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Abstract: A Gallai-coloring of a complete graph is an edge coloring such
that no triangle is colored with three distinct colors. Gallai-colorings occur
in various contexts such as the theory of partially ordered sets (in Gallai's
original paper) or information theory. Gallai-colorings extend 2-colorings
of the edges of complete graphs. They actually turn out to be close to
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2-colorings—without being trivial extensions. Here, we give a method to
extend some results on 2-colorings to Gallai-colorings, among them known
and new, easy and difficult results. The method works for Gallai-extendible
families that include, for example, double stars and graphs of diameter
at most d for 2<d, or complete bipartite graphs. It follows that every
Gallai-colored K, contains a monochromatic double star with at least
3n+1/4 vertices, a monochromatic complete bipartite graph on at least
n/2 vertices, monochromatic subgraphs of diameter two with at least 3n/4
vertices, etc. The generalizations are not automatic though, for instance,
a Gallai-colored complete graph does not necessarily contain a monochro-
matic star on n/2 vertices. It turns out that the extension is possible for
graph classes closed under a simple operation called equalization. We also
investigate Ramsey numbers of graphs in Gallai-colorings with a given
number of colors. For any graph H let RG(r,H) be the minimum m such
that in every Gallai-coloring of K, with r colors, there is a monochromatic
copy of H. We show that for fixed H, RG (r,H) is exponential in rif His
not bipartite; linear in rif H is bipartite but not a star; constant (does not
depend on 1) if His a star (and we determine its value). © 2009 Wiley Periodicals,
Inc. J Graph Theory 64: 233-243, 2010
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1. INTRODUCTION

We consider edge colorings of complete graphs in which no triangle is colored with
three distinct colors. In [19] such colorings were called Gallai partitions, in [15] the
term Gallai colorings was used. The reason for this terminology stems from its close
connection to results of Gallai on comparability graphs [13]. We will use the term
Gallai-coloring and we assume that Gallai-colorings are colorings on complete graphs.
It is useful to keep in mind a particular Gallai-coloring—sometimes called canon-
ical coloring—where all color classes are stars (V=[n] and for all 1<i<j<n edge ij
has color 7).

More than just the term, the concept occurs again and again in relation of deep
structural properties of fundamental objects. A main result in Gallai’s original paper—
translated to English and endowed by comments in [22]—can be reformulated in
terms of Gallai-colorings. Basic results about comparability graphs can be equivalently
discussed in terms of Gallai-colorings, as the theorem below shows. Further occurrences
are related to generalizations of the perfect graph theorem [5], or applications in
information theory [18].

The following theorem expresses the key property of Gallai-colorings. It is stated
implicitly in [13] and appeared in various forms [4, 5, 15]. The following formulation
is from [15].
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Theorem 1. Any Gallai-coloring can be obtained by substituting complete
graphs with Gallai-colorings into vertices of a 2-colored complete graph on at least
two vertices.

The substituted complete graphs are called blocks whereas the 2-colored complete
graph into which we substitute is the base graph. Substitution in Theorem 1 means
replacements of vertices of the base graph by Gallai-colored blocks so that all edges
between replaced vertices keep their colors.

Theorem 1 is an important tool for proving results for Gallai-colorings. For example,
it was used to extend Lovasz’s perfect graph theorem to Gallai-colorings, see [5, 19].
In [4] a more refined decomposition of Gallai-colorings was established. In this paper
we focus on the following subjects:

e Extending 2-coloring results as black boxes
e Gallai colorings with fixed number of colors

A. Gallai-Extension Using Black Boxes

In [15] Ramsey-type theorems for 2-colorings were extended to Gallai-colorings, using
Theorem 1. Here, we have a similar goal, but we accomplish it using a completely
different method. Instead of extending the proofs of 2-coloring results, we define a
property—we call it Gallai-extendible—of families of graphs that automatically carries
over 2-coloring results to Gallai-colorings.

Definition. A family F of finite connected graphs is Gallai-extendible if it contains
all stars and if for all F € F and for all proper nonempty U C V(F) the graph F' =F'(U)
defined as follows is also in F:

o V(F)=V(F)
o E(F)=EF)\{u:u,veU}U{ux:uecU,x¢ U,vxe E(F) for some ve U}.

