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Abstract. Classes of objects called «-parameter sets are defined. A Ramsey
theorem is proved to the effect that any partitioning into r classes of the »c-parameter
subsets of any sufficiently large «-parameter set must result in some /-parameter subset
with all its /t-parameter subsets in one class. Among the immediate corollaries are the
lower dimensional cases of a Ramsey theorem for finite vector spaces (a conjecture of
Rota), the theorem of van der Waerden on arithmetic progressions, a set theoretic
generalization of a theorem of Schur, and Ramsey's Theorem itself.

1. Introduction.    In 1930, F. P. Ramsey [10], [12] proved the following theorem:

Theorem [Ramsey]. Let k, I, r be positive integers. Then there is a number
N=Nik, I, r), depending only on k, I and r, with the following property: If S is a set
with at least N elements, and if all the subsets of S with k elements are divided into r
classes in any way, then there is some subset of I elements with all of its subsets ofk
elements in a single class.

Since this theorem appeared there has been interest in finding generalizations,
applications and analogues of it. The work presented here was motivated by a
conjecture made by Gian-Carlo Rota, a geometric analogue to Ramsey's Theorem,
which can be stated as follows :

Conjecture [Rota]. Let /, k, r be nonnegative integers, and F a field of q
elements. Then there is a number N=Niq, r, I, k) depending only on q, r, I and k
with the following property: If Fis a vector space over F of dimension at least N,
and if all the fc-dimensional subspaces of V are divided into r classes in any way,
then there is some /-dimensional subspace with all of its fc-dimensional subspaces in
a single class.

This conjecture is obtained from the statement of Ramsey's Theorem essentially
by replacing the notions of set and cardinality by those of vector space and
dimension, respectively. If we replace the notion of vector space with that of affine
space, then we obtain another conjecture. This conjecture is actually equivalent to
Rota's conjecture [3], [11]. In this paper we prove another analogue to Ramsey's
Theorem, in which we replace the notion of «-dimensional affine space by the
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258 R. L. GRAHAM AND B. L. ROTHSCHILD [September

notion of «-parameter set, which we define later. The «-parameter sets are similar
to «-dimensional affine spaces in certain ways, and, in fact, by appropriate choice of
certain variables we can obtain results for vector and affine spaces. In particular,
the affine conjecture is shown to be true for the cases of k = 0 and k=\, with any
choice for /, r and a. This implies that Rota's conjecture is true for k= 1 and k = 2
[3], [11]. Some other interesting results which follow from the «-parameter set
analogue are presented as corollaries to the main result.

All of these analogues to Ramsey's Theorem are just statements about some
special kinds of subsets of certain sets and their inclusion relationships. Ramsey's
Theorem itself can be thought of thus as a statement about the lattices of subsets
of finite sets ; Rota's conjecture refers to the lattices of subspaces of finite vector
spaces ; the affine analogue concerns the partially ordered sets of the subspaces of
finite affine spaces. So also is the «-parameter set analogue a statement about
partially ordered sets of special subsets of certain sets. We give here an informal
description of «-parameter sets which may prove useful to the reader as motivation
for the somewhat technical formal definition given in the next section.

Basically, just as «-dimensional affine space, as a set, consists of all an «-tuples of
elements from GF(q), so an «-parameter set essentially consists of all tn «-tuples of
elements of a set A with t elements, A = {ax,..., at}. Any 1-dimensional affine sub-
space of an affine «-space over GF(q) consists of a set of a «-tuples which can be
written in a column as

teii • ■ -, xln)
(x2i, ■ ■ ■, x2n)

X   )

where for each /, l^i^n, either xxi = x2i= • ■ ■ =xqi or else xxt, ...,*„ is a per-
mutation of the elements/,...,/, constituting GF(q). The permutations obtainable
in this way constitute a subset L of all the a! possible permutations. In a similar
way, then, we define a 1-parameter subset of A" (the «-tuples of elements of A) as
any set of t «-tuples which can be listed

(an,..., aln)

(aa,..., atn)

such that for each /', 1 íkiún, either axt= ■ ■ ■ =atie B^A, or else aXi,..., ati is one
of a certain setLH of permutations of ax,..., at (the set of permutations considered
is defined by a group //).

The general idea for fc-parameter subsets can be illustrated by considering the
case k = 2. If A2 is any 2-dimensional affine subspace of GF(q)n, then A2 =
{(*!,..., xn) + a(yx,. ..,yn)+ß(zx, ...,zn):a,ße GF(q)}, where x = (xx,. ..,xn),
y = (yi, ■. .,yn), z=(zx,.. .,zn) are in GF(q)n, y,z^=0, and addition and scalar

(Xal
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1971] RAMSEY'S THEOREM FOR «-PARAMETER SETS 259

multiplication are defined as usual. If it happens that j¡z¡ = 0 for /=1, 2,..., n
(this is a relatively rare event), then we can partition the n coordinates into three
disjoint sets: the coordinates i where z¡ = 0 but y¡¥=0, those where z¡#0 but j>¡ = 0,
and those where z¡= j>¡=0. Call these sets Sx, S2 and S0 respectively, and let

Si = vi, • - ■> lnx}>        S2 = {jx,.. .,7n2},        o0 = {kx,..., k„0}.

If v = ivx,.. .,vn)e A2, then there are only q possibilities for (vtl,..., vini), q
possibilities for (vh,..., vjn2), and one possibility for (vkl,..., vkno). Hence A2 can
be formed precisely by listing the q values for each of Sx and S2 and the one from
So q times, and then selecting one from each of the lists in all q2 possible ways :

Sq Sx S2

(xkl,..., xkno)   (jijp...,yiin¡)   Qsifo • • •, zu„2)

(Xkl, . . ., Xkno)      (yQil, ■ ■ -, yqini)      (Zqjx, ■ ■ ■, ztDn2)

The possible columns (yXil,..., yQil) and (zXil,..., zqh) are just the same as the set
L of permutations in the 1-dimensional case above.

2-parameter sets, then, are described in a similar way. For a set A and a subset
LH of the permutations of A, we form a 2-parameter subset of An as follows: First
partition the set {1,..., «} into three disjoint subsets So, Si, S2, with Sx and S2
nonempty. Then write three lists

Op Sx S2

(a,...,b)   (x,..., x')    (z,..., z')

(a,...,b)   (y,..., y')   (w,..., w')

such that the columns under Sx and S2 are in LH. Finally, all t2 elements of the
2-parameter subset are obtained by taking one entry (row) from each list.

To get A>parameter subsets we do the same thing with partitions into k+\
subsets S0,...,Sk. For k^2, these correspond to special affine subspaces of
GF(q)n but not to all of them. Thus the theorems we prove for «-parameter sets
will not apply to all subspaces, as we would like, but only to some of them. For
k=0 and 1, however, we do prove results for all subspaces. These are considered
later in the section on corollaries.

2. Definition of ^-parameter set. In this section we formally define a k-
parameter set. The reader might find it useful here to inspect the corollaries at the
end of the paper. The examples of /V-parameter sets there illustrate the definition.

Let A ={ax, a2,..., at} be a finite set with t^2. Let H: A -> A be a permutation
group acting on A. For a e A, ae 77, the action is denoted by a —> a". Also, for
ox,o2eH, <jxa2eH is defined by a<Ti"2 = (a<'i)''2 for all aeA. For a nonempty
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260 R. L. GRAHAM AND B. L. ROTHSCHILD [September

subset B^A, let B = {b : b e B} be the set of constant maps of A into A given by
xb = b for x 6 A, b e B. A1 denotes the cartesian product A x A x • • ■ x A (t factors),
which is just {(xx,..., xt) : x¡ e A, l^i^t}.

For x = (xx,..., xt)e A\ a e H, we define an action of H: A1 -> A1 by

x" = (xx,..., XtY = (x°x,..., xt) e AK

Similarly B acts on A1 by

x6 = (xx,.. .,xtf = (x\,. ..,4) - (b, ,..,b)-e'A*

for x e A', b e B.
For fixed integers « > 0 and 0 á k ¿ «, let II = {S0, Slf..., Sk} be a partition of the

set/„ = {1,2,...,«} with 5*^0 for láí^/V. So = 0 is possible. Let /: /„ -> // u If
be a mapping with the property :

/(/) eB   ifie So,

f(i)eH   ifieIn-S0.

The set P(A, B, H, II, fi «, k)=P is defined by

P =        U        «*i, - ■ •, xn) : Xj = af«> if y s 5V} S A\
lSio.i«S<

Definition 1. A subset P<=,An is said to be a k-parameter set in A" if P=
P(A, B, H, n,/ n, k) for some meaningful choice of these variables.

Let us consider this definition in more detail. We can write II symbolically as
follows :

So "1 Sk

We imagine that we have bunched together the elements in the blocks of the
partition n. With each / e In we associate an element/(/) e Bvj H. We can write
this as

So Si Sk

[ä ■ ■ • b ttx ■ ■ ■ 8X    •••    irk ■ ■ ■ 8k]

where â,..., 5 e B, -nx,..., 8X,..., -nk,..., 8k e H. Define l0 by

/o =
{¡2 e At

.at-
We occasionally write elements of A1 as column vectors when this is useful for our
purposes. The preceding is shorthand notation for

S0 Sx Sk

\li ■ ■ ■ /6 /"i... /$i    ...    të*.. ■ 7í"lI/O »0   «0 «0 '0 '0   J)
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1971] RAMSEY'S THEOREM FOR «-PARAMETER SETS 261

which we can write as

So

-a\    •••
a%    •••

i_a?    •••

which, of course, is just

So

Si
a\   aï1

a\   a$

a\   a?1

ai1

at

at1

al«

afk

a{k

ai"

aih

Si
b   aï1

b   af1

b   ap

ai"
ai'

a?

ai"

af*

aí"-i
at

a?kJ

Now consider an «-tuple x=(xx,..., xn) e An formed in the following way:

So Si Sk

x = ia,...,b, alt, ■ ■ •> «&. • - •>«*?? • ••><*)>

where 1 á ^, /2,..., ik É t. In other words, for each /" we select one of the rows in the
array beneath S¡. Since each 7r„..., 8( is a permutation on A, then \P\ = tk. It
follows from the definition that F is a /c-parameter set in An iff P can be generated
by some expression of the form

So Si sk

(1) [a ■ • ■ b ttx ■ ■ ■ 8X ■ ■ ■ TTk ■ ■ ■ 8k].

