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ABSTRACT: The classical result in the theory of random graphs, proved by Erdős and Rényi in
1960, concerns the threshold for the appearance of the giant component in the random graph process.
We consider a variant of this problem, with a Ramsey flavor. Now, each random edge that arrives
in a sequence of rounds must be colored with one of r colors. The goal can be either to create a
giant component in every color class, or alternatively, to avoid it in every color. One can analyze the
offline or online setting for this problem. In this paper, we consider all these variants and provide
nontrivial upper and lower bounds; in certain cases (like online avoidance) the obtained bounds are
asymptotically tight. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 38, 1–32, 2011
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1. INTRODUCTION

Let Gn,m be the Erdős-Rényi random graph with n labeled vertices and m randomly chosen
edges. A celebrated result of Erdős and Rényi, probably the single most important result
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2 BOHMAN ET AL.

in the theory of random graphs, discovered a threshold for the appearance of the giant
component in this random model. Erdős and Rényi proved that if m ≤ (1 − ε) n

2 for a
constant ε > 0, then whp1 the random graph Gn,m has all of its connected components of
order at most logarithmic in n; on the other hand, if m ≥ (1 + ε) n

2 then whp Gn,m has a
unique connected component of linear size, the so called giant component, while all other
components are at most logarithmic in size. This result can be formulated equivalently in
terms of the random graph process: if the process starts with the empty graph G0 on n
vertices, and at stage i ≥ 1 a random missing edge is added to Gi−1 to form Gi, then after
the first (1 − ε) n

2 rounds the resulting graph typically has all connected components of
at most logarithmic size, while after (1 + ε) n

2 rounds whp the unique giant component is
born, while all other components are of size O(log n). Since then, there have been numerous
extensions to this fundamental result. One further ramification is considered in this paper.

Recently, quite a lot of attention and research effort has been devoted to controlled
random graph processes. In processes of this type, an input graph or a graph process is
usually generated fully randomly, but then an algorithm has access to this random input and
can manipulate it in some well defined way (say, by dropping some of the input edges, or
by coloring them), aiming to achieve some preset goal. There is usually the so called online
version where the algorithm must decide on its course of action based only on the history
of the process so far and without assuming any familiarity with future random edges, and
the offline version, where the algorithm has access to the whole history of the process and
makes its decisions based on the full knowledge of the process. We will give corresponding
accurate definitions for our setting later.

Applied to the question about the appearance of the giant component, the first such
version chronologically is probably the so-called Achlioptas process. This process is named
after Dimitris Achlioptas, who posed the following question about 10 years ago. Suppose
random edges arrive in pairs, and an online algorithm can choose one of them, put it into
the graph, and return the other edge to the pool. Is it possible to design an algorithm that
whp delays the appearance of the giant components for noticeably longer than the Erdős-
Rényi 0.5n steps? This question was answered affirmatively in [6] by the first two authors of
the present paper, who exhibited an algorithm that whp survives for at least 0.535n rounds
without creating the giant component. Since then, there has been a series of papers about the
Achlioptas process, where a variety of scenarios and goals (online and offline algorithms,
delaying or accelerating the appearance of the giant component or fixed subgraphs) have
been considered. See, e.g., any of [3, 4, 7–9, 13, 16, 28].

Here we consider a Ramsey-type version of controlled random processes. In this version,
incoming random edges are colored by an algorithm in one of r colors, for a fixed r ≥ 2.
The goal of the algorithm is to achieve or maintain a certain monotone graph property in
all of the colors. This setting originates in the papers of Rödl and Ruciński [26, 27], who
determined when Gn,m satisfies the Ramsey property of having a monochromatic copy of a
fixed graph H in any r-coloring of the edges. In our terminology they considered the offline
version of the problem, and the property P to avoid in each color was the appearance of
a copy of a fixed graph H. The online version of the problem for the case of two colors
and H = K3 was treated by Friedgut, Kohayakawa, Rödl, Ruciński and Tetali in [14], and

1As customary, we write that a graph property P holds with high probability, or whp for brevity, if the probability
of P tends to 1 as the number of vertices n tends to infinity.
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extended to a wider variety of graphs by Marciniszyn, Spöhel and Steger in [20, 21]. The
online setting of achieving Hamiltonicity in each of r colors has been addressed in [17].

In the present paper, we investigate several Ramsey-type problems involving the giant
component. We consider whether or not it is possible to color the edges of Gn,m in r colors
with the objective of creating a giant component in every color class, or of avoiding a
giant component in every color. We study both the offline and online settings. In the offline
setting, an algorithm gets access to the entire graph, generated according to the probability
distribution Gn,m; in the online setting the edges of Gn,m are first ordered in a random order
and then revealed to the algorithm one by one (i.e., the algorithm observes the random graph
process and colors each new edge as it arrives).

The main objective of this paper is to show new interesting questions, and not necessarily
to get precise answers to all of them. We do determine the offline thresholds for these
problems for all values of r, but the online setting remains open. There, we show that for
two colors, there is always a separation phenomenon away from the trivial bounds, and then
calculate asymptotic bounds for large numbers of colors.

As a warm-up, consider the offline threshold for creating a giant in every color. Recall
that if m < (1 − ε) n

2 for any fixed ε > 0, then whp Gn,m itself has all components of size
O(log n). On the other hand, one can show that for m > (1 + ε) n

2 , whp it is possible to
color the edges of Gn,m with any fixed number of colors r ≥ 2, so that every color class
contains a component of order �(n). Indeed, Ajtai, Komlós, and Szemerédi proved in [2]
that whp Gn,(1+ε) n

2
contains a path of length cεn. (Here and later in the paper, we will write

cε to specify a positive constant determined only by ε.) By splitting this path into r paths
of length cεn/r, the result follows.

The question of avoiding giants in all colors offline is not so simple. It turns out that
the threshold for avoiding giants in r colors is precisely the same as that of r-orientability,
which says that it is possible to direct all of the edges of the graph so that the resulting
digraph has maximum in-degree at most r. Cain, Sanders and Wormald [11], and Fernholz
and Ramachandran [12] recently discovered that this threshold coincides with the number
of edges needed to make the (r+1)-core have average degree above 2r. More precisely, they
showed that for any integer r ≥ 2, there is an explicit threshold ψr such that the following
holds. For any ε > 0, if m > (ψr + ε)n, then whp Gn,m contains a subgraph with average
degree at least 2r + cε , where cε > 0. On the other hand, if m < (ψr − ε)n, then Gn,m is
r-orientable whp. As the r = 2 case is often of particular interest, we note that (as calculated
in [11]) ψ2 ≈ 1.794, and the asymptotic dependence of ψr on r is ψr = r − 1

2

(
2
e + o(1)

)r
.

We now state our first main theorem in terms of this threshold.

Theorem 1.1. Given any fixed r, let ψr be the threshold referenced above. For any ε > 0, if
m < (ψr −ε)n, then whp it is possible to color the edges of Gn,m with r colors such that each
color class contains components of order only o(n). On the other hand, if m > (ψr + ε)n,
then whp every r-edge-coloring of Gn,m has a color class with a component of order at least
cεn.

Remark . This was also recently and independently discovered by Spöhel, Steger, and
Thomas [29].

We also consider online versions of these problems, in which the m edges come sequen-
tially, and each must be colored as soon as it appears. Precisely, we consider the process
to be a sequence of m rounds. In each round, a random edge arrives, independently and

Random Structures and Algorithms DOI 10.1002/rsa
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uniformly distributed over all pairs of vertices. If it repeats an existing edge, then we do not
force ourselves to recolor it. This is not an important issue, because we will never consider
more than O(n) rounds, but it is more convenient to use this product probability space with
full independence between the rounds.

Here, we have several results. First we state them for avoiding giants in all colors. The
offline upper bound of course supplies an upper bound for the online case as well. Indeed, a
standard coupling argument (Fact 2.3 in the next section) translates the offline upper bound
to the case where the rounds have independent edges (possibly with repetitions). So, after
(ψr + ε)n rounds, whp every possible coloring of them contains a giant component, where
the dependence of ψr on r is ψr = r − 1

2

(
2
e + o(1)

)r
.

On the other hand, by taking the natural online adaptation of the offline avoidance
strategy, which was based on edge orientation, we found a randomized online algorithm
which matches the first-order asymptotic of ψr = (1 − o(1))r.

Theorem 1.2. For any ε > 0, the following holds for all sufficiently large r. There is
an online randomized algorithm which can last for (1 − ε)rn rounds, while keeping all
connected components in each of r color classes smaller than o(n) whp.

For large r, this is asymptotically a factor of 2 better than the trivial bound of rn
2 rounds,

obtained by coloring each edge independently at random. However, the above theorem only
beats the trivial bound after r > 50, at which point the resulting ε falls below 1

2 . For the
extreme case of small r, we have the following result using an entirely different strategy,
which improves upon the trivial bound for all r by a factor of ∼1.06.

Theorem 1.3. There is an online algorithm which can two-color edges for 1.06n rounds,
while keeping all connected components in both color classes of size at most O(log n) whp.

Remark. Although the theorem is stated only for r = 2, it immediately gives a strategy
for all even r, by splitting the colors into r

2 pairs. At each round, one of the color pairs is
randomly chosen, and the above algorithm is used to decide which of the two colors in the
pair to use. Then, this will avoid giants in all colors for 1.06n · r

2 rounds whp. For odd r, one
can run the above modification for 1.06n · r−1

2 rounds using only the first r − 1 colors, and
then an additional (1 − ε) n

2 rounds using only the r-th color. This beats the trivial bound of
rn
2 by a factor which approaches 1.06 as r grows.

When the objective is to create giants in every color class, the trivial bounds are as
follows. Certainly, if fewer than (1 − ε) n

2 edges are observed, then whp there will be no
giant in the uncolored graph, so one cannot hope to create r monochromatic giants any
faster. Note that this trivial lower bound turned out to be the truth in the offline setting, even
though it does not grow with r. We will show that in the online case, there is a lower bound
which does.

Theorem 1.4. There is a constant c ≈ 0.043 such that after (c log2 r)n edges are r-
colored by any online algorithm, whp some color class still has all components of order
only O(log n). For r = 2, the same result holds for c′n edges for any c′ < 2 − √

2 ≈ 0.586.

On the other hand, the trivial strategy of randomly coloring each edge succeeds when
the number of edges surpasses rn/2. We are able to give an online algorithm which
asymptotically performs far better than the trivial one.

Random Structures and Algorithms DOI 10.1002/rsa
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Theorem 1.5. There is an online algorithm such that for any ε > 0, after (cr + ε)n
edges every color class contains a connected component of order at least cεn whp, where
the dependence of cr on r is cr = (1 + o(1))

√
r

2 .

For the specific case of two colors, one can adapt the argument and obtain a value of
c2 = 3

4 , but we give a slightly more sophisticated strategy which creates giants even faster.

Theorem 1.6. There is an online algorithm such that for any ε > 0, after 0.733n rounds
both color classes contain connected components of order at least cεn whp.

This paper is organized as follows. The next section reviews some standard probabilistic
facts, and then develops a general tool which extends a recent result of Spencer and Wormald
from [28]. This allows us to control the evolution of the susceptibility of a graph under
the addition of random edges. Section 3 completely resolves the offline case, by proving
Theorem 1.1. For the online setting, Sections 4 and 5 consider the respective problems of
avoiding and creating giants. The final section contains some concluding remarks.

Throughout our paper, we will omit floor and ceiling signs whenever they are not
essential, to improve clarity of presentation. All logarithms are in base e ≈ 2.718 unless
otherwise specified. The following asymptotic notation will be utilized extensively. For two
functions f (n) and g(n), we write f (n) � g(n), f (n) = o(g(n)), or g(n) = ω(f (n)) if
limn→∞ f (n)/g(n) = 0, and f (n) = O(g(n)) or g(n) = �(f (n)) if there exists a constant M
such that |f (n)| ≤ M|g(n)| for all sufficiently large n. The number of vertices n is assumed
to be sufficiently large where necessary.

