |d, (105)

and hence, using that d ≤ 2c
√
n (see (86)), for large enough n we have

|W| ≤ 2d(ε∗∗)d/2
|W |d

d!
≤ 2d(ε∗∗)d/2ed

2/|W |
(
|W |
d

)
≤ 2d(ε∗∗)d/2e4c2/σ0

(
|W |
d

)
≤ αd0

(
|W |
d

)
, (106)

where in the last inequality we used (78). Clearly, Claim 29 follows from (106).
�

Proof of Claim 30. Suppose for a contradiction that the number of ver-
tices vi (1 ≤ i ≤ u∗∗/2) that are bad is at most u∗∗/4. Therefore,

(*) the number of vertices vi (1 ≤ i ≤ u∗∗/2) that are not bad is at
least u∗∗/4.

Suppose vi is a vertex that is not bad, where 1 ≤ i ≤ u∗∗/2. This means
that W0 = N(H∗∗1 ; vi) = N(H1; vi) is not bad, that is, the neighbourhood

Fi ∩
⋃

w∈W0

N(H0;w)

of W0 within Fi = N(F ; vi) ∩ U∗∗ in H0 has cardinality greater than(
1− exp

{
− 1

18
λ2c2σ0

})
|Fi| ≥

1
50
λ2c2σ0f, (107)

where we used that |Fi| ≥ f and that x = (1/18)λ2c2σ0 ≤ 1/2, and hence
1− e−x ≥ x/2, say. However, this means that vi contributes to F ∩BU∗(H)
at least as many pairs as in (107) (with some pairs counted twice, when we
consider all the vertices vi). Recalling (*) and Fact 26(ii), we see that

|F ∩BU∗(H)| ≥ 1
4
u∗∗ × 1

2

(
1
50
λ2c2σ0f

)
≥ 1

400
× 1

2
τu∗ × λ2c2σ0f =

1
800

λ2c2σ0τu
∗f. (108)

Recall now that f = τu∗/2; we may then deduce from (108) that

|F ∩BU∗(H)| ≥ 1
1600

λ2c2σ0τ
2(u∗)2

≥ 1
800

λ2c2σ0τ
2

(
u∗

2

)
=

1
800

λ2c2σ0τ |F |. (109)

Note that (109) is in contradiction to the fact that H ∈ B0 (see (69)
and (88)). We conclude that (*) must fail, and hence that the number
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of vertices vi (1 ≤ i ≤ u∗∗/2) that are bad exceeds u∗∗/4. Claim 30 is
proved. �

5. Concluding remarks

We close by mentioning a few remarks and open problems.

The online game for more colours. We hope to address the online game
when the Painter has r > 2 colours in the near future.

General graphs. It would be most interesting to generalize our results for
general graphs H, that is, for avoidance games in which the Painter has to
avoid monochromatic copies of a given graph H. However, our methods are
deeply based on the simple structure of the triangles and hence a completely
new approach may be needed.

Our results above suggest that, in the two-round game for arbitrary
graph H, the interesting range for N0 is around the classical threshold for the
corresponding Ramsey property, that is, N0 = Θ(n2−1/d2(H)), where d2(H) =
max{(e(F )− 1)/(v(F )− 2) : F ⊆ H} (see [21]).

Deterministic games. In the deterministic version of our online game, say
for r = 2 and H = Kk, the edges are generated not randomly, but by
an adversary. Hence, this is a two-person game with the payoff to the
Painter equal to the number of coloured edges until she is forced to form a
monochromatic clique Kk.

Define the online Ramsey number R̄(k) as the value of this game. The
most interesting question is if it is true that R̄(k) = o(R(k)2) as k → ∞,
where R(k) is the classical Ramsey number. Some preliminary results in
this direction have been proved by Kurek and Ruciński [18]. In particular,
R̄(3) = 8 and R̄(k, l) = o(R(k, l)2) as k → ∞ while l ≥ 3 is fixed, where
R(k, l) and R̄(k, l) are the corresponding off-diagonal numbers.

Finally, we mention that other games inspired by Ramsey’s theorem have
been investigated in several forms. The reader is referred to, for instance,
Beck [2, 3, 4, 5], Beck and Csirmaz [1], Erdős and Selfridge [7], and Ser-
ess [22].
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9. E. Friedgut, V. Rödl, A. Ruciński, and P. Tetali, A sharp threshold for random graphs
with monochromatic triangle in every edge coloring, in preparation, 2002. 1.1, 2, 2, 5,
4

10. Ehud Friedgut, Sharp thresholds of graph properties, and the k-sat problem, J. Amer.
Math. Soc. 12 (1999), no. 4, 1017–1054, With an appendix by Jean Bourgain. MR
2000a:05183 1.1, 2

11. Svante Janson, Tomasz  Luczak, and Andrzej Ruciński, An exponential bound for the
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16. Y. Kohayakawa and V. Rödl, Szemerédi’s regularity lemma and quasi-randomness,
Recent advances in algorithms and combinatorics, Springer, Berlin, 63pp., to appear,
2002. 4.3.1

17. Yoshiharu Kohayakawa, Tomasz  Luczak, and Vojtěch Rödl, Arithmetic progressions
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