We will say that F’ is the equalization of F in U. The conditions that Gallai-
extendible families must contain only connected graphs and must contain all stars
are somewhat technical. However, it seems that no application can really utilize
more general definitions—and in the canonical Gallai coloring every color class is a
star.

Our main result, Theorem 2, states that if every 2-colored K, contains a monochro-
matic F of a certain order from a Gallai-extendible family then this remains true
for Gallai-colorings: every Gallai-colored K, also contains from the same family a
monochromatic F’ such that |V(F")|>|V(F)|.

Theorem 2. Suppose that F is a Gallai-extendible family, and that there exists a
function f:N— N such that for every n and for every 2-coloring of K, there is a
monochromatic F € F with |V(F)|>f(n).

Then, for every n and every Gallai-coloring of K, there exists a monochromatic
F' € F such that |V(F')| >f(n)—with the same function f.

Journal of Graph Theory DOI 10.1002/jgt



236 JOURNAL OF GRAPH THEORY

Moreover, such an F' exists in one of the colors used in the base-graph and also
with no edge of F' within a block of the base graph.

The proof of Theorem 2 is in Section 2 together with several examples of Gallai-
extendible families (Lemma 1). Applying Theorem 2 to these families, we get the
following corollaries (the first two were known before, the others are new). If G is a
graph, then H is called a spanning subgraph, if V(H)=V(G). Applying Theorem 2 to
the family of connected graphs we get

Corollary 1. Every Gallai-colored complete graph contains a monochromatic span-
ning tree.

For 2-colorings, Corollary 1 is the well-known remark of Erdés and Rado—a first
exercise in graph theory. For Gallai-colorings it was proved by Bialostocki et al. in [1].
Applying Theorem 2 to the family of graphs having a spanning tree of height at most
two, we get

Corollary 2. Every Gallai-colored complete graph contains a monochromatic span-
ning tree of height at most two.

For 2-colorings Corollary 2 is due to [1], for Gallai-colorings it was proved in [15].
Applying Theorem 2 to the family of graphs with diameter at most three, we get

Corollary 3.  Every Gallai-colored complete graph contains a monochromatic span-
ning subgraph of diameter at most three.

For 2-colorings Corollary 3 can be found in [1, 23, 24]. Applying Theorem 2 to the
family of graphs with diameter at most two, we get

Corollary 4.  Every Gallai-colored K,, contains a monochromatic subgraph of diam-
eter at most two with at least [3n/4] vertices. This is best possible for every n.

For 2-colorings, this is due to Erd6s and Fowler [8] (a weaker version with an easy
proof is in [14]). The following construction ([8]) shows that Corollary 4 is sharp:
consider a 2-coloring of K4 with both color classes isomorphic to P4. Then substitute
nearly equal vertex sets into this coloring with a total of n vertices. (The colorings
within the substituted parts can be arbitrary.) Applying Theorem 2 to the family of
graphs containing a spanning double-star (two vertex disjoint stars joined by an edge),
we get

Corollary 5. Every Gallai-colored K,, contains a monochromatic double star with at
least B3n+1)/4 vertices. This is asymptotically best possible.

The 2-color version of Corollary 5 is (a special case of) a result in [16], it slightly
extends a special case of a result in [7]: in every 2-coloring of K, there are two points,
v,w and a color, say red, such that the size of the union of the closed neighborhoods
of v,w in red is at least (3n+1)/4. (The slight extension is that one can also guarantee
that the edge vw is red.) Corollary 5 is asymptotically best possible, as shown by a
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standard random graph argument in [7]. Applying Theorem 2 to the family of graphs
containing a spanning complete bipartite graph, we get

Corollary 6. Every Gallai-colored K, contains a monochromatic complete bipartite
subgraph with at least [(n+1)/2] vertices, and at least one more if n is congruent to
—1 modulo 4.