2. PRELIMINARIES

In this section, we review some standard facts commonly used in Probabilistic Combina-
torics. Then, we use them to prove a useful result (Theorem 2.6) which shows that a certain
graph parameter, the susceptibility, tracks a natural differential equation. This extends a
result of Spencer and Wormald, and we state it in a general-purpose form for the convenience
of possible future citations.

2.1. Probabilistic Tools

We recall the Chernoff bound for exponential concentration of the binomial distribution.
The following formulation appears in, e.g., [1].

Fact 2.1. For any ε > 0, there exists cε > 0 such that any binomial random variable X
with mean µ satisfies P[|X − µ| > εµ] < e−cεµ.

A binomial random variable is the sum of independent indicator variables. We also
need concentration in settings without complete independence. Recall that a martin-
gale is a sequence X0, X1, . . . of random variables such that each conditional expectation
E[Xt+1 | X0, . . . , Xt] is precisely Xt . The Hoeffding-Azuma inequality (see, e.g., [1]) pro-
vides concentration for martingales with bounded step-wise increments |Xt+1 −Xt|, and this
has been widely used in probabilistic combinatorics.

Random Structures and Algorithms DOI 10.1002/rsa
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When only one-sided concentration is needed, it can be convenient to consider instead
a supermartingale, which only requires E[Xt+1 | X0, . . . , Xt] ≤ Xt for all t. We will use the
analogue of Hoeffding-Azuma for supermartingales, which follows from exactly the same
proof as for martingales (see, e.g., [19] or [30]).

Fact 2.2. Let X0, . . . , Xn be a supermartingale, with bounded differences |Xi+1 −Xi| ≤ C.
Then for any λ ≥ 0,

P[Xn ≥ X0 + λ] ≤ exp

{
− λ2

2C2n

}
.

We can also define submartingales via the requirements E[Xt+1 | X0, . . . , Xt] ≥ Xt;
estimates on their lower tails, similar to the above fact, follow by symmetry.

Finally, we will frequently switch between the models Gn,p, Gn,m, and the product space
of m independent uniform random edges, depending on which one is the most convenient.
Adding more edges makes it harder to avoid giants, but easier to create them, so all properties
we consider are monotone. Hence the following fact allows us to translate results between
the models, while still keeping everything sharp to first-order.

Fact 2.3. Fix any constant ε > 0, and suppose that m = m(n) tends to infinity with n,
but m = o(n2). Then there are couplings of the corresponding probability spaces such that
the following hold.

i. Gn,m ⊂ Gn,p whp for p = (1 + ε) 2m
n , and Gn,m ⊃ Gn,p whp for p = (1 − ε) 2m

n .
ii. The graph formed by generating m random edges (possibly with repetition) is always

contained in Gn,m, and whp contains Gn,m′ with m′ = (1 − ε)m.

Proof sketch. By the standard coupling of Gn,m and Gn,p via the random graph process, part
(i) follows from the Chernoff bound on Bin

[(n
2

)
, p
]
. For part (ii), one can similarly couple

Gn,m′ with the product space of m edges by considering an infinite sequence of independent
random edges. Then, the m-edge product space is the projection onto the first m choices,
and Gn,m′ is the graph consisting of the first m′ distinct edges. So, it suffices to show that
whp, there are at least (1− ε)m distinct edges among the first m sampled with replacement.
Observe that when the k-th edge is sampled, the probability that it is a repetition of a
previously sampled edge is always less than k/

(n
2

)
< ε

2 since m = o(n2). Therefore, the
number of samples which are repetitions is stochastically dominated by Bin

[
m, ε

2

]
, which

is at most εm whp by the Chernoff bound. Then, the number of distinct edges is at least
(1 − ε)m, as desired.

2.2. Evolution of Susceptibility

One of the most useful parameters for studying the giant component of a graph is
the susceptibility. For a graph G, this is defined as S(G) = 1

n

∑
v Cv, where Cv is the

size of the connected component in G containing v. Note that this also equals 1
n times the

sum of the squares of the component sizes. Many researchers have investigated the evolution
of the susceptibility under random edge addition, starting with Bohman and Kravitz, who
used this to analyze the Achlioptas process in [9].

Random Structures and Algorithms DOI 10.1002/rsa
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More recently, Spencer and Wormald proved in [28] that for m up to (1 − ε) n
2 , the

susceptibility of the m-edge random graph evolves like the solution φ(m) of the differential
equation φ′ = 2

nφ
2 with initial condition φ(0) = 1. The heuristic for this differential

equation is quite natural, although the formal proof is nontrivial. Indeed, when a random
edge is added to some intermediate (and subcritical) G, its endpoints typically lie in different
components, each of which has expected size S(G). If both component sizes are close to
S(G), then the increment to S(G) after adding the edge is roughly 1

n

[
(S(G) + S(G))2 −

2S(G)2
] = 2

n S(G)2. Thus, one might expect the evolution of S(G) to follow φ′ = 2
nφ

2. The

solution of this differential equation is φ(m) = (1 − 2
n m
)−1

, so it only “blows up” when m
reaches n

2 . This matches the classical threshold of the giant component, because the result
of Spencer and Wormald concentrates S(Gn,m) around φ(m) for m up to (1 − ε) n

2 . In this
range, S(Gn,m) is then bounded by a constant, and we can always trivially bound the size of
the largest component by

√
nS(G), so the largest component is o(n) whp.

However, once we start to color edges, the color classes are no longer Erdős-Rényi
random graphs. It is then crucial to control the evolution of susceptibility from initial graphs
which are non-empty. One of the main contributions of [28] was a result of this nature, but
it only controlled one phase of evolution. In order to formulate it, we need the following
definition.

Definition 2.4. A graph has a K, c component tail if for all positive integers s, at most
Ke−cs-fraction of its vertices lie in components of order at least s.

Note that a K , c component tail immediately implies that all components have order
O(log n). Now we restate a key result of Spencer and Wormald (Theorem 3.1 of [28]),
translated into an equivalent form via Fact 2.3.

Fact 2.5. Let L, K , c, γ be positive real numbers. Let G be a graph on n vertices with
a K , c component tail and S(G) ≤ L. Add (1 − γ ) n

2L independent random edges to G,
ignoring repeated edges, and let the result be G′. Then there exist K ′, c′ such that G′ has a
K ′, c′ component tail whp.

The K ′, c′ component tail is very useful, because it bounds the entire distribution of
the component sizes. However, our arguments also need control of the new value of the
susceptibility after random edge addition, so we prove the following extension of the above
result. This can be done using the methods used in [28], but we include here an alternate
(and simpler) proof, following ideas from [5].

Theorem 2.6. Let L, K , c, γ be positive real numbers. Let G be a graph on n vertices
with a K , c component tail and S(G) ≤ L. Add (1 − γ ) n

2L independent random edges to G,
ignoring repeated edges, and let the result be G′. Then there exist K ′, c′ such that whp G′

has a K ′, c′ component tail, and S(G′) ≤ L
γ

+ o(1).

Remark . The bound L
γ

arises from the following heuristic. Suppose that the initial sus-
ceptibility is L. We will show that its evolution is dictated by the differential equation
φ′ = 2

nφ
2 with initial condition φ(0) = L, whose solution is φ(t) = ( 1

L − 2
n t
)−1

. Substituting
t = (1 − γ ) n

2L gives L
γ

.

Random Structures and Algorithms DOI 10.1002/rsa
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Proof. Note that by definition, the susceptibility is always at least 1, so we will implicitly
use L ≥ 1 throughout the proof. Let T = (1 − γ ) n

2L . Let e1, . . . , eT denote the incoming
edges, and let Gt be the graph after the addition of the first t of them. Fact 2.5 gives constants
K ′, c′ such that GT has a K ′, c′ component tail whp.

Let φ(t) = (
1
L − 2

n t
)−1

. We now formalize our heuristic argument which suggests that
S(Gt) evolves like φ(t). For each t, let Et be the event that Gt has a K ′, c′ component tail

and S(Gt) ≤ φ(t) + e
5L
γ

t
n n− 1

3 . Note that we will only run t up to T ≤ n, so the exponential
factor is only at most a constant, and hence the error term tends to zero as n grows. Now,
consider the sequence of random variables:

Xt =
{

S(Gt) − φ(t) − e
5L
γ

t
n n− 1

3 if Et−1 holds,
Xt−1 otherwise.

We claim that Xt is a supermartingale. Indeed, suppose that Gt has components of order
C1, C2, . . . If the incoming edge v1v2 has v1 in the i-th component and v2 in the j-th compo-
nent, then the susceptibility increases by exactly 1

n [(Ci + Cj)
2 − C2

i − C2
j ] = 2

n CiCj when
i �= j, and zero otherwise. Therefore,

E[S(Gt+1) | e1, . . . , et] = S(Gt) +
∑
i �=j

2

n
CiCj · Ci

n

Cj

n − 1

≤ S(Gt) + 2

n − 1

(
1

n

∑
i

C2
i

)2

= S(Gt) + 2

n − 1
S(Gt)

2.

We use this to bound the expected conditional increment in Xt . Note that for the purposes of
bounding E[Xt+1 | e1, . . . , et]we may assume thatEt holds (otherwise this conditional expec-
tation is trivially equal to Xt). Using the above, and the convexity of φ and the exponential,
we have:

E[Xt+1 − Xt | e1, . . . , et , Et]
≤ 2

n − 1
S(Gt)

2 − (φ(t + 1) − φ(t)) − (e 5L
γ

t+1
n − e

5L
γ

t
n
)
n− 1

3

≤ 2

n − 1
S(Gt)

2 − φ′(t) − 5L

γ

1

n
e

5L
γ

t
n n− 1

3

= 2

n − 1
S(Gt)

2 − 2

n
φ(t)2 − 5L

γ

1

n4/3
e

5L
γ

t
n

≤ 2

n − 1

(
φ(t) + e

5L
γ

t
n n− 1

3
)2 − 2

n
φ(t)2 − 5L

γ

1

n4/3
e

5L
γ

t
n

= 2

n(n − 1)
φ(t)2 + 4

(n − 1)n1/3
φ(t)e

5L
γ

t
n + 2

(n − 1)n2/3
e

10L
γ

t
n − 5L

γ

1

n4/3
e

5L
γ

t
n .

We will only run t up to T = (1 − γ ) n
2L , so we always have t

n < 1, as well as φ(t) ≤ L
γ

because φ is increasing. Plugging in these bounds, the φ(t) and exponential factors are

Random Structures and Algorithms DOI 10.1002/rsa
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replaced by constants, so the asymptotic behavior of each term is determined by the power
of n in the denominator. Hence the second and fourth terms dominate, giving

E[Xt+1 − Xt | e1, . . . , et , Et] ≤ (1 + o(1))

(
4

n4/3

L

γ
e

5L
γ − 5L

γ

1

n4/3
e

5L
γ

)

= −(1 + o(1))
L

γ n4/3
e

5L
γ ,

which is negative for sufficiently large n. Therefore, Xt is indeed a supermartingale. Observe
that X0 ≤ −n−1/3. We will use the Hoeffding-Azuma inequality (Fact 2.2) to prove that whp,
Xt < 0 for every t ≤ T . For this, note that the one-step change in Xt is zero if Gt does not
have a K ′, c′ component tail. Otherwise, as previously remarked, all components of Gt are
bounded by some C log n, so the maximum change in the susceptibility is 2

n (C log n)2. To

bound the one-step change in the error term φ(t)+ e
5L
γ

t
n n− 1

3 , which is an increasing convex
function, it suffices to use the first derivative at t = T . Recalling that T = (1 − γ ) n

2L , this
turns out to be precisely

d

dt

∣∣∣∣
t=T

=
[(

1

L
− 2

n
T

)−2

· 2

n

]
+
[

e
5L
γ

T
n n−1/3 · 5L

γ n

]
=
(γ

L

)−2 2

n
+ e

5L
γ

T
n

5L

γ n4/3
,

which is clearly O(n−1) because γ and L are constants, and T ≤ n. Applying the Hoeffding-
Azuma inequality with λ = n−1/3, we find that for each t ≤ T ≤ n,

P[Xt ≥ 0] ≤ exp

{
− n−2/3

2 · ( 2
n (C log n)2

)2
t

}
≤ exp

{
− n1/3

8C4 log4 n

}
.