Definition 2. If F, is an /-parameter set in An, we say that Pk is a k-parameter
subset of P¡ if Pk is a /^-parameter set in An and Pk is a subset of P¡ (with the same
A,B,H, «).

We point out here that a set of tk points of An may possibly have many repre-
sentations of the form (1). It is a /^-parameter set, however, iff there is at least one
such representation.

For example, for any choice of <71; a2,..., an e 77 the set denoted by

Si S2      S„

[Ol   <72 • • • <x„]

is just An, which is an «-parameter subset of itself.
Consider a ^-parameter set Pk in An, say,

S0 Si
Ffc = [â ■ ■ ■ b ttx • ■ • S, • • • irk - ■ • Sfc].
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For a fixed i, 1^/=fc, choose an element ß e H, and form the »^-parameter set

S0        Sx St sk

P'k = [ä ■ ■ ■ b ttx ■ ■ ■ 8X ■ ■ ■ ßnt ■ ■ • ß8t • • ■ 77k • • • 8k].

In other words, all the /(/') for j e St have been replaced by ßf(j).

Proposition 1. Pk=P'k.

Proof. It is sufficient to show Pk^Pk since \Pk\ = \P'k\ =tk. Let x ePk. Then

So Sx S¡ Sk

x = (a,...,b, all,..., a6i\,..., < ',..., aft*,. ..,a%,.. .,a%)
for some 1 úji,j2, ■ ■ ■ ,jk Ú t. But a]=am for some m since ß e H. Also

<' = W = o?,

«?,'« = W' = at
Hence,

So Si St Sk

x = (a,..., A, a£,..., a6¡\,. ..,a%,..., at..., eft,.. .,a%)ePk.

Therefore, Pk^Pk and the proof is complete.
If we premultiply by »j"1 each/(y) for/' e St, then Pk assumes the form

S0 Sx 0| Ok

Pk = [ä-b ttj • • • 8X ■ ■ ■ e • • - TTi-18i ■ ■ ■ trk ■ ■ ■ 8k],

where e denotes the identity element of H. We may perform this premultiplication
for each /, l^ifik.

Further, assume that for each i>0, the minimal element j of St has f(j) = e and
this entry is written as the leftmost entry under Sj. This brings Pk into the form

S0 Sx Si Sk

Pk = [ä ■ • ■ b e • • • wx 181 • • • e ■ ■ ■ ni-18i ■ ■ ■ e ■ ■ ■ Trk18k].

This is a canonical form for fc-parameter sets, in the sense of the following proposi-
tion.

Proposition 2. Let

S0        Sx Sk

Pk = P(A, B, H,U,fn,k) = [a- ■ ■ 5 e- ■ -yx- ■ ■ e- ■ -yk\

So Si Sk

Pk=P(A,B,H,U',f',n,k)= [7---F e---y'i---e---yk],
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where these representations are in the form just described, and suppose Pk=Pk. Then
W = W',andf=f.

Proof. For all x = ixx,..., xn) ePk, if ye S0 then x¡ is constant, say c¡. Of course,
the same is true for all x'=(x[,..., x'n) ePk, i.e., x'¡ = c¡. Thus, S0 = S'o and f(j) =
f'U) for all jeS0 = S'0.

Now, supposey e S,r\ S('. and let7" £ S¡ u S0. For x=(xx,..., x¡,..., xr,..., xn)
e Pk, as x ranges over Pk, the pair (xt, x¡-) ranges over all t2 pairs (ar, as), ar, ase A.
Therefore j and 7" must be in different blocks of the partition IT. Thus, if 7 and 7"
are in different blocks of If, then they must be in different blocks of II'. By
symmetry, this implies IÏ = W. By suitable relabelling, we get S¡ = S'i, O^iúk.

For some fixed i>0 consider Si = S[ = {jx<j2< ■ • ■ <jr}. By assumption, f(jx) =
f'(jx) = e. If j,j' e S¡ then for any x = (xx,..., xn) ePk, the value of x¡ determines
the value ofxy. For if x¡ = a, then for exactly one q, arqíñ = a,

(ajöytfl-1 = aq = aru^

and

(2) xy = op™ = (a'«"1)'«') = a«»"1'«').

Since Si=S't, if j =jx, then by (2)

(3) ann = Xy = au"«!»-1''«') = a(e)'lf'(n = ann.

But as x ranges over all of Pk, x¡(=a) ranges over all of A. (3) implies

ann = ann   for a\\aeA.

By the definition of a permutation group (in which any two elements with the same
action are identified) we deduce f'(j')=f(j'). Finally, since 7" was an arbitrary
element of St, and />0 was arbitrary, then/=/'. This establishes the uniqueness of
representation in canonical form up to labelling the blocks St of II, />0, and
completes the proof of Proposition 2.

3. A-parameter subsets of an /-parameter set. We describe here the structure of
the fc-parameter subsets of an /-parameter set. Let

Sq        Si Si

Pi = [Ö-.-5 e--.yx ■ - -e-.-y,] = P(A, B, H, U,f «, /)

be an /-parameter set in An and let

So Si Sk

Pk = W-.-F e---y'x ■ ■ -e-.-y',] = P(A, B, H, W,f, n, k)
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264 R. L. GRAHAM AND B. L. ROTHSCHILD [September

be a /^-parameter subset of F¡. (In general, when we write Pk^Ph we mean that we
are using the same A, B, H and «.)

If x = (xx,..., xn) e Pi and j e S0, then x, = ¿» for some be B (fixed for all xe P¡).
Thus x'j = b for all x' = (x'x,..., x'n) ePk^P¡. Hence,7'e S'0 and S0^SÓ-

Next, suppose x' = (x'x,..., x'n)ePk and 7" e So, 7" ̂  S0. Then 7" e 5¡ for some
i>0. Hence, for some ¿»eTi, x'y = b for all x'ePk. As stated in the proof of
Proposition 2, this determines all the other values x'm, m e S¡. Thus, if x'y is constant,
then so is x'm, and S^sSo- We can write

Sj
*Y-Ï.    e-Vi    •'•],

and for some 7

So                         Si                         Sk

Sj

Pk = [•••   ^•••'op    .].

Note. Whenever nested boldface lines are used, it indicates that the subsets
corresponding to the lower boldface lines are contained in the subsets corre-
sponding to the boldface lines directly above, e.g., in the expression above, Stf* S'0.
In general, the uppermost level of boldface lines correspond to the blocks of the
partition for the /^-parameter subset.

Proposition 3. Suppose jx e Sh n S¡2 andj2 e Sh. Thenj2 e S¡2.

Proof. Since jx andy'2 are in the same block of IT, then for any

x = (xi,..., XjV ..., xJ2,..., xn) eP¡,

the value of xh determines the value of xJ2. But Pk^Ph so this is true for all
x e Pk. Hence, jx and y'2 must be in the same block of IT, i.e., 72 e S'h as claimed.

We have shown that

SQl nS'Q2ï 0 => SQ1 S SQ2.

Thus, IT is a refinement of IT.
Now, consider Sg, Sr for which Sq, SrsSy, q^r. A typical point of Pk is

So Sj Sk

s„ sr

x =(., Xfx,., xJ2,..., x/3,.)

where 7'! e Sq, j2,j3 e Sr. For x' in Pk, the value of x¡ determines the value of xH.
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Of course, for any x e P¡, the value of xia determines the value of xJ3. More precisely
we have

Sr

P, =  l Yq e ■ ■ ■ yr

Sr

a\--- a\"
a\ ■ ■ ■ a\"

af--- a\"

a\ ■ ■ ■ ay2'

at--aï

and, as x ranges over P¡,
Sr

x — (..., au,..., auq,..., av,..., av,...),

all t2 possible choices of u and v will occur. On the other hand, in Pk, since any value
under Sq determines the values under Sr, we must have

s;
Sr

Pk =

ai" ■ ■ ■ al"
al"--- aô2"

aï" ■ ■ ■ ai*

al'--- a{'
al'--- a62'

af' ---at'

s;

Sr

=   [' lTr ■ ■ ■ 8r

S'i

= [• e ■ ■ ■ 7T„ %    ■■■],

where we have premultiplied the entries under S'j by irq l. Since Pk^P¡ we must
have 7r~18g=y, and n~18r = yr. Hence, we can write Pk as

S'j

Pk = l e---yq (irq Vr) • • • (nq 1TTryr)     ■■■].
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266 R. L. GRAHAM AND B. L. ROTHSCHILD [September

Thus, in forming Pk from P, we are permitted to premultiply the entries f(j), j e Sr,
by some arbitrary element of H as we form IT from II. Conversely, it is clear that
this process of premultiplication and joining blocks of II to form those of IT
always yields a /^-parameter subset of P¡. We summarize this below.

LetP=P(A, B, H, n,/ «, /) be an /-parameter set in An. The general »^-parameter
subset Pk^P¡ is formed as follows: Let IT be a partition of which II is a refinement,
say, TÏ' = {S'o,S'i,...,S'k} with S0^S'0 and S;#0, />0. For each St^S0, i>0,
choose t¡ e B; for each St£ S'a, choose r, e H. Define/': /„ -*• H u B by

/'(/') = rtf(j),      jeSt,i>0,
/'(/) =/(/), je So.

Then Pk=P(A, B, H, IT,/', «, k) is a »V-parameter set in An, Pk^Ph and all k-
parameter subsets of P¡ can be obtained this way (though not necessarily in canonical
form).

4. Construction of *-sets. We now give a new construction which will be es-
sential in the remainder of the paper. What we do is replace A by the set of images
{lo : s e A ¡J H} and establish corresponding notation while retaining that of the
preceding section. Define

LÄ = {/g : a e A} = {(a,..., a) : a e A} S A\

LÊ = {ll:be B},
LH = {H : a e //},

L = LÄuLH = {li,...,lu}^AK

For x = (xi,..., xu)eLu, ae H, we define an action of H: Lu ->LU by

X    — \Xi, . . ., Xu).

Similarly, define B: Lu ->- Lu by

.v   z= \Xi, . . ., Xu).

For all I, meL, define the map I: L-+L by
ml = I.