A union bound over all t ≤ T shows that whp, all Xt < 0. Furthermore, Fact 2.5 implies
that whp, GT has a K ′, c′ component tail.

To complete our argument, we claim that whenever all of these high-probability events
happen, then all Et occur for 0 ≤ t ≤ T . We prove this by induction on t. Each Et has two
parts: a component tail and an upper bound on S(Gt). The K ′, c′ component tail property is
automatically satisfied for all t because Gt ⊂ GT , and we are assuming that GT already has
this (monotone) property. We concentrate on the upper bounds for S(Gt) in the remainder
of this proof. For the base case t = 0, the susceptibility part of E0 is immediate by definition

since S(G0) = φ(0) < φ(0) + e
5L
γ

0
n n− 1

3 . For our induction step, given that Et−1 occurs,

the definition of Xt is then S(Gt) − φ(t) − e
5L
γ

t
n n− 1

3 instead of the alternative Xt−1. Yet we
assumed that Xt < 0, so that gives the susceptibility part of Et , and completes the induction.

Therefore, we conclude that ET occurs whp, which in particular means that S(GT ) ≤
φ(T) + e

5L
γ

T
n n− 1

3 = L
γ

+ o(1), as desired.

3. OFFLINE AVOIDANCE OF GIANTS

In this section, we prove Theorem 1.1, which has two parts, a lower and an upper bound. The
lower bound relies on the following relationship between orientability and decomposition.
Recall that we call a graph r-orientable if it is possible to orient all edges such that all
in-degrees are at most r.

Random Structures and Algorithms DOI 10.1002/rsa
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Lemma 3.1. The edges of any r-orientable graph G can be colored with r colors such
that for every pair of distinct vertices u, v, there are at most two monochromatic paths in
each color connecting u and v.

Proof. Fix an orientation of G with all in-degrees at most r, and greedily color the edges
by r colors so that at each vertex, all incoming edges are differently colored. Consider a
particular color class. By construction, it is a directed graph with all in-degrees at most 1,
so it is a disjoint union of unicyclic components. Then, every pair of vertices is linked by
at most two paths in that color, as desired.

The previous lemma produces a coloring whose connectivity is very fragile. Our next
lemma quantifies this, showing that the (a priori, possibly large) monochromatic components
shatter easily.

Lemma 3.2. For any ε > 0, there is c > 0 such that the following holds. Let G be a graph
on n vertices with maximum degree log n, where every pair of distinct vertices is connected
by at most two distinct paths. Independently delete each edge of G with probability ε. Then,

whp all connected components of the resulting graph have order at most ne−c log n
log log n = o(n).

Proof. Define c such that 1 − ε = e−8c, and recall from Section 2.2 that the susceptibility
of a graph is 1

n

∑
v Cv, where Cv is the size of the connected component containing v. Let

the random variable S be the susceptibility of the graph G′ which remains after the edge
deletions. Since

∑
v Cv equals the sum of the squares of the component sizes, all components

of G′ have order at most
√

nS. Thus, it suffices to show that S ≤ ne−2c log n
log log n whp.

Fix an arbitrary vertex v. Since G has maximum degree log n, the total number of vertices
within distance D = 1

2
log n

log log n of v is at most (log n)D = √
n. Any other vertex u has

probability at most 2(1 − ε)D = 2e−8cD of being connected to v after the deletion. This is
because there are at most two paths between u and v, and each path has length at least D.
Therefore, by linearity of expectation, the expected size of the component containing v is

E[Cv] ≤ √
n+n ·2e−4c log n

log log n ≤ ne−3c log n
log log n . Another application of linearity of expectation

gives E[S] ≤ ne−3c log n
log log n . So, by Markov’s inequality, S exceeds ne−2c log n

log log n with probability

at most e−c log n
log log n = o(1), completing the proof.

Remark . The self-contained argument above only requires a relatively weak maximum
degree condition, and is sufficient for our purposes. It is worth mentioning that under the
stronger assumption that G is a random graph, one can use the substantially less trivial
Lemma 11 of [8] to sharpen the eventual bound to n1−cε , as Spöhel, Steger and Thomas do
in [29]. Indeed, that lemma claims that if m = cn, then there is a large constant K such that

in Gn,m, the number of vertices within distance (log n)/K of any vertex v is at most n
log 2K

K

whp. Using this fact above instead of our exploration to depth 1
2

log n
log log n bounds all connected

components below n1−cε .

Let us now state the result of Cain, Sanders and Wormald [11], and Fernholz and
Ramachandran [12], on the matching thresholds for orientability and average degree.
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Fact 3.3. For any integer r ≥ 2, there is an explicit threshold ψr such that the following
holds. For any ε > 0, if m < (ψr − ε)n, then Gn,m is r-orientable whp. On the other hand,
if m > (ψr + ε)n, then whp Gn,m contains a subgraph with average degree at least 2r + cε ,
where cε > 0.

We are now ready to prove the lower bound, which we first translate to Gn,p for conve-
nience. By applying Fact 2.3 and rescaling ε, it suffices to show that if p = 2(1−ε)(ψr−ε)/n,
then whp there is a coloring of Gn,p where every color class has all components of order
o(n).

Proof of lower bound of Theorem 1.1. Let p′ = 2(ψr − ε)/n, and observe that Gn,p can
be obtained from G′ = Gn,p′ by independently deleting each edge with probability ε. First,
consider the graph G′ before deletions. By Fact 3.3, G′ is r-orientable whp. Also, it is easy
to see that since np is at most the constant 2ψr , G′ has maximum degree at most log n
whp. Indeed, each individual degree is distributed as Bin(n − 1, p), and P[Bin(n − 1, p) >

log n] ≤ ( n
log n

)
plog n ≤ ( enp

log n

)log n
. Since np is bounded by a constant, this is o(n−1), so a

union bound over all n vertices implies that the maximum degree is at most log n whp.
Thus, by Lemma 3.1, we can color the edges of G′ so that every pair of distinct vertices

is connected by at most two paths in each color. This, together with our degree bound and
Lemma 3.2, shows that after deleting each edge of G′ independently with probability ε (to
obtain Gn,p), whp all color classes have connected components of order only o(n).

For the upper bound, we use the second half of Fact 3.3, which gives a subgraph of high
average degree. It turns out that this is already enough to ensure a giant. To see this, we first
show that small sets of vertices typically induce low average degree in the random graph.

Lemma 3.4. For any λ, ε > 0, there is a constant c > 0 such that in Gn,p with p = λ

n , whp
every set of at most cn vertices induces a subgraph with average degree less than 2 + ε.

Proof. Without loss of generality, assume that ε < 1 and λ ≥ 1. Let c = (e3λ2)− 2
ε . We will

take a union bound over all subsets of t ≤ cn vertices. For a fixed value of t, the probability
that some t-set of vertices induces at least

(
1 + ε

2

)
t edges is at most

(
n

t

)
· P

[
Bin

[(
t

2

)
,
λ

n

]
≥
(

1 + ε

2

)
t

]
≤
(

n

t

)
·
(

t2/2(
1 + ε

2

)
t

)(
λ

n

)(1+ ε
2 )t

≤
(en

t

)t ·
(

et2/2

(1 + ε

2 )t
· λ

n

)(1+ ε
2 )t

=
[(en

t

)
·
(

eλ

2 + ε
· t

n

)1+ ε
2
]t

=
[

e

(
eλ

2 + ε

)1+ ε
2 ·
(

t

n

) ε
2
]t

≤
[

e3λ2

2
·
(

t

n

) ε
2
]t

.

To complete our union bound, we sum the final expression over the range 1 ≤ t ≤ cn.
We split this into two intervals, separating at t = log n. Observe that the quantity in the
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square brackets increases in t, and reaches 1
2 when t = cn. So, the sum over the interval

log n ≤ t ≤ cn is at most
∑cn

log n 2−t = o(1). For the other interval t < log n, the square
bracket is still at most 1

2 ≤ 1, so we can ignore the outer exponentiation and conclude that

the final expression is at most e3λ2

2 · ( log n
n

) ε
2 . Multiplying this by the number of values of t

in this interval (log n), we see that the final sum is still o(1). Therefore, the property holds
whp, as claimed.

From this, we immediately derive the following useful corollary, which ensures a giant
in any subgraph of average degree at least 2 + ε.

Corollary 3.5. For any λ, ε > 0, there is a constant c > 0 such that in Gn,m with m = λn,
whp every subgraph with average degree at least 2 + ε contains a connected component of
order at least cn.

Proof. By the previous lemma and Fact 2.3, whp Gn,m has the property that every set of at
most cn vertices induces a subgraph with average degree less than 2+ε. Then, consider any
subgraph H with average degree at least 2+ε. Separating H into its connected components,
we find that some component must have average degree at least 2 + ε. Therefore, that
component must have order at least cn, as desired.

Proof of upper bound of Theorem 1.1. By Fact 3.3, if m > (ψr + ε)n, whp Gn,m contains
a subgraph H with average degree at least 2r + cε . No matter which colors appear on the
edges of H , some color class will have average degree at least 2+cε/r, and therefore contain
a giant whp by Corollary 3.5.

4. ONLINE AVOIDANCE OF GIANTS

In this section, we consider the online case of the avoidance problem. We first show that
a natural adaptation of the offline algorithm gives an asymptotically sharp result for large
numbers of colors. Then, we consider the other extreme with two colors, and show that the
trivial bound (surviving for (1 − ε)n rounds by randomly coloring each incoming edge) is
not tight.

4.1. Many Colors

Our offline algorithm avoided giant components by orienting edges to minimize in-degrees.
By replacing the offline orientation procedure with an online one, this strategy naturally
extends to the online setting. Online edge orientation has been extensively studied, in the
famous equivalent formulation known as the “power of two random choices” with balls
and bins (see [22] for a survey of results). Indeed, that setting had n bins, with kn balls
coming sequentially, each with two independent random choices for a destination bin. The
objective was to control the maximum load across all of the bins. This can be interpreted
as a graph orientation problem, where each pair of bin choices corresponds to an incoming
edge with the two choices as endpoints. The edge’s orientation records which bin the ball
is sent to, and the goal of controlling the maximum in-degree is precisely the same as that
of controlling the maximum load in the balls-and-bins problem.

It is now well-known that when the objective is to minimize the maximum in-degree, the
stochastically optimal online orientation strategy is to always orient each incoming edge

Random Structures and Algorithms DOI 10.1002/rsa
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towards the endpoint which currently has lower in-degree. However, it turns out that for
the purpose of proving Theorem 1.2, one can use a random orientation strategy, which is
easier to analyze. Our coloring algorithm, which we call orient, internally maintains a set
of orientations for all edges it has seen. To color a new edge e, it randomly orients it with
equal probability toward one of its endpoints. Let the new in-degree of that endpoint be
d. If d < r, then color d is used for the edge e. Otherwise, color r is used. Observe that
just as in Lemma 3.1, each of the first r − 1 color classes is a disjoint union of unicyclic
components. Therefore, each of these color classes has every pair of vertices connected by
at most two paths, so it will shatter by the same argument as in the proof of Theorem 1.1.

The new challenge in this section is to control the r-th color class. Fortunately, it turns out
that it is extremely sparse. To prove this, it is more convenient to work in the random directed
graph 
Gn,p, in which each of the n(n − 1) possible directed edges appears independently
with probability p/2. Note that in this model, it is possible for both −→uv and ←−uv to be present
simultaneously. Our first claim is that 
Gn,p typically has no long cycles containing many
vertices of high in-degree. This is relevant because every edge in color r has an endpoint
with in-degree at least r.

Lemma 4.1. For any ε > 0, the following holds for every sufficiently large constant r.
Let 
G = 
Gn,p be a random directed graph with p = (1 − ε) 2r

n , and G be the undirected
graph on the same vertex set obtained by collapsing all edges between each vertex pair into
a single undirected edge. Then, whp G does not contain any cycles of length at least 4

√
log n

for which at least half of the vertices on the cycle had in-degree at least r in 
G.

Proof. We will use a union bound to show that a large family of objects do not appear
in the random directed graph. Let us define an isomorphism type to be a directed simple
graph whose underlying undirected graph is a cycle, say with vertices v1, . . . , vt , along
with a subset of at least t/2 of its vertices which have been designated as “high-in-degree
vertices.” Note that we do not require the edges of the cycle to be oriented in a consistent
direction. The number of distinct t-vertex isomorphism types is at most 2t ·2t , because each
of the t edges can be oriented in two ways, and the number of different subsets of vertices
that can be designated as high-in-degree is at most 2t .

We say that 
Gn,p contains a copy of this isomorphism type if there is an embedding of
the vertices vi such that all consecutive edges vivi+1 are present in the correct direction,
and all designated high-in-degree vertices vi already have in-degree at least r − 2 from
vertices other than vi−1, vi+1. We do not restrict our attention to induced copies, so other
edges may also be present. If we can show that over all isomorphism types with t ≥ 4

√
log n,

the expected total number of copies in 
Gn,p is o(1), then we will be done by Markov’s
inequality.

So, let us focus on a particular isomorphism type with t vertices. There are at most nt

ways to embed the t vertices of the cycle. Each edge vivi+1 independently appears with its
correct orientation with probability exactly p/2. Next, consider a designated high-in-degree
vertex vi. Crucially, we only require in-degree at least r − 2 from vertices other than vi−1

and vi+1. The reason for this exclusion is that the previous step may already have exposed
the edges −−→vi−1vi and −−→vi+1vi. But now, since our model even allows edges in both directions
between vertex pairs, the probability that each designated vertex indeed has high in-degree
is independently P

[
Bin
[
n−3, p

2

] ≥ r −2
]
. Since p = (1− ε) 2r

n and r is large, each of these
individual probabilities is bounded by the probability that Bin

[
n − 3, (1 − ε) r

n

]
exceeds

its mean by at least an ε

2 -fraction. By the Chernoff bound, this happens with probability at
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most e−cε r for some constant cε . By choosing large enough r, we may assume that this is
below 1

64r2 . Putting everything together, we find that the expected number of copies of a

fixed isomorphism type in 
Gn,p is at most

nt
(p

2

)t
(

1

64r2

)t/2

≤
(

1

8

)t

.

We initially showed that the number of distinct t-vertex isomorphism types is at most 4t , so
the expected total number of copies of all t-vertex isomorphism types is at most 2−t . This
is a geometric series, so its sum over all t ≥ 4

√
log n is still o(1), as desired.

Remark 1. Since we had a convergent geometric series at the end of the proof, the 4
√

log n
bound is not tight. In fact, any function which grows with n is sufficient.

Remark 2. If one is interested in beating the trivial bound, which corresponds to p ≈ r
n ,

one can choose ε to be extremely close to, but just below, 1
2 . One can numerically check

that if ε = 0.4999 and r ≥ 51, then the probability that Bin
[
n, (1 − ε) r

n

]
exceeds r − 2 is

at most 1
16.1r2 for large n, because the Binomial converges to a Poisson variable with mean

0.5001r. Continuing the argument, this will show that the expected number of appearances
of all t-vertex isomorphism types is at most

(
4√
16.1

)t
, which is still a convergent geometric

series, so the same result will follow.

Next, we establish an easy bound which holds for ordinary random graphs.

Lemma 4.2. For every constant c, whp in Gn,p with p = c
n , every set of t ≤ 3

√
log n

vertices induces at most t edges.

Proof. The expected number of sets with t ≤ 3
√

log n and at least t + 1 edges can be
bounded by

3
√

log n∑
t=4

(
n

t

)( ( t
2

)
t + 1

)
pt+1 ≤

3
√

log n∑
t=4

t

en

(
ne

t
· tec

2n

)t+1

= o(1).

We now combine the previous two lemmas to show that the r-th color class shatters
easily. In the proof of Lemma 3.2, the control of connectivity was done by bounding the
number of distinct paths between every pair of vertices. This time, we use the notion of an
essential edge. We say that an edge e on a path is essential if every other path connecting
the same endpoints also contains e. It turns out that in the r-th color class, every long path
contains a huge number of essential edges.

Lemma 4.3. For any ε > 0, the following holds whp for every sufficiently large constant
r. Let G be the graph formed by the r-th color class after (1 − ε)rn independent random
edges have been colored by orient. Then every path in G of length at least 3

√
log n has the

property that more than half of its edges are essential.

Proof. Since each (random) incoming edge is randomly directed by orient, one can think
of the input as a sequence of random directed edges, which is then deterministically colored
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using the rule in orient. By a similar argument to Fact 2.3, it suffices to consider the more
convenient model where the input sequence is a random permutation of the edges of a
random directed graph G = 
Gn,p with p = (1 − ε) 2r

n . Throughout this proof, although G
is a directed graph, whenever we speak of cycles or paths, we are referring to undirected
cycles and paths in the underlying undirected graph. In other words, we are ignoring the
edge orientations when seeking these structures.

Note that if an edge of G is oriented toward a vertex with in-degree less than r, then
regardless of the permutation, it will never be colored r. So, let H ⊂ G be obtained by
deleting all edges oriented into vertices of in-degree less than r. Then H entirely contains
the r-th color class. Let A be the set of vertices whose in-degrees were less than r, and let
B be those that had in-degree at least r. Observe that we deleted all edges oriented toward
vertices in A, so A spans no edges in H. In particular, any cycle in H has at least half of its
vertices in B, i.e., with in-degree at least r.

Therefore, by Lemma 4.1, whp all cycles in H have length at most 4
√

log n. Also, condition
on the result of Lemma 4.2, which shows that in G (and hence also H), every set of t ≤ 3

√
log n

vertices induces at most t edges. These two graph properties will be enough to show that
long paths in H contain many essential edges.

Let P = v1, . . . , vt be a path in H with length at least 3
√

log n. Suppose for contradiction
that at least half of its edges are non-essential. We claim that since 4

√
log n � 3

√
log n, there

must be non-essential edges vivi+1 and vjvj+1 such that i < j and 3 4
√

log n < j−i < 7 4
√

log n.
Indeed, if this were false, then out of the 7 4

√
log n edges immediately following each non-

essential edge in P, at least 4
7 -fraction of them would be essential. Then an averaging

argument would contradict the fact that at least half of the edges were non-essential.
Now, since vivi+1 is non-essential, there is another path P′ = w1, . . . , ws with w1 = v1 and

ws = vt which avoids the edge vivi+1. Let a be the largest index such that wa ∈ {v1, . . . , vi},
and let b be the next index after a such that wb ∈ P. These exist because P and P′ both
contain v1 and vt . Note that by definition, wb is actually in {vi+1, . . . , vt}, and the segment of
P′ from wa to wb intersects P only at wa and wb. So, there is a cycle C1 formed by going from
wa to wb along P′, and then back to wa along P. Importantly, the common edges between
C1 and P are a contiguous interval containing the edge vivi+1.

Similarly, we can find a cycle C2 containing the edge vjvj+1. Crucially, C1 and C2 are
distinct (although not necessarily disjoint) because j − i > 3 4

√
log n and we conditioned

on all cycles being shorter than 4
√

log n. Yet j − i < 7 4
√

log n, so the union of C1, C2, and
the path vivi+1 . . . vj forms a subgraph of order k ≤ 9 4

√
log n which spans at least k + 1

edges. Since we also conditioned on all such subgraphs having order at least 3
√

log n, this is
a contradiction. Therefore, the path P must have had at least half of its edges essential.

The previous lemma shows that the r-th color class is typically quite fragile as well. We
now combine this with an adaptation of our offline argument, and prove that it is possible
to avoid giants in all colors for nearly rn rounds whp.

Proof of Theorem 1.2. By rescaling ε, it suffices to give a randomized coloring algorithm
that avoids giants in all colors whp, for a sequence of m = (1 − ε)3rn independent random
edges (possibly with repetitions). As in our proof of Theorem 1.1, it is convenient to color
a slightly denser random graph, because the deletion of fictitious edges shatters all large
components.

Strictly speaking, we cannot simply apply orient to a larger sequence of edges,
because for this problem the input is a sequence of m edges, which must be processed
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online. We will therefore take some care in specifying how we randomly interleave the
input into a longer sequence of edges, so that all operations are clearly online. Let us
denote the final sequence of real and fictitious edges by e1, . . . , em′ , where m′ = (1−ε)2rn.
Initially, we select a random subset of m of the m′ indices to correspond to the positions
of the real edges. We then generate independent random edges for all other ei, and pass
the resulting sequence to orient. Note that since the input distribution is uniform over
all sequences of m edges, the augmented sequence of edges consists of m′ independent
random edges.

Let σ denote the colored sequence of m′ edges produced by orient. The graph formed
by σ has maximum degree at most log n whp by the same argument as in the offline
case. We also know by construction that there are at most two paths between every pair
of vertices in each of the first r − 1 color classes. For the r-th color class, Lemma 4.3
ensures that whp, all paths longer than 3

√
log n have at least half of their edges essential.

Let P denote the collection of all of these properties. We will write σ ∈ P when all of
them hold.

Now, we delete the εm′ fictitious edges to recover the coloring of the original edges. Note
that since the algorithm knows which m edges are real (that was the input), the edges to delete
are completely determined. But crucially, it used an independent source of randomness to
interleave the original m edges into the full sequence of m′ edges. Therefore, if we only
condition on σ (and not on the input), then the distribution of which m edges were original is
uniform over all possible subsets of m positions. Formally, we are calculating the probability
of success by summing over all colored sequences σ of m′ edges. We have

P[success] =
∑

σ

P[success | σ ]P[σ ] ≥
∑
σ∈P

P[success | σ ]P[σ ]

Since we showed that σ ∈ P whp, it suffices to show that P[success | σ ] ≥ 1 − o(1) for
all σ ∈ P . We noted above that conditioned on σ , the εm′ edges to delete were uniformly
distributed over all subsets. Therefore, it remains to show that given any coloring with
property P , the deletion of a random ε-fraction of its edges whp shatters all large connected
components. We accomplish this by deleting every edge independently with probability ε

2 ,
which will imply the result by a similar coupling argument to Fact 2.3, since Bin

(
m′, ε

2

) ≤
εm′ whp.

For each of the first r − 1 color classes, Lemma 3.2 shows that all components shatter
to o(n) whp, as in the offline proof. For the r-th color class, we now adapt the proof of
Lemma 3.2 to use essential edges. Indeed, let us bound the expected size of the component
Cv containing a particular vertex v after the deletions. Since the maximum degree in Gn,rn is
log n, the total number of vertices within distance D = 1

2
log n

log log n of v is at most (log n)D = √
n.