This induces a map I: Lu -> L" by

x' = (x'u...,x,u) = (l,...,l)eL\

Finally we make the following definitions :

/o* = (/oV.-,/o',/oV..,/ov>e£u,

C = LHULE, C = {c: ceLHKJLE},

L% = {If : o e //},       L* = {/**:c-eC}.
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As before, we have the notation of ^-parameter sets in Ln. We note that the repre-
sentation of 77 as a permutation group on L is faithful. For L" we modify the
notation slightly by writing a ^-parameter set Pj*=P(L, C, 77, IT*, g, n, k) as

Ç*■Jo St Sí

To* Vo*

[ft ■ • • % ¡S" ...«•»!•••«! 8*],

where $,..., /g* e Ffi and /J°,..., /g0 e LH (i.e., tt0, ..., 80 e 77). Slightly expanded,
this is

S0* s* s*
F0* F0*

(u rows)

t---ldo     lS°---lâ0°     (/g1)"! ■ • • («O*1    •••    (/g1),lfc---(/g1)dH

/I -/g    IS°- --/o50    (/g')"1 • • ■ ('S1)01

/g---/oá    /g0---/g°    («O"1 ■•■('S1)'1

im** ■ ■ ■ im6*

¿g- - - /g   /s°---/á°   (/s*)»» • ■ • (/g*)'1  •••  (/5»)** ■■• (/?»)'*

5. The map Ai.    We define a map M : L" -*■ 2A" as follows : For x = (xx,..., xn) e
Ln, Xi = (xfl,..., xlt) eL^A1, 1 á » ̂  «, let

Wl, -*21> • • •, *nl)>

_   J V^12> -^22, • ■ -, ^n2),M(x)

^(x1(, X2t, . . ., X„t)

For SçLn we define M(S) to be lj.es Mis).

> S ¿B.

Suppose
Sn* s? s*

F0* Vo*

P* = [lto---ldo lSa---lôo° »i     -Si    •••    **•••**]

is a Är-parameter set in L". Let us examine M(Pk).

Proposition 4. If V$+0, then M(P£) is the (k + \)-parameter set Pk + X in An
given by

(4)
So — T0   Sx — V0   S2 — Sx Sk + X — ofc

Ffc+ l   =   [6 • • • rf        7T0 • • • S0    7T, • • • 8, »*• • • Sfc]-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proof. We first show Pk + X<= M(P¡*).
Let x ePk + x. Then

T*J o y0 St St

x = (b--d a%---a% a?}---aail a?* • • • a?k)

where we shall delete the commas between successive entries for notational
convenience. In P¿* we choose

e* o* o*
O0 "1 Ok

To* V*'o

x* = (lbo---ldo lS°---l6o° (/g'1)"1---^1)'1 (/»"* • • • (/r»'*)-

Thus

1 0 Vo* st

M(x*) =

(b--d     ai">---a{°     ($}--afl
(b--d     al°---a2°     a?» ■ ■ ■ a?*

(b--d     a?0° • • • a%     all ' ' ' «?}

[(A ■ ■ • d     a,?o . . ■ i7?o       /rfi . . . nil

Therefore x e M(x*) and Pk + X^M(P^).
We next show Pk + x 2 M(P¿*).
Let y* eP£.

Sí

at ■ ■ ■ <),

*t • • " <*),

«*?•■■*£) J

st S*

To* Vo*

y* = (lbo---lèlS°---lê° (®>Y> ■ ■ ■ (l»6>

s*

(¡sr* ■ ■ ■ usr* •••)■
The entries under S* and S* represent the two possible forms which might occur.
Thus,

7? v*' n s*
( (A • • • d     ala ■ ■ ■ a{°

M(y*) =

a? ■ • • a¡l a\no ■ ■ ■ a\6"

(b---d     af-'-a6,0    ■■■    a?; ■ ■ ■ afy    ■■■    a",** ■ ■ ■ a"/

00

■),

[(A-.-a"     afo-.-afo    ...    aj>---a6¿    ■■■    of*«•••of4«    • ••) J
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A typical point of M(y*) is given by

»JO   —   -«O       &1   —    "0 ^D + l   —   "p ¿q + l   —   ¿q

y = (b-.-d    uf*-*-af>    ■■ ■     a?;- ■ ■ aft     ■■■    a¡nt ■ ■ ■ afi     ■ ■ ■).

We see that y ePk+x since the entries under each St are of the appropriate type.
Therefore M(F*)çFfc + 1. This, together with the opposite inclusion establishes
Proposition 4.

6. The commutative diagram.   We come to the basic property of M. Suppose
c>* c* c*Oo ox o¡

T"* T/*10 '0

Pf   =   [/§ • • • IE   /S° • • • /g°   »1 • • • «1       • • •       T, • « • «i]

is an /-parameter set in Ln with V0*¥= 0- Let

^0   —   -» 0     °1   —   '0     °2   —   ^1 °i + l   —   ¿l

Pl + X = M(Pr)=[b--d     n0-.-80 7TX-.-8x     ••■       t,-;-»,]

denote the induced (/+ l)-parameter set in /4n. Further, suppose Pk + X is a (k+1)-
parameter subset of F, + j in which F0* and F0* are not in the same block of the
partition for Ffc + 1. We might write Pk + X, for example, as

So Sx

To* S* S* Vo* S$

Pk + i = [b • ■ ■ d aft ■ ■ ■ aäj[ ■ ■ ■ a% ■ ■ ■ a% -rr0 ■ ■ ■ 80 o-3tt3 ■ ■ ■ ct3S3 ■ • • oxxtrxx ■ ■ • o-xx8xx

S2 Sfc + !

O* Ç1* C* C*Og 014 L>2 O5

CgTTg ■ ■ ■ Og8g ■ • ■ <7147r14 • • • <T14814 ■ • • 02TT2 • ■ ■ 0282 • • • <757T5 • ■ • 0585]

where we have adjusted the group elements in S'x by choosing the premultiplying
factor of V0* to be the identity element e.

Proposition 5. There exists a k-parameter subset P* ofPf such that the following
diagram is commutative:

p*      £   P*

M\ \M
Ffc + i £ F¡ + 1.
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Proof. Our candidate for P£ is, of course,

_Sg_

_Fq' = S0_V"0 = Si_
JO °1 «7 '0 "3 >J11

p * _ f lb . . . ;d /f"1 . . . /<$ , . . /<*"' . . . /<$ Tño . . . /¿ö /"313 . . . /"3Ö3 . . . /ffii»n . . . 7"ii<iiirk —l*o        *o «0 *o '0 *o    *o »0   *o *o     ••• <o *0

off   _   0/ off   _   o'
_"l — "a_       _"te ~ "fc + i_

o* o* o* o*O9 014 i32 "S

o-97rg ■ • • <r989 • • ■ o-147T14 • • • <714814 • • • a2TT2 ■ ■ ■ a282 ■ ■ ■ a5n5 ■ ■ ■ a585].

We check:
(i) P* is a /^-parameter set in Ln since S!¡,..., S'k + 1 are all nonempty,

(ii) M(P*) = Pk + x is immediate by the construction of F*,
(iii) P*^P*. This follows by inspection.

This completes the proof.

7. The main result. Before proceeding with the main result of the paper we
make a remark on terminology.

Definition 3. By an r-coloring of a set X we just mean a partition of X into r
disjoint (possibly empty) classes.

Of course, the "r colors" correspond to the r classes into which A'is partitioned.
In general, we shall use this "chromatic" terminology in preference to that of
partitions and classes.

Theorem. Given A, B, H and integers k,r,tx,...,tr, there exists an N=
N(A, B, 77, k, r, tx,. . ., tr) such that ifn^N andPn=P(A, B, 77, IT,/, w, n) is any
fixed n-parameter set in Aw, then for any r-coloring of the k-parameter subsets ofPn
there exists an i, l^i^r, such that there is some ¡¡-parameter subset ofPn with all its
k-parameter subsets having color i.

Proof. The proof will proceed basically by double induction on k and tx+ ■ —\-tr.
We defer the proof for k = 0 until later. For a fixed integer k j£ 0 assume the theorem
has been established for this k and all values of r, tx,..., tr. We prove the theorem
for k+1. Of course, the theorem is immediate for r= 1, and it is true vacuously for
tx+ ■ ■ ■ +tr^(k+ l)r— 1 (since in this case, for some i, t,<k+1). Henceforth we
assume that r ^ 2, and í¡ ä k +1, and furthermore that for some p the theorem holds
when tx+ ■ ■ ■ +trSp. We must now prove the theorem with tx+ ■ ■ ■ +tr=p+\.

Definition 4. Let Pm=P(X, Y, G, U,f, w,m) be an m-parameter set in Xw,
where IT is the partition {S0, Sx,..., Sm}. Then for k^m and l^i^m, an Si-
crossing k-parameter subset of Pm is a Ar-parameter subset Pk=P(X, Y, G, IT,/', w, k)
where the partition IT'^So, S[,..., Sk}, and S4$S0.
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We now prove two lemmas. The first says that for large enough m, we can
extract from an (m+ l)-parameter set an (/+ l)-parameter set which is decomposed
into disjoint "parallel hyperplanes," and such that the (fc+l)-parameter subsets
which "cut across" the hyperplanes (i.e., do not lie within any of them) all have the
same color. The second lemma is the iteration of the first, and says that we can
extract such a subset with many such decompositions (in different "directions")
with monochromatic crossing subsets.

Let L, C and the map M be as before.

Lemma 1. Let Pm + X=P(A, B, H,U,f w,m+\) be an (m+\)-parameter
set in Am with partition It ={S0, Sx,..., Sm + X}. Let /=0 be an integer. If m~^
N(L, C, H, k, r, I,..., I) (I taken r times), which is meaningful by the induction
hypothesis, then for any fixed i, 1 = / ̂  «z +1, and for any r-coloring ofthe(k+\ )-pa-
rameter subsets of Pm + X, there is an S¡-crossing (I+ \)-parameter subset Pl + X ofPm + x
such that for some j, 1 ̂ / = r, all the Srcrossing (k + \)-parameter subsets of Pl + X
have color j.

Proof of Lemma 1. Let P* denote the «?-parameter set in Lw which has partition
n* = {S* = So u St, St, ...,S*} and such that M(P*)=Pm + x (where {St, ...,S*}
is some relabelling of {Sx,..., oVi. Sl+X,..., Sm+X}). We remark that if P* is a
»V-parameter subset of P*, then M(Pk*) is an ^-crossing (&+l)-parameter subset
of Pm + X by the definition of P* and M.