Any other vertex u is at distance at least D � 3
√

log n away from v, so a shortest path from v to
u contains at least D/2 essential edges. The deletion of any essential edge disconnects u, v, so
if edges are deleted with probability ε

2 , then u and v remain connected only with probability

at most (1− ε

2 )
D/2 = e−c log n

log log n for some constant c. Hence the expected size of Cv is at most
√

n + ne−c log n
log log n = o(n), and by linearity of expectation, the expected susceptibility E[S]

of the graph after deletions is o(n). Since the size of the largest component is at most
√

nS,
Markov’s inequality implies that the r-th color class also has all components smaller than
o(n), completing the proof.
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4.2. Two Colors

The trivial algorithm, which randomly colors each edge blue or red, clearly lasts for (1−ε)n
rounds whp. We now present a better algorithm which lasts for 1.06n rounds whp. To color
a new edge e, it considers the set of colors C that appear on isolated edges which are incident
with any of its endpoints. (If e is not incident to any isolated edges, then C is empty.) When
C contains exactly one color, the algorithm colors the edge e with the other color. Otherwise,
it randomly colors e either blue or red with equal probability.

We analyze this by tracking a certain partition of the vertex set. Split the set of isolated
edges into two groups based on their color, and call them the red matching and the blue
matching, respectively. After the k-th round, let:

Ik = number of isolated vertices,

Bk = number of vertices in the blue matching,

Rk = number of vertices in the red matching,

and let Jk = n − Ik − Bk − Rk be the number of remaining vertices. These parameters
correspond to the decomposition of the graph into its isolated vertices, the blue matching,
the red matching, and the remainder.

Lemma 4.4. With probability 1 − o(1), the following hold for all t ≤ 1.1:∣∣∣∣1n Itn − e−2t

∣∣∣∣ ≤ n−1/3,∣∣∣∣1nBtn − te−4t

∣∣∣∣ ≤ e8n−1/3,∣∣∣∣1nRtn − te−4t

∣∣∣∣ ≤ e8n−1/3.

Proof. The probability that a particular vertex is not incident to any of the first tn edges
is exactly

(
n−1

n · n−2
n−1

)tn = (
1 − 2

n

)tn
, which tends to e−2t from below as n grows. Routine

calculus easily bounds the convergence rate by O(n−1), so E
[

1
n Itn

] = e−2t + O(n−1). Now
consider the edge-exposure martingale where Yk is the conditional expectation of Itn given
the first k rounds. Changing the outcome of any particular round can only affect Itn by at
most 2, and there are tn rounds to determine Itn, so by the Hoeffding-Azuma inequality (see
Theorem 7.4.1 of [1]) Itn is within (say) 1

2 n2/3 of its expectation with probability e−�(n1/3).
This gives the desired asymptotic for Itn.

We estimate Btn next. We claim that conditioned on the first k incoming edges e1, . . . , ek ,
the expected change Bk+1 − Bk is

E[Bk+1 − Bk | e1, . . . , ek] = 2 ·
(

Ik

n

)2 1

2
− 4Bk

n
+ O(n−1). (1)

The first summand comes from the creation of a blue isolated edge from two isolated
vertices, which contributes 2 to Bk . The probability that both endpoints are isolated vertices
is Ik

n · Ik−1
n−1 . Since 1

n(n−1)
− 1

n2 = O(n−3) and Ik ≤ n, this is
( Ik

n

)2 − O(n−1). The 1
2 factor

comes from the fact that the edge is randomly colored blue or red.
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For the second summand, the only way we lose blue isolated edges is when an endpoint of
the incoming edge is incident to a blue isolated edge. The probability that the two endpoints
hit two different blue isolated edges (hence contributing −4) is Bk

n · Bk−2
n−1 . On the other

hand, the probability that they hit exactly one isolated edge (hence contributing −2) is
2 · Bk

n

(
1 − Bk−1

n−1

)
. Thus the expected contribution from these losses is

(−4) · Bk

n
· Bk − 2

n − 1
+ (−2) · 2 · Bk

n

(
1 − Bk − 1

n − 1

)
= −4Bk

n
+ O(n−1),

matching the second summand.
Since we showed that 1

n Itn = (1 − o(1))e−2t whp, Eq. (1) suggests that b(t) = 1
n Btn

should satisfy the differential equation

db

dt
= (e−2t)2 − 4b, b(0) = 0,

whose solution is b(t) = te−4t .
We now verify this formally, using the same method as for the proof of Theorem 2.6.

For each k, let Ek be the event that
∣∣ 1

n Ik − e− 2k
n
∣∣ ≤ n− 1

3 and
∣∣ 1

n Bk − b
(

k
n

)∣∣ ≤ e
7k
n n− 1

3 . Now,
consider the sequence of random variables

Wk =
{

Bk − nb
(

k
n

)− e
7k
n n

2
3 if Ek−1 occurs,

Wk−1 otherwise.

We claim that Wk is a supermartingale. Assume that Ek occurs. Then, using (1) we obtain

E[Wk+1 − Wk | e1, . . . , ek , Ek]

≤
(

Ik

n

)2

− 4Bk

n
+ O(n−1) − n

[
b

(
k + 1

n

)
− b

(
k

n

)]
− [e 7(k+1)

n − e
7k
n
]
n2/3.

Since Ik
n ≤ e− 2k

n + n− 1
3 and e− 2k

n ≤ 1, we have
( Ik

n

)2 ≤ e− 4k
n + 2n− 1

3 + O(n− 2
3 ). Similarly,

− 4Bk
n ≤ −4b

(
k
n

) + 4e
7k
n n− 1

3 . Recall that for any twice-differentiable function f , Taylor’s
formula ensures that for any t, h, there is some 0 ≤ ξ ≤ 1 such that f (t + h) − f (t) =
f ′(t)h + 1

2 f ′′(t + ξh)h2. Since the second derivative of our function b(t) is bounded on the
interval 0 ≤ t ≤ 1.1, Taylor’s formula gives b

(
k+1

n

) − b
(

k
n

) = 1
n b′( k

n

) + O(n−2). By a

similar argument, e
7(k+1)

n − e
7k
n = 7

n e
7k
n + O(n−2). Combining all of these estimates and

using b′ = e−4t − 4b, we obtain

E[Wk+1 − Wk | e1, . . . , ek , Ek]
≤ e− 4k

n + 2n− 1
3 + O

(
n− 2

3
)− 4b

(
k

n

)
+ 4e

7k
n n− 1

3 − b′
(

k

n

)
− 7e

7k
n n− 1

3

= (2 − 3e
7k
n
)
n− 1

3 + O
(
n− 2

3
)
.

< 0,

so Wk is indeed a supermartingale. Next, we bound the stepwise differences Wk+1 −Wk . The

change in Bk is at most 4, and our Taylor estimates show that the error term nb
(

k
n

)− e
7k
n n

2
3
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changes by at most an absolute constant because b′( k
n

)
is bounded on k ≤ 1.1n. Therefore,

the Hoeffding-Azuma inequality implies that since W0 = −n
2
3 ,

P[∃k ≤ 1.1n : Wk ≥ 0] ≤ e−�(n1/3). (2)

Similarly, if

Ŵk =
{

Bk − nb
(

k
n

)+ e
7k
n n

2
3 if Ek−1 occurs,

Ŵk−1 otherwise.

then

E[Ŵk+1 − Ŵk | e1, . . . , ek , Ek]

≥
(

Ik

n

)2

− 4Bk

n
+ O(n−1) − n

[
b

(
k + 1

n

)
− b

(
k

n

)]
+
[
e

7(k+1)
n − e

7k
n

]
n2/3.

Since Ik
n ≥ e− 2k

n − n− 1
3 and e− 2k

n ≤ 1, we have
( Ik

n

)2 ≥ e− 4k
n − 2n− 1

3 . Also, − 4Bk
n ≥

−4b
(

k
n

)−4e
7k
n n− 1

3 . Using the same estimates as before for b
(

k+1
n

)−b
(

k
n

)
and e

7(k+1)
n −e

7k
n ,

we obtain

E[Ŵk+1 − Ŵk | e1, . . . , ek , Ek]
≥ e− 4k

n − 2n− 1
3 − 4b

(
k

n

)
− 4e

7k
n n− 1

3 + O(n−1) − b′
(

k

n

)
+ 7e

7k
n n− 1

3

= (−2 + 3e
7k
n
)
n− 1

3 + O(n−1).

> 0,

so Ŵk is a submartingale. Applying the Hoeffding-Azuma inequality once again we see that

P[∃k ≤ 1.1n : Ŵk ≤ 0] ≤ e−�(n1/3). (3)

We have now shown that whp, Wk < 0, Ŵk > 0, and
∣∣ 1

n Ik − e− 2k
n
∣∣ ≤ n−1/3 for every

k ≤ 1.1n. Whenever these all happen, the same induction argument as in the conclusion of
the proof of Theorem 2.6 shows that every Ek necessarily holds as well. In particular,∣∣∣∣Bk − nb

(
k

n

)∣∣∣∣ ≤ e
7k
n n

2
3 < e8n

2
3 ,

for all k ≤ 1.1n. This completes the proof for Btn, and the result for Rtn follows by symmetry.

Now that we have control of the vertex partition, we study the evolution of the suscepti-
bility. We have symmetry between blue and red, so it suffices to show that the susceptibility
of the blue color class does not “blow up” before 1.06n rounds. Let Xk be the sum of the
squares of the component sizes in the blue color class after the i-th round. Note that this is
precisely n times the susceptibility of the blue color class. In the remainder of this proof,
we will show that 1

n Xtn tracks x(t), which is the solution of the differential equation

dx

dt
= x2 + 3b2 − 2bx, x(0) = 1, (4)
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where b(t) = te−4t . (The precise form of the differential equation will be derived in what
follows.) Numerical methods confirm that this differential equation “blows up” only at
t ≈ 1.065, and x(t) ≤ 209 for all t ≤ 1.06.

Lemma 4.5. Suppose that 1
n Xk < 210. Then the expected change in Xk is:

E

[
Xk+1 − Xk | e1, . . . , ek;

1

n
Xk < 210

]

=
(

Xk

n

)2

+ 1

n2

[
4B2

k − 4BkXk − R2
k + 2RkXk

]+ O(n−1).

Proof. Let the connected components in the blue color class be C1, C2, …. Suppose that
the (k +1)-st edge has endpoints in Ci, Cj. If i = j, or if the edge is colored red, then the sum
of the squares of the blue components does not change. Otherwise, it increases by exactly
(|Ci| + |Cj|)2 − |Ci|2 − |Cj|2 = 2|Ci||Cj|. Therefore,

E

[
Xk+1 − Xk | e1, . . . , ek;

1

n
Xk < 210

]
=
∑
i �=j

2|Ci||Cj| · |Ci|
n

|Cj|
n − 1

· pij

where pij is the probability that an edge with endpoints in Ci and Cj is colored blue. Note
that pij is usually 1

2 , but is sometimes 0 or 1 when the endpoints hit isolated edges. The
factor of n − 1 in the denominator is cumbersome, so we will replace it with an n. To do
this, note that

∑
i �=j 2|Ci|2|Cj|2 · pij ≤ 2(

∑
i |Ci|2)2 = 2X2

k ≤ 2(210n)2 = O(n2). Since
1

n(n−1)
− 1

n2 = O(n−3), the total additive error we will make by replacing the n − 1 with an
n is O(n−1). Therefore,

E

[
Xk+1 − Xk | e1, . . . , ek;

1

n
Xk < 210

]
= 2

n2

∑
i �=j

|Ci|2|Cj|2 · pij + O(n−1).

Let S be the right hand side of this equality, and let S′ be what it would be if all pij were
equal to 1

2 . Then

S′ = 1

n2

∑
i �=j

|Ci|2|Cj|2 + O(n−1) ≤
(

Xk

n

)2

+ O(n−1). (5)

Now we estimate the total error we made in S′ by replacing all pij with 1
2 . Whenever

pij = 0, we overestimated by 1
n2 |Ci|2|Cj|2, and when pij = 1, we underestimated by that

same amount. To systematically examine all of the cases when pij �= 1
2 , we classify the

components Ci of the blue color class into types, which we represent with the letters B, R, I,
and J. We say that Ci has type B if it is part of the blue matching (hence a single edge), type
R if it is part of the red matching (hence a single vertex), type I if it is an isolated vertex,
and type J otherwise. Now we break into cases depending on the types of Ci and Cj. In each
case, we calculate the sum of all |Ci|2|Cj|2 of that type.

Case BB. In this case, both Ci and Cj have type B, meaning that they are isolated edges
from the blue matching. If the incoming edge has one endpoint in Ci and one endpoint
in Cj, our algorithm will definitely color it red, so pij = 0. Any |Ci|2|Cj|2 of this type
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is precisely 22 · 22 = 16. The number of Ci of type B is Bk
2 , because the blue matching

consists of Bk
2 isolated blue edges. So, the number of pairs Ci, Cj of type BB with i �= j is

Bk
2 · ( Bk

2 −1
) = B2

k
4 −O(n). Therefore, the sum of all |Ci|2|Cj|2 of this type is 4B2

k −O(n).

Cases BI, IB. Again pij = 0. Any |Ci|2|Cj|2 of this type is precisely 22 · 12 = 4. There
are Bk

2 · Ik pairs Ci, Cj of type BI, and the same number of type IB, so the sum is 4BkIk .

Cases BJ, JB. Again pij = 0. Let Z be the set of indices j such that Cj has type J. Since
there are Bk

2 components Ci of type B, the sum of |Ci|2|Cj|2 over all pairs of type BJ
alone is

Bk

2

∑
j∈Z

22 · |Cj|2 = 2Bk

∑
j∈Z

|Cj|2

= 2Bk

(
Xk −

∑
j �∈Z

|Cj|2
)

= 2Bk

(
Xk − Ik − Rk − Bk

2
· 22

)
= 2Bk(Xk − Ik − Rk − 2Bk).

The explanation is as follows. Xk is the sum of all |Cj|2. Then, we break the sum over
j �∈ Z of |Cj|2 into the cases when Cj has type I, R, or B, in which |Cj| is always 1, 1, and
2, respectively.
The total contribution from pairs of type BJ and JB is twice that from BJ alone, so it is
4Bk(Xk − Ik − Rk − 2Bk).

Case RR. Now pij = 1. Any |Ci|2|Cj|2 of this type is precisely 12 · 12 = 1. The number
of Ci of type R is Rk , because the red matching consists of Rk

2 isolated red edges, which
give Rk isolated vertices in the blue color class. So, the number of pairs Ci, Cj of type
RR with i �= j is Rk · (Rk − 1) = R2

k − O(n). Thus the sum of |Ci|2|Cj|2 is R2
k − O(n).

Cases RI, IR. Again pij = 1. Any |Ci|2|Cj|2 of this type is precisely 12 · 12 = 1. There
are Rk · Ik pairs Ci, Cj of type RI, and the same number of type IR, so the sum is 2RkIk .

Cases RJ, JR. Again pij = 1. Let Z be the set of indices j such that Cj has type J. Since
there are Rk components Ci of type R, the sum of |Ci|2|Cj|2 over all pairs of type RJ is

Rk

∑
j∈Z

12 · |Cj|2 = Rk(Xk − Ik − Rk − 2Bk),

where we used the exact same calculation as in the case BJ for
∑

j∈Z |Cj|2. We double this
to include the contribution from JR, and obtain a total sum of 2Rk(Xk − Ik − Rk − 2Bk).

All other cases. For all other pairs of types, our algorithm chooses a random color, so
pij = 1

2 , and there is no difference between S and S′.

Combining all of the above calculations, we express E
[
Xk+1 − Xk | e1, . . . , ek; 1

n Xk <

210
] = S in terms of S′ ≤ ( Xk

n

)2 + O(n−1).
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S = S′ − 1

n2

[(
4B2

k − O(n)
)+ 4BkIk + 4Bk(Xk − Ik − Rk − 2Bk)

]
+ 1

n2

[(
R2

k − O(n)
)+ 2RkIk + 2Rk(Xk − Ik − Rk − 2Bk)

]
.

= S′ + 1

n2

[
4B2

k − 4BkXk − R2
k + 2RkXk

]+ O(n−1)

≤
(

Xk

n

)2

+ 1

n2

[
4B2

k − 4BkXk − R2
k + 2RkXk

]+ O(n−1),

as desired.

By Lemma 4.4, 1
n Bk and 1

n Rk track b(t) = te−4t , so Lemma 4.5 indeed indicates that
the differential equation (4) estimates 1

n Xtn. We now prove this formally. Our method
uses Hoeffding-Azuma, so we need bounded differences. In our proof of Theorem 2.6,
we achieved this by controlling the distribution of the component sizes with the result of
Spencer and Wormald (Fact 2.5).

Recall that a graph has a K , c component tail if for all positive integers s, at most Ke−cs-
fraction of vertices lie in components of order at least s. In particular, the empty graph has
a K , c component tail with K = e and c = 1. Fact 2.5 then ensures that after a period of
random edge addition, the resulting graph still has a K ′, c′ component tail. However, the
period only lasts for about 0.5n edges when starting with the empty graph, and our process
needs to run for 1.06n rounds. To work around this issue, we use several iterations.

Define the sequence t0, . . . , t19, by letting t0 = 0, and ti+1 = ti + 1
4x(ti)

, where x(t) is the
solution of the differential equation (4). The motivation for this sequence is as follows. Sup-
pose we have already established that the blue graph after tin rounds has a Ki, ci component
tail, and its susceptibility L is approximately x(ti), specifically, that L < 1.5x(ti). Then, we
could apply Fact 2.5 with L = 1.5x(ti), K = Ki, c = ci, and γ = 1

4 , to conclude that after
ti+1n rounds, even if all new edges were colored blue, the blue graph would still have a
Ki+1, ci+1 component tail whp. This allows us to define sequences K0 ≤ · · · ≤ K19 = K ′

and c1 ≥ · · · ≥ c19 = c′. We confirmed numerically that t19 > 1.06, so this would allow us
to maintain a K ′, c′ component tail for 1.06n rounds. Now we formalize this heuristic, and
prove our two-color avoidance theorem.

Proof of Theorem 1.3. For each 0 ≤ k ≤ 1.06n, let Ek be the event that all of the following
hold:

Ek =




∣∣∣∣1nBk − b

(
k

n

)∣∣∣∣ ≤ e8n− 1
3 ,

∣∣∣∣1nRk − b

(
k

n

)∣∣∣∣ ≤ e8n− 1
3 ,

1

n
Xk ≤ x

(
k

n

)
+ e

500k
n n− 1

4 ,

and the blue graph has a K ′, c′ component tail.

We define a supermartingale. Let

Zk =

Xk − nx

(
k

n

)
− e

500k
n n

3
4 if Ek−1 occurs,

Zk−1 otherwise.
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We only consider k ≤ 1.06n, and x(t) ≤ 209 for all t ≤ 1.06, so if Ek holds, we have
1
n Xk < 210. Then Lemma 4.5 gives

E[Zk+1 − Zk | e1, . . . , ek , Ek] ≤
(

Xk

n

)2

+ 1

n2

[
4B2

k − 4BkXk − R2
k + 2RkXk

]+ O(n−1)

− n

[
x

(
k + 1

n

)
− x

(
k

n

)]
− [e 500(k+1)

n − e
500k

n
]
n

3
4 .

Now we estimate each term. Since Xk
n ≤ x

(
k
n

)+ e
500k

n n− 1
4 and k ≤ 1.06n, we have

( Xk
n

)2 ≤
x2
(

k
n

)+ 2x
(

k
n

)
e

500k
n n− 1

4 + O(n− 1
2 ). Similarly,

B2
k

n2 = b2
(

k
n

)+ O(n− 1
3 ), and the same estimate

holds for
R2

k
n2 . Also, 1

n (2Rk − 4Bk) = −2b
(

k
n

)+ O(n− 1
3 ), so

1

n
(2Rk − 4Bk) · Xk

n
≤ −2b

(
k

n

)[
x

(
k

n

)
− e

500k
n n− 1

4

]
+ O

(
n− 1

3
)
.

From Taylor bounds similar to those in the proof of Lemma 4.4, we have x
(

k+1
n

)− x
(

k
n

) =
1
n x′( k

n

)+ O(n−2) and e
500(k+1)

n − e
500k

n = 500
n e

500k
n + O(n−2). Combining all of these bounds,

and using x′ = x2 + 3b2 − 2bx, the entire estimate simplifies to

E[Zk+1 − Zk | e1, . . . , ek , Ek] ≤
[

2x

(
k

n

)
+ 2b

(
k

n

)
− 500

]
e

500k
n n− 1

4 + O(n− 1
3 ),

which is indeed less than zero for large n because b(t) = te−4t is always less than 1,
and x(t) ≤ 209 for all t ≤ 1.06. Therefore Z0, . . . , Z1.06n is a supermartingale. Note that
Z0 = −n

3
4 . Now because we are dealing with a graph with a K ′, c′ tail, just as in the proof

of Theorem 2.6 we have |Zk+1 − Zk| = O(log2 n) and then the Hoeffding-Azuma inequality
implies that for each k ≤ 1.06n,

P[Zk ≥ 0] ≤ e−�(n1/2/ log4 n).

Therefore, by a union bound, whp Zk < 0 for all k ≤ 1.06n. Also, Lemma 4.4 implies that

whp,
∣∣ Bk

n − b
(

k
n

)∣∣ ≤ e8n− 1
3 and

∣∣ Rk
n − b

(
k
n

)∣∣ ≤ e8n− 1
3 for every k ≤ 1.06n. Let E be the

conjunction of all of these high-probability events.
To complete our argument, we show by induction that whp, for each 0 ≤ i ≤ 19, the

blue graph after tin rounds has a Ki, ci component tail. The base case i = 0 is trivial. For
the induction step, suppose that it is true for i. Condition on the blue graph after tin rounds
having a Ki, ci component tail, as well as on the event E that all Zk < 0 and all Bk , Rk are
concentrated. Then, the same argument as in the conclusion of the proof of Theorem 2.6
forces all Ek to occur for k ≤ tin, since Ki ≤ K ′ and ci ≥ c′. In particular, Etin already implies
that after tin rounds, the blue graph has susceptibility 1

n Xtin ≤ x(ti) + o(1) < 1.5x(ti).
Applying Fact 2.5 with L = 1.5x(ti), K = Ki, c = ci, and γ = 1

4 , we see that whp,
even if all new edges were colored blue, the blue graph after tin + (1 − 1

4

)
n

2·1.5x(ti)
= ti+1n

rounds would have a Ki+1, ci+1 component tail. This finishes the induction, so whp the blue
graph after t19n > 1.06n rounds has a K ′, c′ component tail. In particular, all connected
components are of order O(log n), so there is no giant in the blue color class. The same
result follows for the red color class by symmetry.
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5. ONLINE CREATION OF GIANTS

Recall that the trivial bounds for the online creation of giants are as follows. No algorithm
can create giants in all colors in fewer than (1 − ε) n

2 total edges, because that is not even
enough to make a giant in the uncolored graph. On the other hand, if one randomly colors
each incoming edge, then monochromatic giants will appear after (r + ε) n

2 total edges. In
this section, we prove Theorems 1.4, 1.5, and 1.6, which improve the above trivial lower
and upper bounds for the online creation of giants.