The given r-coloring of the (k + l)-parameter subsets of Pm + x induces an r-coloring
of the »t-parameter subsets of P% in the following way: P* is given the same color
as Pk + x = M(Pi*). By the remark above this is a well-defined r-coloring of the k-
parameter subsets of P*. By the choice of m, there exists an /-parameter subset
P?^P% such that all the ^-parameter subsets of P¡* have one color, say color/
But Pl + X = M(P¡*) is an ^-crossing (/+ l)-parameter subset of Pm + X. By Proposition
5, every ^-crossing (/:+l)-parameter subset of Pl + X is the image under M of a
^-parameter subset of P*. Thus, all these have color y and the lemma is proved.

At this point we find it convenient to assume that B = A. We proceed to prove
the theorem for this case, and then, as a direct corollary (Lemma 3 below), we
establish the general result. Thus, let A = B, and let C, H, L and M be as before.

Let P*=P(L, C, H, fi*,/ w, m) be an w-parameter set in Lw with partition
n* = {:r0* u F0* = S0*, St,..., S*}, V$+ 0. Then M(P*) is an (m-M)-parameter
set in Aw. Let P¡ + 2 be a ^-crossing (/+2)-parameter subset of M(P*),

So Sx S2 s¡ + 2

Vo* st
Pi + 2 = [b ■ • • d ttq ■ ■ ■ 8Q    ••■    oftj ■ • • oft, it.8].

Then Pl + 2 is the disjoint union of t (/+l)-parameter subsets P'+i, i^iút, none of
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which are F¿*-crossing subsets, defined by

S0 Sx = S2 s¡+2 = o¡+2

So Sx

Vo* S?

P/+1 = [E-.-d afo---aï°    ■■■    aï'*'■ ■ ■ ap"1    n.8].

Definition 5. The F/+1 are called V0*-translates of each other in Pl + 2 (or just
translates when no confusion arises).

Remark 1. Let FI + 2 be a F¿*-crossing (/+2)-parameter subset of M(P*) with
F*-translatesF/+1 as above, and letFfc + 2 be a F0*-crossing (k + 2)-parameter subset
of F¡+2. Then

Off Off O" Off
"0 ¿1 »J2 »Jic + 2

oo "i S,i

F0* S/

Ffc + 2   =[/»••• i/    •  •  •     7T0 •  •  •  S0     •  •  •     Oyn-y •  •  • OySy     • ♦;•     T •  ■  ■ 7]   n.8'].

Ffc+2 is the disjoint union of the t F0*-translates Pk+X, where
n» ç»/w   _    off r"» _    O"

Sg 5Í

So Sx S¡Q

Vo* Sf

Pk + x = \b.-.d---ani''...a\a---aVni---ay6i---a\-..a\    tr'.8'].

We see thatP¿ + 1£P'+1 <^Pk + 2 because P'k + x^P¡+l andPk + 2^Pl + 2. On the other
hand, any point in P¡+x c\Pk + 2 must be in Pk + 1 as can be checked by verifying the
inclusion properties of «-parameter sets. Thus, F¿ + 1=F¡f+1 nPk+2.

Remark 2. If Pk + X is any (Ä:+l)-parameter subset of P\+i, then there is some
F0*-crossing (/V + 2)-parameter subset of Pl + 2 with Ffc + 2 = JJ=1F¿ + 1, the F¿ + 1
being V*-translates, such that Pk + x=Pk + 1. In particular, taking P'+1 to be as in
Definition 5, Pk + x^P'+x must look like

off off O"
'JO *Jl "Jic + 1

S0 S9

So Si

F0* Sf

= [/»••• d  ■■■  af-.-af" ■■■ ap"i■ ■ ■ aï'6' ■ ■ ■ a) ■ • ■ a]   n'.8'].
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Then we can take
r»//// o/w   _    ç» çr//r   _    çtr ç/in _    c¡»
O0 01    -   Jl 02    —   Ol "Jft+2   —   «Jk + 1

50 5; Vq* Sf

Pfc + 2 = [b---d---a}g---á"jg tt0 • • • 80 • • • oyjr, • • ■ a,Sy     ir'.8'].

This choice of Pk + 2 is well defined. That is, S'i=Sx is the smallest set we can
choose from S'¿ to generate a (/+2)-parameter set which is K0*-crossing and is
contained in P! + 2 (since any such ST must contain Sx). We shall refer to this
particular Pk + 2 as the V$-expansion ofPk + x in Pi + 2.

Remark 3. It should be noted that if Pk + X is any (/+l)-parameter subset of
Pi + 2, then either Pfc + i is a V0*-crossing (fc + l)-parameter set or Pfc + i = -/?'+1 for
some i. This follows from the way in which the (k+ l)-parameter subsets of P¡ + 2
must be formed.

Definition 6. Let A = B, H be as above. Let Pm+V be an (m + f)-parameter
subset of Aw with partition {S0, Sx,..., Sv, Vx,..., Vm}. For each i, l^i^m,
Pm + V is the union of t disjoint (m + v— l)-parameter subsets P(m + „-i),¡, l^y'^7,
which are Frtranslates of each other. Let Pfc + i be a (£+l)-parameter subset of
Pm + v which is Fj-crossing for at least one i. Let l=m — max {/ : Pfc + i is Frcrossing}.
Then we associate with Pfc+1 the (/+l)-tuple (l;jm,jm-x,.. -,jm-i + i), where for
m — l<i^m we define/ by Pk + i — Pm + v-Xti. (F°r ¿=0 we get merely (0).) We call
this the signature of Pk + X in Pm + V with respect to (Vx, V2,..., Vm). An r-coloring
of the (k+ l)-parameter subsets of Pm+V will be called a (Vx, V2,..., Vm)-coloring
if the colors of all (k + l)-parameter subsets with the same signature are the same.

We next present an iterated form of Lemma 1. For arbitrary positive integers m
and v, define the integers t^, 1 =/=m, as follows:

vx = N(L,C,H,k,rtm-\v,...,v),

v2 = N(L,C,H,k,rtm-\vx + l,...,vx + l),

vl + x = N(L, C, H, k, r"" — 1, Vt+\,..., p,+ l),
;

vm m N(L, C, H, k, rt0, vm_x+l,..., vm_x + l).

Lemma 2. Let m and v be positive integers, let A = B. Let PX=P(A,B,H, n,/, w, x)
be an x-parameter set in Aw with x^vm. Suppose the (k+\)-parameter subsets
of Px are r-colored. Then Px contains an (m + v)-parameter subset Pm + V, with parti-
tion {S0, Sx,..., Sv, Vx,..., Vm}, such that the r-coloring restricted to Pm + V is a
(Vm,Vm_x,..., Vx)-coloring.

Proof. We remark first that if m=\, this lemma asserts that there is a P„+1
such that all of its r/-crossing Pk + i have one color. This is just the conclusion of
Lemma 1.

Assume, then, that Lemma 2 is true for m— 1. We show that it is true for m. Let
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v'm-i = vm,.. .,v'x = v2, v' = vx + l. Then, by induction, there is some (m— l+v')-
parameter subset PVi+mzPx, with partition {S'0, S[,..., S'Vl + x, V[,..., VL_X},
such that PVl + mis(V~^x,..., Fi)-colored.

Let(P¿ + Bl_lil)', 1^7'=í,beF/-translatesinFVl + m.LetFVl + 1 = nr=-il(^ + t,1-i,i)'.
This is a (i^F^-parameter subset of F„1+m with partition {S'0 u V'x u- • -u Vm_x,
S'x,..., S¿1 + 1}. LetFfc + 1 be a ik+ l)-parameter subset of F„1 + 1, and letFk+m be the
Fi-expansion of the F2-expansion of • • • of the F¿, _ i-expansion of Pk + X. Then for
each choice of (/i. •'•■»./»-1), ¿W^ñ?-i(Pm+Vl-i.if is a (¿ + l)-parameter
subset. This (Ar-rT)-parameter subset has some color. Thus, for each Pk + X in
P„1 + i there is a color associated with each of the ¡""_1 choices of the7¡'s. Usingthis,
we can recolor the ik+ l)-parameter subsets of F„1 + 1 by letting two of them have
the same new color if and only if for each choice of the 7'('s the associated (old)
color is the same. This is an rtm~ ̂ coloring of the ik + l)-parameter subsets of F„1 + 1.

By the choice of vx, and by Lemma 1, there is some (y+l)-parameter subset
Pv + 1çP„1 + 1, with partition {S'¿, Sx,..., Sv, Vx}, such that all Frcrossing ik+l)-
parameter subsets of Pv + X have the same new color. Let Pm + V be the Fi-expansion
of the F2-expansion of ... of the F^ _ x-expansion of Pv + X. By iteration of Remark
2, every (/c+l)-parameter subset of Fm + „ which is not V[-crossing for any if,
1 ̂  i^m— 1, is in the Fi-expansion of ... of the F¿_ ^expansion of some (/c+1)-
parameter subset of Pv + X. By the definition of the new coloring, and the choice of
Pm+V, any (/c + l)-parameter subset of Pm + V which is Fi-crossing but not V{-
crossing for any i, l^i^m—l, has its (old) color determined only by its corre-
sponding 7,'s (i.e., its signature with respect to (FÍ,..., F^-i)).

If V2=V'X,..., Fm=F^_i, then this says that if Pk + 1 is .a (fc-rT)-parameter
subset of Pm + V which is Vx-crossing but not Ft-crossing for any / > 1, then the (old)
color of Ffc + i is determined by its signature with respect to (Fls..., Vm). On the
other hand, since F„1 + m is iV[,..., VL_ ̂ -colored, any Fte + 1sFm + „çFm + „1, such
that Pk + X is Frcrossing for some i>l (i.e., V[ _ j-crossing), has its (old) color
determined only by its signature. Thus Pv + m, with partition {S0, Sx,..., Sv,
Vx, V2,..., Vm}, is (Vu..., Fm)-colored, and the lemma is proved.

We are now ready to complete the proof of the induction step for the case of
B=A.

Let v = maxx¿¡¿r NiA, B, H,k+l, r, tx,..., ti—1,..., tr), z = itkli), m =
NÍA, B, 77,0, rz, 1,1,..., 1), and let vx, v2,...,vm be as previously defined. Then
we assert that it is sufficient to choose NiA, B, H,k+\,r,tx,..., tr) = vm.

To prove this, let PVmSAw be a um-parameter subset of Aw, and suppose all the
(A: + l)-parameter subsets of PVm are r-colored. By Lemma 2, there is an («z + v)-
parameter subset of PVm,Pm+v

So S, S„ Vx Vm

Pm + v - [5- ■ ■ C ttx- • ■ 8,      •••      ttv-■-8V  tx-■-r¡x     ■■■      rm •••rjm],

which is (Ki,..., Fm)-colored.
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We consider the t»-parameter subsets of Pm+V defined by

So Sx = Sx Sv = o„

So        vx vm

Pv(ii,...,im) = [b--c'ail--aTt    •■•    (¡%> • -äg& *x • • -A    ••■    »,• • • 8J.

Let Pk + i and Pfc + 1 be (&+l)-parameter subsets with Pk + x^Pv(ix,..., im) and
P'it + i^Pv(ji, ■ ■ -,jm)- We say Pk + i and P'k + i are associated with respect to
(Klf..., Vm) if they are of the form

O ff Off Off

_So_    ■••

So Vi Vm

Pk + x = [b---cà\[.~a%    •••    tr*.8']

and
Off Off Off
"0 Oj Ok+l

_g_       •••

So        Vi                 vm

P'k + x = [b---caJ.aft    •••    n\.8']

(i.e., P'k + X differs from Pk + X only in that ix,..., im have been replaced by/,.. .,jm
respectively, and everything else is unchanged).

A »>parameter subset of Pm + „ has some number of (/V+l)-parameter subsets,
which is at most z = ((k+i). The r-coloring of (&+l)-parameter subsets induces a
coloring of the Pv(ix,..., im) (with at most r* colors) as follows: two such sets
Pv(ix,..., im) and Pv(jx,.. .,jm) have the same color if and only if each pair of
associated (k+ l)-parameter subsets Pk + x^Pv(ix,..., im) and P'k + xçPJjx,.. .,jm)
have the same color.

Now let Pm be the following w-parameter subset of Pm + „:

_so_sr= vx sz = vm
So S% Sv

Pm=[b---caf---'âf    ■■■   'aj°---~âj° rx---r,x    •■•    Tm---Vm].

Each of the tm subsets Pv(ix,..., im) contains exactly one point of Pm, and this
clearly exhausts the tm points of Pm. Color the points of Pm according to the rule
that Pm n Pv(ix,..., im) and Pm n Pv(jx,.. .,jm) have the same color if and only
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if Pvih,..., im) and Pvijx,..., im) have the same color. Thus, the O-parameter sets
of Pm are rz-colored.

Now by the theorem for the case k = 0, tx= ■ ■ ■ =tT=l (which we have not yet
proved) and the choice of m, Pm contains a one-parameter set Px,

off// Off//

-      -

So _Vi_ V,

Px = [5---~aT°aï\---af   ■■■    •rt-'-tph    •••],

such that all of its O-parameter subsets have the same color. Then by the construction
of this coloring, the (y+l)-parameter subset Pv + 1,

S05) Sf = sx s™ = s„   S&x = ST

So V,- -

Pv+1 = [b--caVr--aJi    ■■■    ttx---8x     ■■■    nv■ •■ S„ af«• • • a¥*>],

has the property that all of the t Pviix,..., im) contained in it have the same color.
Let these be called P},..., F¿. These are ^"-translates of each other.

By the definition of the coloring of the P„(/i,.. /, im), this means that if P1k + X is
any (/c+ l)-parameter subset of F¿ for some/, and if Pk + 2 is its ^"-expansion, then
Pk+x=Pk + 2 n Pi all have the same color, 1 úiút.

Since F„ + 1çFm+„, and all the Sf-crossing (fc-rT)-parameter subsets have the
same signature with respect to (Flf..., Fm), then all these (/c+1)-parameter
subsets have the same color, say color/ By choice of v, P¡ has either a ^-parameter
subset all of whose (A-(-l)-parameter subsets have color 1, or a /2-parameter
subset all of whose (/c+l)-parameter subsets have color 2, or ..., or a (ry— 1)-
parameter subset all of whose (/c+ l)-parameter subsets have color j, or ..., or a
^-parameter subset all of whose (/c+ l)-parameter subsets have color r.

Suppose Pt)-X is a (fy— l)-parameter subset of Pi with all its (&+l)-parameter
subsets having color j. Let Ptj be the ^"-expansion of Pt,-X. Then all the ik+l)-
parameter subsets of PtjnP¡, have color j, lá»'^í. Since Ptj^Pv+x, all the S'x-
crossing ik + l)-parameter subsets also have color j. By Remark 3, this accounts for
all ik+ l)-parameter subsets of Ptj. So Pt. is a /,-parameter subset of Pv + x^Pv + m all
of whose ik+ l)-parameter subsets have color 7'. The alternative to this is the exist-
ence of a ij-paramter subset of Pi^Pv + x^Pm + v all of whose (/c+l)-parameter
subsets have color i, i^j. This is precisely what we wished to obtain, and the
induction step is completed for B=A.

Lemma 3. If the theorem is true for A, B = A, H and integers y,r,tx,..., t„ then
it is true for A, B, H, y, r,tx,..., tr, where B is any nonempty subset of A.
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Proof. Let 0^B^A. For each integer* we say that an x-parameter subset
P(A, A, H, n,/ n, x) is of type A, and that P(A, B, H, IT,/, «, x) is of type B. Let
A be some fixed arbitrary element of B. Then if

So        Sx                 Sx

Px=[a---dn.8]

is an x-parameter subset of type A, we can associate with it an x-parameter subset
of type B, namely

So        Si                  Sx

P'x = [A ••• A 77.81.

Now if all the j»-parameter subsets of type B are r-colored, then this induces an
r-coloring of the j-parameter subsets of type A by the rule that a subset Py of type
A gets the same color as Py, which is of type B.

If the theorem is true for subsets of type A, then for « sufficiently large we can
find for some i a /¡-parameter subset (of type A), Pi(, all of whose j»-parameter
subsets have color /'. Then P/( is a /(-parameter subset of type B. All of its y-
parameter subsets are of the form Py where Py is a j»-parameter subset of Ptf. Thus
Pt\ is the desired subset. This proves the lemma. (See essentially the same argument
in [11].)

With this lemma the induction step of the theorem is completed. The entire
proof will be completed when we establish the case k = 0. To do this some notation
and a preliminary lemma are needed. We shall write elements (atl, ai2,..., a¡n) e An
in the form (atíaÍ2 ■ ■ ■ a¡n), i.e., without commas. Further, we shall denote certain
blocks of consecutive entries of an «-tuple by a single symbol, e.g.,
(XxahX2aJ2- ■ -aisXs + x), where each Xk = xkxxk2 ■ ■ ■ xkr¡k e An« for some nk
(possibly «k = 0, in which case Xk is empty).

Lemma 4. Let A = {ax,..., at} be a finite set with 7^ 1. Then for any positive
integer r there exists an integer N(r, t) such that ifn ^ N(r, t) and the elements of An
are r-colored, then we can find a set of t elements of A" of the form

X(i) = (XiatX2at ■ ■ ■ aja,       1 ú i ú t,

where d^2 (i.e., the variable at occurs at least once in X(i)), all of which have the
same color.

Proof. A proof of this result can be found in [$}. The proof we give is direct and
more in the spirit of the preceding arguments. The proof proceeds by induction
on 7. The theorem holds for 7=1 and any r by taking A(r, 1) = 1. Assume that for
some 7^2 the lemma has been proved for all values of \A\ <t. Let A = {au ..., at},
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A' = A — {at}, and suppose the elements of An arer-colored where n^cr + cT-x +
■ ■ ■ + cx with

Cr-1

Cr-2

Ck

Cl

Write An as ^c'+"'+c2x^""<c'+",+c2). The original r-coloring of An induces an
r1"' C2-coloring of An~<-c' + '" + c2) as follows: For x, y e An~ic' + '" + c¿>, x and y have
the same "new" color iff for each point z e A0'+ '" + ca, {z} x {x} and {z} x {y} have the
same original color. This in turn determines an r*"' °2-coloring of
(^')»-^+»+«,)< since

n-(cr+ ■ ■ ■ +c2) ^ cx = AVCr+""+C2, t-l)

then by the induction hypothesis there exist 7—1 points of (A')n'w' + '" + 0^,

Xi(i) = (XxxatXx2ai ■ ■ ■ a,Xldl),       1 ú i < t,

all of which have the same "new" color. By the definition of the "new" colors, for
any choice of Y e Ac' + '"+c2, all the 7—1 points Yx Xx(i) e An, lá/</, have the
same original color.

Next, writing Ac'+- + c2x{Xx(\)} as ^c'+-+c3X^c2x{A'1(l)}, the original r-
coloring of An induces an r'"3 "-coloring of Aci as follows : For x, y e Ac*, x and
y have the same "newer" color iff for each point z e Ac' + "' + c3, {z}x{x}x Xx(l) and
{z} x {y} x Xx(l) have the same original color. As before, this determines an
r4* "" '"-coloring of (A')C*^AC*. Since

c2 = N(Sr+"+C3,t-l),

then, by the induction hypothesis, there exist 7—1 points of (A')c*,

X2(i) = (X2XaiX22a, ■ ■ ■ aiX2d£),       1 S i < t,

all of which have the same "newer" color. By the definition of the "newer"
colors, for any choice of YeAc' + '" + c3, all the 7—1 points  Yx X2(i2)x Xx(\),
1 ̂ i2<t, have the same original color. Hence, all the (7— l)2 points Yx X2(i2)x
-XiO'i), 1 = *i> '2< U have the same color.

In general, repeating this procedure, we obtain at the kin step

= A(r,/-1),

= N(rtC',t-l),

= /vYriCr+Cr-\7-l),

= JV(ri0r+-+"e+1,7-l),

= A(riCr+""+C2,/-l).

Xk(i) = (XkxaiXk2at ■ ■ ■ atXkdk),       1 ^ / < /,
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where Xki¡) e Ac*. For any choice of Ye Ac' + '" + ck + i, all the (f — l)fc points in An
of the form

Yx XJjk) x • • • x X2ii2) x Xxiix),       1 á /1; /2, ,,.,!„ < t,

have the same original color. Finally, taking k = r (in which case 7 is empty), we
consider the t' points of An,

Xrijr) x • • • x X2ij2) x Xxijx),       l&Jk£t,r$*&r.

These have the property that for each u the original color of the point

(5) Xrijr) X • • ■ X Xu + !(/„ + j) X ^(/^ X • • • X Xxiix)

is independent of the choice of ik for 1 ̂ ik<t. The set of r+1 points

Xu = *,(/) x • • • x r.+1(0 x Xuil) x • • • x ^(1),       0 ^ w =£ r,

must contain a pair of points with the same color (by the pigeon-hole principle!),
say Xh and Xh., h > «'. Finally, consider the t points

XU) = XTit) x •■• x Xh + Xit) x Xh(i) x ■ ■ • x Xh. + Xii) x YÄ.(1) x • ■ • x ^(1),

1 á Í S /.