5.1. Lower Bound

The previous argument iterated Fact 2.5 to maintain the component tail property, using a
customized argument to control the susceptibility for a specific algorithm. In this section,
we need to consider an arbitrary coloring strategy, so we use our general-purpose tool
(Theorem 2.6) to control the susceptibility. This will establish a lower bound of �(n log r)
for the number of edges required to create giants online in each of r color classes. We need
the following simple bound for random graphs.

Lemma 5.1. Let λ be a constant. The random graph Gn,p with p = λ

n contains at most

o
(

n
log n

)
cycles of length at most

√
log n, whp.

Proof. The expected number of cycles of length k in Gn,p is at most nk

2k pk = λk

2k , so the

expected number of cycles of length at most
√

log n is below
∑√

log n

k=3
λk

2k . If λ ≤ 1, this is

below
√

log n. Otherwise, it is below
√

log n · λ
√

log n. In both cases, the conclusion follows
from Markov’s inequality.

Next, we need a worst-case bound on how large the susceptibilities of different color
classes can be when a graph is colored.

Lemma 5.2. Let K , c be positive real constants. Let G be an n-vertex graph with a
K , c component tail. Also assume that G contains o

(
n

log n

)
cycles of length at most

√
log n.

Consider any two-coloring of the edges of G, and let G(1) and G(2) be the n-vertex subgraphs
of G obtained by keeping only edges in the first or second color, respectively. Then S(G(1))+
S(G(2)) ≤ S(G) + 1 + o(1).

Proof. Each component of G(i) is entirely contained within a component of G, so we
may break down the left hand side by components of G. Consider first the components
of G which are larger than

√
log n. Since G has a K , c component tail, the number of

vertices in such components is at most Ke−c
√

log nn. The component tail also implies that
there is some constant C such that all components of G are bounded by C log n. Since
S(G(1)) + S(G(2)) = 1

n

∑
v(C

(1)
v + C(2)

v ), where C(i)
v is number of vertices in the component

of G(i) containing v, the total contribution from vertices in components of G with order at

least
√

log n is only 1
n · Ke−c

√
log nn · 2C log n = o(1).

Next, consider the components of order at most
√

log n which contain cycles. Since the
susceptibility is 1

n times the sum of squares of component sizes, each component of this type
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contributes at most 1
n · 2(

√
log n)2 to S(G(1)) + S(G(2)). By assumption, G only has o

(
n

log n

)
cycles small enough to fit into these components, so the number of such components is at
most o

(
n

log n

)
. Therefore, their total contribution to S(G(1))+S(G(2)) is at most 1

n ·2(
√

log n)2 ·
o
(

n
log n

) = o(1).
The main contribution comes from the remaining components, which are all trees. Any

tree T in G contributes 1
n

∑
v∈T |T | to S(G). We claim that it contributes at most 1

n

∑
v∈T (|T |+

1) to S(G(1)) + S(G(2)), i.e., the additional amount is at most 1
n |T |. Indeed, T ’s contribution

to S(G(i)) is precisely 1
n times the sum of the sizes of the G(i)-components that contain each

vertex v ∈ T . Trees have the property that each pair of vertices is connected by a unique
path, so we can express the size of the G(i)-component containing v as

∑
w∈T I (i)

v,w, where the
indicator I (i)

v,w is 1 if the unique path between v and w is monochromatic in color i, and 0
otherwise. Hence, the total contribution of T to S(G(1)) + S(G(2)) is 1

n

∑
v,w∈T (I (1)

v,w + I (2)
v,w).

Since T is a tree, the only time both indicators I (i)
v,w can be 1 is when w = v. So for each v, the

sum
∑

w∈T (I (1)
v,w + I (2)

v,w) is at most |T |+1, as claimed. Summing over all tree components, we
see that their total contribution to S(G(1))+S(G(2)) exceeds S(G) by at most 1

n times the sum
of the sizes of tree components, which is at most 1. Combining this with the contributions
from non-tree components above, we obtain S(G(1)) + S(G(2)) ≤ S(G) + 1 + o(1), as
desired.

Now we proceed to prove Theorem 1.4, using the previous two lemmas, and Theorem 2.6
to control the evolution of susceptibility. We will show that for any r which is a power of
two, whp no online algorithm can create giants in all r colors within (c log2 r)n edges,
where c ≈ 0.043. This clearly implies the desired asymptotic bound. Our calculated bound
for r = 2 will follow as a special case.

Proof of Theorem 1.4. Let C0 be the set of all r = 2t colors. Let γ be a constant parameter
which we will specify later. The graph is initially empty, with susceptibility L0 = 1. By
Theorem 2.6, after (1 − γ ) n

2 L−1
0 edges, the graph formed by the union of those edges has

a K1, c1 component tail and susceptibility at most L0
γ

+ o(1) whp. Arbitrarily divide the
colors into two groups of size 2t−1 each. Lemmas 5.1 and 5.2 ensure that no matter how the
edges were colored, one of the two color groups determines a graph G1 with susceptibility
at most L1 + o(1), where L1 = 1

2

(
1 + L0

γ

)
. Note that G1 still has a K1, c1-component tail,

and let C1 be the set of 2t−1 colors we picked.
We iterate this procedure a total of t times. For example, in the next step, we advance

by (1 − γ ) n
2 L−1

1 more edges. Even if all of them received colors in C1 (i.e., were added to
G1), the susceptibility of the graph determined by C1-colors is at most L1

γ
+ o(1) whp, by

Theorem 2.6. Arbitrarily divide the colors of C1 into two groups of size 2t−2 each. Again
by Lemmas 5.1 and 5.2, one of the two color groups, say C2, determines a graph G2 with
susceptibility at most L2 + o(1), where L2 = 1

2

(
1 + L1

γ

)
.

After t iterations, we conclude that there is some single color c such that the graph Gt

determined by all edges of color c has a Kt , ct component tail and susceptibility at most Lt .
A final application of Theorem 2.6 implies that we can add n

2 (L
−1
t − ε) more random edges

and still have all components in color c of order O(log n) whp.
It remains to count the total number of edges which we have accumulated. The

relationship between the Li’s is Li+1 = 1
2

(
1 + Li

γ

) = 1
2 + Li

2γ
, so
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L0 = 1,

L1 = 1

2
+ 1

2γ
,

L2 = 1

2
+ 1

4γ
+ 1

4γ 2
,

L3 = 1

2
+ 1

4γ
+ 1

8γ 2
+ 1

8γ 3
,

and in general,

Lt = 1

2
+ 1

2(2γ )
+ 1

2(2γ )2
+ · · · + 1

2(2γ )t−1

+ 1

(2γ )t
< 1 + 1

2γ
+ · · · + 1

(2γ )t
<

(
1 − 1

2γ

)−1

.

Thus, the total number of edges added (not even counting the final step) is at least

(1 − γ )
n

2

t−1∑
i=0

L−1
i > (1 − γ )

n

2
· t

(
1 − 1

2γ

)
.

By routine calculus, the optimal choice forγ is 1√
2
, giving (1−γ )

(
1− 1

2γ

) = 3
2 −

√
2 ≈ 0.086.

Since t = log2 r, we indeed see that whp, no online algorithm can create giants in all colors
within 0.043n log2 r edges. This completes the proof of the asymptotic bound.

For the specific case of r = 2 colors, we can add the final batch of n
2 (L

−1
t − ε) random

edges (here t = 1) to get a specific bound which beats the trivial bound of n/2 edges. Since
L1 = 1

2

(
1 + 1

γ

)
, this gives a total edge count of

(1 − γ )
n

2
+ n

2

(
L−1

1 − ε
) = n

2

[
(1 − γ ) +

(
1

2

(
1 + 1

γ

))−1

− ε

]

= n

2

[
(1 − γ ) + 2γ

γ + 1
− ε

]
.

By routine calculus, the optimal choice for γ is
√

2−1. Therefore, whp, no online algorithm
can create giants in both colors within (2 − √

2 − ε)n edges, as claimed.

5.2. Upper Bound for Many Colors

In this section, we present an online coloring algorithm which creates giants in all r color
classes within roughly n

2

√
r edges. The strategy is based on the classical fact that there are

infinitely many values of r such that the edges of Kr can be perfectly partitioned into cliques
of order roughly

√
r.

Fact 5.3. Let r = q2 + q + 1 for some prime power q. The edges of Kr can be partitioned
into disjoint sets E1, . . . , Er such that each Ei is precisely the edge set of some clique of
order q + 1.
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Proof. The projective plane of order r = q2 + q + 1 is the finite geometry where points
and lines correspond to dimension-1 and dimension-2 subspaces of F

3
q, respectively. This

object contains exactly q3−1
q−1 = q2 + q + 1 points and the same number of lines, and has the

property that every pair of distinct points determines a unique line.
Identify the vertices of Kr with the points of the projective plane. Let the q+1 vertices of

the clique corresponding to Ei be the points contained in the i-th line of the projective plane.
The edge partition property is then equivalent to the incidence property of the projective
plane.

We also need the giant component threshold in certain inhomogeneous random graph
models, where the edge probability is not uniformly p at all

(n
2

)
possible sites. Instead,

the probability of each edge depends on the locations of its endpoints. Bollobás, Janson,
and Riordan recently completed a far-reaching study of phase transitions in these types of
inhomogeneous models in [10]. We use a special case of their work, regarding the specific
model below.

Fix a symmetric k ×k matrix A = (aij). Let Gn,A be the n-vertex random graph defined as
follows. Split the n vertices into k groups of size n/k. Between each pair of distinct vertices,
say from the i-th and j-th groups (where i may equal j), place an independent random edge
with probability

aij
n . Note that when A = cJk , where Jk is the k × k all-ones matrix, Gn,A is

the Erdős-Rényi random graph Gn,p with p = c
n .

The following result was proved as Theorem 3.1 of [10]. Here, the L2 operator norm
‖B‖2 of a k × k matrix B is sup{‖Bx‖2 : ‖x‖2 = 1}, and the 2-norm of a vector (x1, . . . , xk)

is
√∑

x2
i .

Fact 5.4. Let A = (aij) be a symmetric k × k matrix, and let A be its normalization
( aij

k

)
.

If ‖A‖2 > 1, then Gn,A contains a giant component whp.

Remark 1. In the same theorem, Bollobás, Janson, and Riordan also proved the comple-
mentary result that when ‖A‖2 ≤ 1, the largest component of Gn,A is o(n) whp. However,
we do not need this part for our analysis.

Remark 2. The L2 operator norm of a real symmetric matrix A always equals its spectral
radius ρ(A), which is the maximum |λi| over all eigenvalues λi. Indeed, A is diagonalizable
with an orthonormal basis of real eigenvectors, so let the eigenvalues and eigenvectors be
λ1, . . . , λk and v1, . . . , vk , respectively. Expressing any vector x in this basis as

∑
civi, we

have that the condition ‖x‖2 = 1 is precisely
∑

c2
i = 1, and ‖Ax‖2 = √∑ λ2

i c2
i . Therefore,

‖Ax‖2 has maximum value equal to the largest absolute value of an eigenvalue.

Remark 3. As we mentioned above, the Erdős-Rényi model Gn,p with p = c
n corresponds

to Gn,A with A = cJk . The normalized matrix A = c
k Jk has eigenvalues c and 0, so Fact 5.4

implies the classical result that the giant component appears after p = 1
n .

We use this to study the k-partite random graph G(k)
n,p, which has n vertices split into equal

groups of size n
k , and independent random edges with probability p = c

n between pairs of
vertices from distinct groups. In the above framework, this is Gn,A with A = c(Jk − Ik).