For 1 ̂ i<t, all the points Xi¡) have the same color as that of Xh (by (5)). On the
other hand, X{t) = Xh: which by the choice of«' has the same color as that of Xh.
Thus, all the points XQ), l^i^t, have the same color. We have shown that the
lemma holds for the choice Nir, t) = cT + cr-x+ ■ ■ ■ +cx. This completes the proof
of the induction step and the lemma is proved.

We extend this special case to the complete statement of the theorem for k = 0
in several steps, which follow.

Suppose now that t^2 and /ä 1. We can apply the preceding lemma to the set
A1 instead of A in a straightforward manner to obtain the result that if
« ^ INir, t') and the points of An are r-colored, then there exists a set of F points of
the form

(Xxawal2 ■ ■ auX2ahai2-   •«*.,•• -a^a^ ■ ■ ■ auXd) e An,

1 = hi '2, • • •, h = U all of which have the same color.
The reader will notice that this set of tl points is nothing other than an /-parameter

set Pt=PiA, B, H, IT,/, n, I) in An with H={e}, B = A (i.e., all constant maps are
allowed) and IT and / appropriately defined. Further, the O-parameter subsets of
F, are just the points of F„ so that Pt has all its O-parameter sets the same color.

We immediately extend the result to the case where B is not necessarily equal to
A by invoking Lemma 3 with y = 0.
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Next, the extension to an arbitrary permutation group H: A-+ A (instead of
H={e}) is immediate since the choice of H does not affect the 0-parameter subsets
of an /-parameter set (which always has just \B\' 0-parameter subsets).

Finally, we must consider the situation in which the initial «-parameter set An is
replaced by a fixed arbitrary «-parameter set Pn in Aw (for some fixed w). This is
immediate, however, since the obvious map from the points of Pn to the points of
An induces a one-to-one map on their respective /c-parameter subsets, for each k,
and preserves inclusion both ways.

Thus, we have seen that if « ^ lN(r, t'), and the 0-parameter subsets of an «-
parameter set Pn^Aw (for some fixed w) are r-colored, then there exists an /-
parameter set P¡ in Pn such that all the 0-parameter subsets of P¡ have one color.
This is j ust the statement of the case k = 0, tx = ■ • • = tr = I, which, since / is arbitrary,
clearly implies the theorem for k = 0. With this fact, the proof of the theorem is
completed.

8. Consequences of the theorem. In this section we present several corollaries
to the theorem, the most well known of these being the theorems of van der
Waerden (Corollary 8) and of Ramsey (Corollary 11). Other corollaries are new,
in particular, the results for affine and vector spaces, which we present first.

Corollary 1. Let I, r be positive integers, F=GF(q) a finite field and k = 0 or 1.
Then there is an integer N=N(q, r, I, k) depending only on q, r, I, and k, with the
following property: If A is an affine space over F of dimension « =; A, and if all the
k-dimensional affine subspaces of A are r-colored in any way, then there is some l-
dimensional affine subspace of A with all of its k-dimensional affine subspaces having
one color.

Proof. We prove this by applying the theorem to the case in which A = GF(q) =
{0, l,a3,.. .,aq}, B = A, tx = t2=- ■ ■ =tr = l, and

H = {a : for some a, A e F, a + 0, and all y e F, <j: y ->- ay + b},

the affine group. All we need to show here is that all x-parameter subsets are x-
dimensional affine subspaces of An = Fn, and that for k = 0 or 1, all the /^-dimensional
affine subspaces are in fact /c-parameter subsets. For once we know this, we can
apply the theorem with n^N(A, B, H, k, r,tx,..., tr) = N(q, r, I, k) to deduce the
desired result. Thus, if an /-parameter set has all its ^-parameter sets one color,
this is actually an /-dimensional affine subspace with all of its fe-dimensional affine
subspaces having one color, as required.

First, then, let

So Si Sx

Px = [ä ■ ■ ■ b ttx ■ ■ ■ 8X    •••    ttx ■ ■ ■ 8X].
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Suppose that for all yeFwe have

y»i = cxy + ax,

yh = dxy + bx,

y"x = cxy + ax,

?* = dxy + bx.

Define x+1 vectors as follows:

So Sx Sx

v0 = ia,..., b, ax,..., bx,..., ax,..., bx)

»Jo Sx o2 Sx

vx = iO,...,0 cx,...,dx0,...,0    ••■    0, ...,0)

So Si Sx_j Sx

»Je = (0,...,0 0.....0    ■••    0.....0 cx,...,dx).
Then

Px = {?Q+<*lVl+-r-axVx : ax,...,axeF},

an x-dimensional affine subspace of Fn.
Now any «-tuple, or point, of Fn is both a 0-dimensional affine subspace and a

O-parameter subset, since B = A = F here. Thus all 0-dimensional affine subspaces
are O-parameter sets.

Finally, let Ax be a 1-dimensional affine subspace of Fn. Then for some vectors
u = iux,.. .,«„) and v = ivx,..., vn), Ax={u + av : a e F}. Let S1 = {/1,..., ig} =
{<■' : v^O}, and S0={jx,.. .,jh} = {i : ^=0}. Then

So Si-—~—~~^^^^^

Ax   =   [Uh ■ ■ ■ Ujh   1Th ■ ■ ■ 77(e,]

where the maps 7r¡ are defined, for ieSx, by 7r(: x -> t»¡x + u¡. Hence Ax is a 1-
parameter subset of Fn. Thus, all 1-dimensional affine subspaces are 1-parameter
sets. This completes the proof of the corollary.

Corollary 2. Let I, r be positive integers, F=GFiq) a finite field and k = 0 or 1.
Then there is a number N' = N\q, r, I, k), depending only on q, r, I, and k, with the
following property: If V is an n-dimensional vector space over F with n ^ N', and if
the k-dimensional vector subspaces of V are r-colored in any way, then there is
an ¡-dimensional vector subspace of V with all of its k-dimensional vector subspaces
having one color.
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Proof. We prove this by applying the theorem to the case where A = F, B={0},
ii = 72= • • • =tr = l, and H={o: for some a^O in F, a=ay for all yeF}, the
multiplicative group of F. Again, what we have to show is that any x-parameter
set is an x-dimensional subspace, and that any 0- or 1-dimensional subspace is a
0- or 1-parameter set, respectively. As before, we can then apply the theorem with
n^N(A, B, H, k, r,tx,..., tr) = N'(q, r, I, k) to obtain the required result. Let Px
be an x-parameter set. Then

So Sx Sx

Px = [0 0 ■ • ■ 0 it, ■ ■ ■ 8i    •••    ^ • • • 8X].
Suppose

y"1 = cxy,

p. = diy,

y** = cxy,

y6* = dxy.
Let x vectors be defined by

So Si S2 Sx

vi = (0,...,0, ci,...,di, 0,...,0,...,0,...,0)

So *->i Sx-i Sx

vx = (0,..., 0, 0,..., 0,..., 0,..., 0, cx,..., dx).

Then Px={axvx-\— • +axvx : ax,..., ax e F}. So Px is an x-dimensional vector
subspace.

There is only one 0-dimensional subspace of V, namely {(0, 0,..., 0)}, and this
is a 0-parameter subset. If Vx is a 1-dimensional subspace, then for some vector
0»!,..., vn), Vx={a(vx, ...,vn):aeF}. Let Sx = {ix,..., ig} = {i : v^0}, and S0 =
{1, 2,..., n} — Si. Then

So Sl

K^tOO-.-O^...^],
7Ti:x->y(x for all xeF, and Vi is a 1-parameter set. Thus all 1-dimensional
subspaces are 1-parameter sets, and the corollary is proved.

Remark. The last corollary (Rota's conjecture for k = 0, 1) is also true for k = 2.
This result is not a direct corollary of the theorem, but follows from Corollary 1
by an inductive argument which can be found in [3], [11]. That argument, in fact,
shows that if the affine statement is true for some fixed k, and all a, r, /, then
Rota's conjecture is true for k +1, and all a, r, I.
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We have established the affine analogue to Ramsey's Theorem for the 0- and
1-dimensional cases ik = 0, 1) in Corollary 1 above by choosing objects A, B and H
appropriately and applying the theorem to the resulting «-parameter sets. These
same choices, however, do not yield the corresponding higher dimensional cases
(k^2) of the affine analogue. What we obtain instead is a theorem about some but
not all of the affine subspaces of an affine space. We illustrate with an example.

Let A be the field of two elements, B=A, and 77 the affine group defined in the
proof of Corollary 1. Then, as we observed in the proof of Corollary 1, the 0-
parameter subsets of An are precisely the 0-dimensional affine subspaces of A",
and the 1-parameter subsets of An are precisely the 1-dimensional affine subspaces
of An. Furthermore, all the /^-parameter subsets of An, even for k ^2, are k-
dimensional affine subspaces of An. The difficulty in extending the results arises
from the fact that not all of the A>dimensional affine subspaces, k^2, are k-
parameter subsets.

Consider, for example, the 2-dimensional affine subspace of An defined by
S={«(1, 1, 0,...,0)+ß(0, 1, 1, 0,..., 0) : a, ß e A}. This has four points in it:
(0, 1,1,0,...,0), (1,1,0,0,...,0), (1,0, 1,0,..., 0), (0,0,0,0,...,0). It is
clear that there is no way to partition the coordinates so that these four points can
be represented in the usual way as a 2-parameter subset.

The trouble in the 2-dimensional case illustrated by this example is common to
all the higher dimensional cases over all fields. Namely, our concept of ^-parameter
set requires a partitioning of the coordinates of An into k+\ disjoint subsets,
whereas a basis for a /^-dimensional subspace need not arise from such a partition.
This problem also arises in the projective analogue. The disjointness of the co-
ordinates in the " parameters," S¡, was essential in the induction step of the proof
of the theorem. Any overlapping of the S¡ would require some sort of rule for
combining the overlapping entries, which in turn would have to be consistent with
a similar rule in the *-sets, where overlapping would also occur.

Corollary 3. Given integers I and r, there exists an integer Nil, r) such that if S
is a finite set with \S\ ^N(l, r) and the subsets of S are r-colored, then there exist I
disjoint nonempty subsets Sx,..., St of S such that all 2' — 1 unions Jye/ Sy,
07¿Jc{l, 2,..., /}, have one color.

Proof. In the theorem, let A={0, 1}, B={0}, H={e), k=\, tx = t2= ■ ■ ■ =tr = l
and Pn = An. Then we conclude that if n^N(A, B, H, k, r, tx,. ..,tT) = N(l, r), and
if the 1-parameter sets in An are r-colored, then there exists an /-parameter set F,
in An all of whose 1-parameter subsets have one color. Let S={1, 2,..., «}, and
with each nonempty subset X^S associate an element h(X) = (ax,..., an) e An in
the following way :

a¡ = 1    if i e X,
a¡ = 0   otherwise.
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Note that not all the a¡ are 0. However, with each nonzero point (ax,..., a„) e An
we can associate the 1-parameter set {(0, 0,..., 0), (ax, a2,..., an)} in An. Hence,
any r-coloring of the nonempty subsets of S induces a natural r-coloring of the
1-parameter subsets of An. Since « ^ A(/, r) then, as mentioned at the beginning of
the proof, there exists an /-parameter set P¡ in An all of whose 1-parameter sets
have one color. Let IT = {S0, Si,..:, S¡} be the partition of {1, 2,..., «} associated
with P¡. The important fact to notice here is that not only is A(5¡) e P, for any
/>0, but, in fact, by the definition of an /-parameter set, h(X) e Pl for any
X—XjwSfi 0#/^{l,2,...,/}. Thus, all 2'-l of the subsets \JieJ Sj, 0#/Ç
{1, 2,..., /}, correspond to the 1-parameter subsets of P, which by the conclusion
of the theorem all have one color. Finally, since the color of any 1-parameter set
in An was just that of its associated subset of S, then all the subsets {JjeJ S},
0 =£J^{\, 2,..., /}, have the same color. This proves the corollary.

Corollary 4 (J. Folkman [1], R. Rado [9], J. Sanders [13]). Given integers I
and r, there exists an integer N'(l, r) such that ifnTt N'(l, r) and the positive integers
^n are r-colored then there exist I integers ax,...,a¡ such that all the sums
{El=i eiai : «¡ = 0 or 1, «o7 all £¡ = 0} have one color.

Proof. Let A map the binary «-tuples x = (x!,..., xn) e {0, 1}" into the integers by
«(*) = 2?=i*i2i_1. A direct application of Corollary 3 with n^N'(l,r) = 2N(l-r)
shows that for any r-coloring of the binary «-tuples (i.e., integers < 2n) we can find /
binary «-tuples (i.e.,I integers) x(1),..., xa> such that x^-x^^O for all/../and & (i.e.,
the powers of 2 used in the dyadic expansions of A(x(l)),..., A(xa)) are all distinct)
and all 2l — 1 componentwise sums {2íeí x<;) : 0 //ç{l, 2,..., /}} (i.e., all 2!-1
sums {2i = i «¡A(x(i>) : et = 0 or 1, not all £¡ = 0}) have the same color. This proves the
corollary.

The case 1=2 of Corollary 4 was first proved by Schur [14]. Corollary 4 is
actually a special case of Corollary 6 below.

Corollary 5. Given integers I, r, there exists an integer N"(l, r) such that if G
is any group with \G\ ^ N"(l, r), and if the elements of G are r-colored, then there
exist I elements ax,...,at in G such that all the products ahai2 ■ ■ ■ atj have one color
for all f^ 1 and all choices of distinct ix,..., i, in {1,2,..., I}.

Proof. For each finite group G let A(G) be the size of the largest abelian sub-
group of G. Let m(rt) = min|G|=n/4(G). Then it is known [6] that «?(«)—>-oo as
« -»■ oo. That is, every large group has a large abelian subgroup. Thus it is sufficient
to establish Corollary 5 for abelian groups.

Let A be an abelian group of order at least (A'(/, r)— l)w<,,r>~1)+l, where
A(/, r) is the number guaranteed in Corollary 3 above, and N'(l, r) is from Corollary
4. Let the elements of A be r-colored. Since A is the product of cyclic groups, say
A =Zil x ••• xZ¡M, where i, is the order of Zip then either M^ N(l, r) or i¡^ A'(/, r)
for some i¡. In this latter case we can apply Corollary 4 to the cyclic group Ztj of
order it and obtain / elements ax,..., a„ satisfying the conclusion of Corollary 5.
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On the other hand, suppose M^N(l,r). Let gx,...,gM be the generators
respectively of the cyclic subgroups Z¡x,..., ZlM. We associate with each subset of
{gt : 1 úiúM} the color of the product of its members. By Corollary 3 there must
be / disjoint subsets whose unions all have the same color. This means that there
are / products h¡, 1 íkjúh of the gt, no two with a common factor, such that all
the products hh- ■ ■ hJle, for 1 ̂ k^l and for any choice of the/,.. .,jk, have the
same color. This completes the proof of Corollary 5.

It is interesting to note that the corresponding result for finite semigroups is
false. For consider the semigroup S with « elements, including 0, such that ab = 0
for all a,beS. Then if we color 0 one color and all the other elements of S another
color, we clearly cannot find even two elements a, b such that a, b and ab are all the
same color.

Corollary 6. Let =Sf=Fi(x1,.. .,xm), l^i^h, be a system of homogeneous
linear equations with real coefficients with the property that for eachj, 1 ̂ j^m, there
exists a solution (ex,..., em) to the system ^C with e¡ = 0 or 1 and e¡ = 1. Then given
an integer r there exists an integer N(r) such that ifn ä A'(r) and the positive integers
< « are r-colored, then S£ can be solved with integers having one color.

Proof. Let Fi = (eil, ei2,..., eím), 1^/ám, be solutions to the system ¿£ with
ei; = 0 or 1 and e(i=l. As in Corollary 4 we choose N(r) = 2mm-r\ For n^N(r)
any r-coloring of the positive integers <« induces a coloring of the (nonzero)
binary N(m, r)-tuples of {0, l}N(m-r), which, by the arguments of the preceding
corollaries and the choice of «, implies that there exists an w-parameter set Pm with
A={0, 1}, B = {0}, H={e} and such that all 2m—\ nonzero points of Pm have one
color. Thus, the points c¡ given by

So Sx ¿y om

Ci       (U, . . ., U,  ex¡,. . ., GXi, . . ., Eji, . . ., Eji, . . ., emi, . . ., £mi)

for 1 ̂ i^m, all have the same color. As before, reinterpreting these «-tuples as
integers written to the base 2, the hypothesis that S£ is homogeneous and linear
together with the definition of the £i; show that (cx,..., cm) is a monochromatic
solution of 3?. This proves the corollary.

Corollary 6 is similar to the important results of R. Rado [8].
By a multigrade of order m we mean two disjoint sets of integers {c¡ : 1 ̂ /^«},

{d, : la/<;«} such that

n n

Tcf» 2 dk   for k = 1,2,.. .,m.
i = i ¡=i

This is denoted by

Ci,...,cn = dx,..., dn.
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Since {ac¡ + b : 1 ^ /' ̂  «}, {ad¡ + A : 1 ^ / ^ «} is a multigrade of order «i if
{ct : 1 ̂ /á«}, {o*! : 1 ̂ /S«} is, then a straightforward application of the theorem
along the lines used in the preceding corollaries yields

Corollary 7. If the multigrade equations

(*) Xi,..., x„ — yi, 7n

have any integer solution (which always happens, for example, if«2r2m-1), then for
any r-coloring of the positive integers, (*) always has a solution in integers having one
color.

Corollary 8 (van der Waerden [6], [14]). Given integers t and r, there exists an
integer M(t, r) such that if « ä M(t, r) and the nonnegative integers < « are ar-
bitrarily r-colored, then there must exist a monochromatic arithmetic progression of
length t.

Proof. We apply the theorem to the case A = {0, 1,..., 7— 1}, B = A, H={e},
k = 0, tx= ■■■ =tr=\ andPn = An. Let N=N(A, B, H,k,r, tx,. ..,tr), let M(t, r) =
tN and choose «§M(7, r). By writing any integer/ 0^j<M(t,r) in the form
j = 2,i = o1 Cut1, 0^Cji<t (i.e., to the base 7), we have a one-to-one correspondence
between the integers/0^j<M(t,r), and elements of AN given byj<-+(cj0,. ■ .,cjn-x).
Hence, an r-coloring of the integers {0, 1,..., «—1} induces an r-coloring of the
elements of AN (where we ignore the integers ä M(t, r)). Since all these elements of
AN are 0-parameter sets of AN then by the choice of A, the theorem guarantees the
existence of a 1-parameter set

>So Sx S0 Sx

Px = [ä • • - A rrx-

So

8X] = [a • • • A e ■ ■ ■ e]

Si S0 Si

a--b
a-b

0
1

0
1

a...b 7-1...7-1

(a,..., A,    0
(a,..., A,     1

0)O
1),

(a, A, 7-l,...,7-l)J

all of whose 0-parameter sets ( = points) have one color. But the 7 points of Pj
(shown above) certainly correspond to 7 integers which lie in an arithmetic
progression (since Sx^ 0). This proves the corollary.

This result is implied by the stronger

Corollary 9 ( Hales-Jewett [5]). Let A={ax,..., at} be a finite set. Given an
integer r there exists an integer N(r, t) such that if « = A(r, 7) and the set An is r-
colored then there exists a set oft elements ofAn of the form

Xt — (xxx,..., xXu, at, x2X,..., x2v, at,..., at, xdx,..., xdz) e A ,

all of which have the same color.

1 ú i Ú t,
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Proof. This result is a special case of the theorem in which A = {ax,..., at},
B=A, H={e}, k = 0 and tx = ■ ■ ■ = tr=l (also, see Lemma 3).

We remark that the elegant derivation of van der Waerden's Theorem from
Corollary 9 given in [5] is essentially different from the one given here.

The next corollary is a Ramsey theorem for partitions of a finite set with the
ordering on the partitions inverted from the usual ordering. For the usual ordering
(IT ̂  IF if IT is a refinement of IT) a Ramsey theorem is trivially true:

For integers k, I, r, and any r-coloring of the partitions of any sufficiently large
set S, |S|=«, there is a partition IT with « — /blocks with all partitions IT g II with
n — k blocks having the same color.

The proof is simply the observation that the lattice of refinements of the par-
tition IT: {1, 2}, {3, 4},..., {2m— 1, 2m}, {2m+ 1}, {2m + 2},..., {«} is isomorphic
to the lattice of subsets of a set of m elements, and is a lower ideal in the lattice of
partitions of S. Then Ramsey's Theorem (for subsets) can be invoked.