Corollary 5.5. Let k ≥ 2 be a positive integer, and let c > k
k−1 be a real number. Then

the k-partite random graph G(k)
n,p with p = c

n contains a giant component whp.
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Proof. By Fact 5.4 and our second remark, the problem reduces to determining the eigen-
values of A = c

k (Jk − Ik). These are precisely c
k (k − 1) and c

k (0 − 1), so since k ≥ 2, the
giant component appears once c > k

k−1 .

We are now ready to state our algorithm and prove its effectiveness. Note that a coloring
algorithm that produces giants in r colors trivially gives coloring algorithms for any r ′ < r
as well, simply by using the first color whenever any color beyond r ′ was to be used. So,
Theorem 1.5 is a consequence of the following more precise formulation, combined with
the Prime Number Theorem and Fact 2.3.

Theorem. Let r = q2 + q + 1 for some prime power q. There is an online algorithm
such that for any ε > 0, whp all r color classes contain giant components within

(
r
q + ε

)
n
2

edges.

Proof. Arbitrarily partition the n vertices into r sets V1, . . . , Vr , each of size n
r . By Fact 5.3,

there is a partition E1 ∪ . . .∪Er of the edges of Kr , such that each Et is precisely the edge set
of some clique of order q +1. Our online coloring algorithm is then as follows. Usually, the
incoming edge will have endpoints in distinct parts Vi and Vj. In that case, color the edge
with the index t of the Et which contains the edge ij in the partitioned graph Kr . Otherwise,
if the incoming edge is spanned by a single Vi, then discard the edge entirely. Note that this
is even stronger than coloring it, because we will now find giants without using those edges
at all.

Our algorithm disregards the entire history of the process, since the color of each edge is
a function of the locations of its endpoints. In particular, the order of the edges is irrelevant,
so the performance only depends on the final edge set. Thus, by Fact 2.3, it suffices to show
that if this strategy is applied to Gn,p with p = ( r

q + ε

2

)
1
n , then it creates giants in all colors

whp. By passing to this independent model, each color class itself becomes a (q+1)-partite
random graph G(q+1)

n′ ,p , on only n′ = n
r (q + 1) ≈ n√

r vertices. Indeed, Et is the edge set of a
clique on some set S of q + 1 vertices of Kr , so the edges that receive color t are precisely
those with endpoints in some Vi and Vj with i �= j and i, j ∈ S.

Finally, we can apply Corollary 5.5 with k = q + 1, since p = c′
n′ with c′ = (

r
q + ε

2

)
1
n ·

n
r (q + 1) >

q+1
q . Therefore, each individual color class contains a giant component whp.

Taking a union bound over all r (finitely many) color classes finishes the proof.

5.3. Upper Bound for Two Colors

To adapt our strategy from the previous section to the case r = 2, we must specify symmetric
0-1 matrices A1 and A2 which sum to the k × k all-ones matrix Jk . We then split the vertices
into k equal parts V1, . . . , Vk , and color an edge with endpoints in some Vi, Vj with color 1
if the ij-entry of A1 is 1, and color 2 otherwise.

Then, after applying this strategy to the edges of Gn,p with p = c
n , the i-th color class

is a copy of Gn,cAi . By the second remark after Fact 5.4, this contains a giant component
when the spectral radius ρ( c

k Ai) exceeds 1. Since our objective is to create giants in both
colors as rapidly as possible, we want to select A1 and A2 such that A1 + A2 = Jk , but
min{ρ(A1), ρ(A2)} is as large as possible. This appears to be a nontrivial problem, but one
simple way to choose the matrices is to let A1 have 1’s in the top-left t × t submatrix, and
0’s everywhere else. This leads to the following bound.
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Proposition 5.6. For every ε > 0, it is possible to create giants in two colors online
within

(
3
4 + ε

)
n rounds whp.

Proof sketch. Since A1 is just Jt embedded in an all-zeros matrix, its spectral radius is
precisely t. Next, note that A2 = Jk − A1 has rank two, so it has at most two nonzero
eigenvalues λ1, λ2. The trace of A2 is k − t, so λ1 + λ2 = k − t. Also, the main diagonal
of A2

2 has its first t entries equal to k − t, and the remaining k − t entries equal to k, giving
tr(A2

2) = t(k − t) + (k − t)k = k2 − t2. This trace also equals λ2
1 + λ2

2, because the nonzero
eigenvalues of A2

2 are λ2
1 and λ2

2. Solving this system of equations, one finds that the largest
eigenvalue of A2 is 1

2 (k − t + √
k2 + 2kt − 3t2). Recall that the largest eigenvalue of A1

is t, and we wanted the largest possible min{ρ(A1), ρ(A2)}. Routine calculus shows that
the optimal choice of t is 2

3 k, giving both ρ(Ai) = 2
3 k. So, we choose the particular 3 × 3

matrices

A1 =

1 1 0

1 1 0
0 0 0


 , A2 =


0 0 1

0 0 1
1 1 1


 .

Therefore, as we remarked at the beginning, Fact 5.4 shows that when this strategy is applied
to Gn,p with p = c

n , both colors will contain giant components if their spectral radii ρ( c
k Ai)

exceed 1, i.e., once c > 3
2 . By Fact 2.3, this happens after

(
3
2 + ε

)
n
2 rounds, so we are

done.

Remark. Although the partition we chose may appear naïve, there is evidence to suggest
that it may be optimal. Note that if we ignore the main diagonal (an effect that can be made
negligible by choosing large k) and seek A1 +A2 = Jk − Ik , then A1 and A2 are the adjacency
matrices of a graph and its complement.

Several researchers have studied the question of bounding the sum of the spectral radii
of the adjacency matrices of complementary graphs (see [15, 18, 23–25, 31]). In partic-
ular, Nikiforov recently conjectured in [23] that the sum of these two spectral radii is
always at most 4

3 k + O(1), where k is the number of vertices. If true, this would imply that
min{ρ(A1), ρ(A2)} ≤ 2

3 k + O(1), which our construction achieved. In fact, in his extremal
example, one graph was a clique on a subset of the vertices, which is essentially the same
as our construction. So, perhaps 3

4 n is the limit of what can be achieved by any strategy as
above.

Next, we prove Theorem 1.6, which shows that by making the strategy more adaptive,
one can create giants even faster. The algorithm in the proof of Proposition 5.6 fixed a subset
R of vertices in advance, and used the first color whenever an edge was spanned by R. The
key idea is to let the subset R depend on the outcomes of the first few rounds. To analyze
this strategy, we will need two results from the literature. The first is a folklore result on the
susceptibility of the Erdős-Rényi random graph.

Fact 5.7. Let 0 < t < 1
2 be a fixed parameter. Then there exist constants K , c such that

whp, the graph on n vertices formed by tn independent random edges has susceptibility
1

1−2t + o(1), and a K , c component tail.

Justification. This result is well-known. Nevertheless, for completeness, we will show how
a formal proof can be derived as a consequence of Theorem 1.1 of Spencer and Wormald
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in [28]. We do not state their full theorem here, as it is much broader in scope, and hence
necessarily more technical. Instead, we provide some pointers for the interested reader
to check this conclusion. Page 591 of their paper specifies the bounded size algorithm
which corresponds to the Erdős-Rényi evolution. In terms of these parameters, their target
susceptibility function S(t) for the tn/2-edge random graph is the solution of their differential
equation (37), where their subscript 
j only takes the single value (ω, ω, ω, ω). In their
notation, this is simply S′(t) = I((ω, ω, ω, ω), t). The right hand side evaluates to S(t)2

because all xω(t) = 1 (pointed out on page 597) and their Eq. (6) implies that Sω = S for
the Erdős-Rényi evolution. The solution of S′(t) = S(t)2 with initial condition S(0) = 1 is
S(t) = 1

1−t . This indeed matches Fact 5.7 because Spencer and Wormald parameterize their
susceptibility S(t) with respect to the random graph with tn/2 edges, whereas we consider
tn edges.

The second result we need is Theorem 3.1 of [28], again translated to account for the
fact that their parameterization is for tn/2 edges, instead of tn edges.

Fact 5.8. Let L, K , c, ε be positive real numbers. Let G be a graph on n vertices with a
K , c component tail and S(G) = L. Then, after adding (1+ ε) n

2L more independent random
edges, the resulting graph contains a giant component whp.

Proof of Theorem 1.6. Let the colors be red and blue. We state the coloring strategy in
terms of a constant parameter t, which we can optimize at the end. (The best choice turns
out to be t ≈ 0.189.) For the first tn rounds, color all edges red. Then, permanently fix R
to be the set of all vertices incident to a red edge at that time. Color each future edge red
whenever both endpoints lie in R, and blue otherwise.

Let α = |R|
n . Lemma 4.4 shows that α = (1 − e−2t + o(1)) whp. Let us analyze how

many rounds are required for a red giant to appear. By Fact 5.7, the (completely red) graph
G at time tn has susceptibility S(G) = 1

1−2t + o(1) whp, so the sum of the squares of its
component sizes is

(
1

1−2t + o(1)
)
n. Let GR be the subgraph of G induced by R. The sum of

the squares of the components in GR is precisely S(G)n− (1−α)n, because all components
of G outside R are singletons. Therefore, since GR has αn vertices, its susceptibility L is:

L = 1

αn
[S(G)n − (1 − α)n] = (1 + o(1))

1

α

[
1

1 − 2t
− e−2t

]
.

Then, by Fact 5.8, whp the red graph will contain a giant component after (1 + ε) |R|
2L more

random edges are added with both endpoints in R. By a standard coupling as in Fact 2.3,
this happens after (1 + ε) |R|

2L · α−2 more rounds whp, since each incoming edge falls within
R with probability α2. Substituting |R| = αn, we find that a red giant appears after a grand
total of tn + ( 1

2αL + ε)n = [t + 1
2

(
1

1−2t − e−2t
)−1 + ε

]
n rounds whp.

To analyze the blue graph, observe that by a similar coupling to Fact 2.3, after tn+(1+ε) cn
2

rounds the blue graph contains Gn,cA whp, where A is the n × n matrix with 0’s in the top-
left |R| × |R| submatrix, and 1’s everywhere else. Plugging |R| = αn into the eigenvalue
calculation from the proof of Proposition 5.6, we see that the largest eigenvalue of A is
n
2

(
1 −α +√

1 + 2α − 3α2
)
. Thus, Fact 5.4 implies that whp, the giant component appears

in the blue graph once c surpasses 2

1−α+
√

1+2α−3α2
+ ε, i.e., when the total number of rounds

exceeds tn + 1+ε

1−α+
√

1+2α−3α2
n.
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Since α = 1 − e−2t + o(1), it is now routine to numerically optimize t. It turns out that
the best choice is t ≈ 0.189, which gives α ≈ 0.314. Then, both of the bounds at the ends
of the previous two paragraphs are satisfied after 0.733n rounds, completing the proof.

6. CONCLUDING REMARKS

In this paper we have introduced several rather natural algorithmic variants of the classical
problem of the appearance of the giant component in a random graph/process. As expected,
the offline cases of these problems appear to be much more accessible, and indeed we
managed to solve both the avoidance and the embracing versions asymptotically for any
fixed r. The online case seems to be more challenging; there we showed that in all cases
one can do better than the trivial algorithms that randomly color each incoming edge, but
for creating giants, rather sizable gaps remain.

It would certainly be nice to settle the case of two colors for creating and avoiding giants
online in both color classes, but that could be difficult. A more approachable problem might
be to close the asymptotic gap between the lower bound of �(log r) ·n and the upper bound
of O(

√
r) · n for the question of creating giants in r colors. In particular, can one show a

lower bound of the form ran for some positive constant a?
Another, perhaps more technical, issue that we would like to see settled is the nature of

an algorithm for avoiding giants online. Our online avoidance algorithm is randomized. Is
there a deterministic strategy that matches its performance in the online setting?
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