For the inverted ordering, we define IT < II if IT is a refinement of IT.

Corollary 10. Given integers k, I, r, there exists an integer M(k, I, r) such that
if n^ M(k, I, r), and the partitions of a set of n elements into k blocks are r-colored,
then there is a partition into I blocks, IT, with all partitions IF;; IT with k blocks
having the same color.

Proof. Let A = {0, 1}, B = {0}, H={e}. Let S0={1}, S1={2},..., Sn_x = {n}, and
let

So Si Sn_j-  -

Pn.x = [0   e     ■■■      e].

By the choice of A, B and 77, the x-parameter subsets of Pn-X are determined
exactly by their corresponding partitions IT. The subset Px, with partition IT, is
contained in the subset Py, with partition IT if and only if IT ̂  IT. Thus, applying
the theorem to this case produces the desired result. We just let

M(k,l,r) = N(A,B, H, k-\,r, l-l,..., l-l)+l.

We remark that these results on partitions of sets have analogues for partitions
of integers which can be derived from the above by associating each set with its
cardinality.

Corollary 11 (Ramsey's Theorem). Given positive integers k, I, r there exists
an integer Nx = Nx(k, I, r) such that ifn^Nx and the k-subsets of an n-set Mn are
r-colored, then all the k-subsets of some l-set M¡^Mn have the same color.

Proof. As in Corollary 10, let A={0, 1}, B = {0} and H={e}. Let Nx = Nx(k, I, r)
= N(A, B, H, k, r, I,..., I) of the theorem. It is sufficient to establish the result for
the set X={\, 2,..., Nx}. Assume the /^-subsets of X have been r-colored. This
induces an r-coloring of the A>parameter subsets of the AVparameter set ANi as
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follows: For a /V-parameter subset Pk^ANi with partition n={50, Sx,..., Sk} let
w¡ denote the minimal element of S¡, 1^/^/V, and let Mk = {mx, m2,..., mk}\
assign to Pfc the color of the k-set Mk. This is a well-defined coloring of all the
»V-parameter subsets of Ank By the definition of Nx, there exists an /-parameter set
P, with all its »V-parameter subsets having one color. In particular, if the partition
forP, is Tl' = {T0, Tx,..., T¡} and Ml={m'x,..., m\} where m) is the minimal element
of Tj, then for any /V-subset Mk = {m'h,..., m'ik}^ M¡, the color of Mk is the same
as the color ofthe/t-parameter subset PfcçP| which has partition IT ={r<f, Th,..., Tik}
with r0* = {l, 2,..., AJ-U^i T¡r Since all of these Pk have the same color, then
all A>subsets of M, have the same color and the corollary is proved.

We conclude with a final (stronger) application of the theorem.
Let Cn = {(xx,..., xn) : x¡ = 0 or 1} be the set of 2" vertices of a unit «-cube in

Rn. Let us call a subset Qk^ Cn a k-subspace of Cn if | Qk\ =2k and Qk is contained
in some A>dimensional euclidean subspace of Rn.

Corollary 12. Given integers k, I, r, there exists an integer N(k, I, r) such that if
« ^ N(k, I, r) and the k-subspaces of Cn are r-colored, then there exists an l-subspace
of Cn all of whose k-subspaces have one color.

Proof. We first establish a preliminary result. Let Pk denote a /^-dimensional
(euclidean) subspace of Rn and let Tk=Pk n Cn. Then we assert

(6) \Tk\ Ú 2*

and if \Tk\=2k, then Tk is a /V-parameter subset of Cn with A = B={0, 1}, and
H={e, 7r} = the group of order 2. To prove this, write Pk as

Pk = {ax Xi -\-1- otkA'k + X0 : a¡ e R}

where the Xx,..., Xk are linearly independent vectors in Rn, and X0 e Rn.
Consider they'th component of a point of Tk. It is either 0 or 1. Thus one of the

following two equations must hold :

ccxXXj + oc2X2j+ • • • + cckXkj + Xqj = 0,

<xlXXj + cc2X2j+ • • • + cckXkj + Xqj —  1.

Hence, the only possible a¡'s for Tk must lie on one of the two parallel hyperplanes
determined by these equations. We have such a pair of equations for each j=
1, 2,..., n. The hyperplanes have directions (in pairs) respectively:

XXi, .... Xki,

x12, • • - > xk2,

Xiji, .... xkn.

But by assumption, the columns Xu ..., Xk are independent.
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Therefore we can find k independent rows, say, for example, rows \,2,..., k,
and consequently the corresponding matrix

(Xxx, • • •, xkx\

xlk,..., xkk/

is nonsingular. Thus, for each set of equations

Xlxccx+ ■ ■ ■ +Xkxak = ex — x0i,

Xkx&x+ • ■ ■ +Xkkck = ek    Xok, e¡ = 0 or 1,

there is exactly one choice for the a¡'s satisfying them. Since the a¡'s determine the
points of Tk, and since there are at most 2k possible choices for the e¡, we have at
most 2k possibilities for the ai's. Furthermore, the only way we get all 2k is when
all 2k possibilities for the £¡'s occur. In this case (\Tk\ =2k), we have 2k~1 solutions
withe1=0, and 2k~1 solutions with ex = l.lfe2,...,ek are fixed, and we look at the
two solutions from ex=0 and ex = l, then these two solutions differ by a vector
v = (vx,..., vk) which is independent of e2,..., ek. In particular, (vx,..., vk) must
satisfy

xxxvx+-- -+xkXvk = 1,

xX2vx + ■ ■ ' +xk2vk = 0,

xxkvx+---+xkkvk = 0.

v is thus uniquely determined by the x's independent of the e4's. Certainly, if
« — («i, • • -, ak) is a solution for ex=0 and some e2,..., ek, then a + v is a solution
for the same e2,..., ek with ex = 1.

This means that for each point/» in Tk with ex = 0, there is a point q in Tk with
e, = 1 such that

q =p + (vxXx+---+vkXk) =p+Ux.

Since q and p have all entries 0 and 1, Ux must have all entries 0, 1 and — 1. In
fact, repeating this argument with e2,..., ek replacing ex, we obtain a set of vectors
Ux, U2,..., Uk, with entries 0, 1, — 1, and the point F0 with ex = e2= ■ ■ ■ =ek = 0
such that

Tk = {P0 + *iU1+- ■ ■ +ekUk : ei = 0, 1}.

No two of the £/j can have a nonzero entry in the same coordinate, or else there
would be three values occurring there, violating the fact that all points of Tk have
only entries of 0 and 1.

If Ux has a — 1 entry in, say, the «th position, then F/; has a 0 in the «th position
for/V i, and F0 must have a + 1 in the «th position, in order to insure entries of 0
and 1 in Tk.
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Tk is a /c-parameter set, then, with A = B = {0, 1} and H={e, 7r} = the group of
order 2. We can write Tk as

s0 sx Sk

Tk = [a ■ • • A ttx ■ ■ ■ 8X    ■ ■ ■    iTk- ■ ■ 8k]

S0 Sx Sk

"a-   A 00--11     ■••    00 ■ -•11 "
a--A 11•-•00    •••     11•••00."

S0 consists of those coordinates/ for which every U¡ is 0; the value/(y) (where/is
the function required in the definition of a /c-parameter set) for j e S0 is 0 or 1
according to the corresponding entry in P0. Each S¡, />0, consists of those j for
which U( has a nonzero/th component; the value/0') for./ e St is e if the component
is 1 and 77 if the component is — 1. This proves (6) and the assertion which follows it.
The proof of the corollary now follows at once from the theorem by choosing
A = B = {0, 1}, H = {e, tt}, 7i= • ■ • =tr = l, and N(k, I, r) = N(A, B, H, k, r, tx,. ..,tr).

We point out that even though the techniques of the proof of the theorem are
constructive so that upper bounds on the various A's of the corollaries can be
given, these bounds are usually enormous, to say the least. To illustrate this, we
consider the first nontrivial case of Corollary 12, the determination of an upper
bound on A(l, 2, 2). We recall that by definition A(l, 2, 2) is an integer such that
if nä A(l, 2, 2) and the (22) straight line segments joining all possible pairs of
vertices of a unit «-cube are arbitrarily 2-colored, then there always exists a set of
four coplanar vertices which determines six line segments of the same color. Let
A* denote the least possible value A(l,2, 2) can assume. We introduce a cali-
bration function F(m, n) with which we may compare our estimate of A*. This is
defined recursively as follows :

F(\, n) = 2\       F(m, 2) = 4, m £ 1, n £ 2,
F(m, n) = F(m— 1, F(m, n—\)),       m ä 2, « ïï 3.

It is recommended that the reader calculate a few small values of F to get a feeling
for its rate of growth, e.g., F(5, 5) or F(10, 3).

If the bounds generated by the recursive constructions needed for the proof of
Corollary 12 are explicitly tabulated, the best estimate for N* we obtain this way
is roughly

A* g F(F(F(F(F(F(F(12, 3), 3), 3), 3), 3), 3), 3).

On the other hand, it is known only that A* ^6. Clearly, there is some room for
improvement here.

9. Concluding remarks.    We conclude with several questions.
(i) In the corollaries of the theorem listed, we never really make much use of the
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freedom we have in choosing B and H. What are some interesting applications for
some less trivial choices of B and HI

(ii) Are the various infinite versions of certain of the corollaries valid? A specific
simple case would be: If the positive integers are 2-colored, is it true that there
always exists an infinite subset A such that all sums 2&eB b, 0 # B^A, Ä-finite, have
one color?

(iii) With respect to the corollaries, the upper bounds given by the theorem on
the various A/'s are rather crude, as has been pointed out. Is it possible to improve
significantly the estimates of these numbers? For example, in Corollary 12, the
upper bound on N(l, 2, 2) given by the theorem is truly enormous, where, in fact,
the exact bound is probably < 10.

(iv) It was suggested by M. Simonovits that perhaps it would be possible to give
an intrinsic definition of ^-parameter sets, i.e., one which does not depend on
coordinates. If this is possible then conceivably the corresponding proofs might
become simpler.

(v) Our particular definition of a /c-parameter set was chosen, to a certain extent,
because a Ramsey theorem for them could be proved. What other definitions will
have this property? In particular, can a suitable one be found which will establish
Rota's original conjecture for ^-subspaces of finite vector space, A:â3?
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