For 2-colorings Corollary 6 follows easily since there is a monochromatic star of
the required size. However, for Gallai-colorings there are not always monochromatic
stars with [(n+1)/2] vertices—the largest monochromatic star has 2n/5 vertices,
see [15]. It is worth noting that Corollary 6 is best possible for every n. Paley graphs
provide infinitely many examples, but there are simpler 2-colorings that do not contain
monochromatic complete bipartite graphs larger than the size claimed in Theorem 6.
Consider the vertex set as a regular n-gon and define the red graph by edges xy forming
a diagonal of length at most k (if n=4k, 4k+ 1, 4k+2) or at most k+ 1 (if n=4k+3).

We conclude this part with some remarks on Gallai-extendible families. A broom
is the union of a path and a star where the end-vertex of the path coincides with the
central vertex of the star, and this is the only common vertex of the two. Burr [2] proved
that every 2-colored complete graph has a monochromatic spanning broom. Gyarfas
and Simonyi [15] extended Burr’s theorem to Gallai-colorings. We cannot reprove this
result with Theorem 2 as a black box extension of Burr’s theorem because brooms are
not Gallai-extendible. However—and similar ideas might be useful in other potential
applications of Theorem 2—it is possible to combine a key element of Burr’s proof
with Gallai-extendable families (in our case with F5) to extend Burr’s theorem to Gallai
colorings.

B. Gallai Colorings With Given Number of Colors

As mentioned above, in canonical Gallai-colorings each color class is a star, thus Gallai-
colorings do not necessarily contain any monochromatic H different from a star (apart
from isolated vertices). However, we may define for any graph H a kind of restricted
Ramsey number, RG(r,H), the minimum m such that in every Gallai-coloring of Ky,
with r colors there is a monochromatic copy of H.

It turns out that some classical Ramsey numbers whose order of magnitude seems
hopelessly difficult to determine, behave nicely if we restrict ourselves to Gallai-
colorings with r-colors. For example, the Ramsey number of a triangle in r-colorings,
R(r,K3) is known to be between bounds far apart (¢" and |er! |+ 1, see for example in
[20]) but it is not hard to determine RG(r,K3) exactly as follows.

Theorem 3.
5K4+1 for r=2k

RG(r,K3)=
2x5K4+1 for r=2k+1

In fact—as we were informed by Magnant [21]—Theorem 3 is due to Chung and
Graham [6]. Here, we give a simpler proof, using Theorem 1.
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It is worth noting that there are several “extremal” colorings for Theorem 3. For
example, let G be a black edge and let G, be the K5 partitioned into a red and a blue
pentagon. The graphs Hy, H, obtained by substituting G1 (G2) into vertices of G (Gy)
have essentially different 3-colorings and both are extremal for »=3 in Theorem 3.

Although one can easily determine some more exact values of RG(r,H) for small
graphs H, we conclude with the following two theorems that determine its order of
magnitude.

Theorem 4. Assume that H is a fixed graph without isolated vertices. Then RG(r,H)
is exponential in r if H is not bipartite and linear in r if H is bipartite and not a star.

Theorem 5. If H=K,, is a star, p>1 and r>3 then RG(r,H)=(5p—3)/2 for odd
p, RG(r,H)=(5p/2)—73 for even p.

For completeness of the star case, notice that for H=K;, we have trivially
RG(1,H)=R(1,H)=p+1 and RG(2,H)=R(2,H) can be determined easily (2p—1 for
even p and 2p for odd p, [17]). It is also worth noting that while RG(r,H) is constant
(does not depend on r), R(r,H) is linear in r (and in p), see [3].

A Gallai-coloring can be also viewed as an anti-Ramsey coloring for Cs, anti-
Ramsey colorings for a graph H have been introduced in [9]. This direction has a large
literature that we do not touch here. Moreover, Gallai-colorings are also connected
to so-called mixed Ramsey numbers, where the aim is to find either a multicolored
graph G (in our case a triangle) or a monochromatic graph H. We are aware of some
papers in preparation that determine exact values of RG(r,H). Faudree et al. [10]
determined the value of RG(r,H) for many bipartite graphs H. Fujita [11] proved that
RG(r,C5)=2"t111; Fujita and Magnant [12] extended Gallai-colorings to colorings
without a rainbow S;r, a triangle with a pendant edge.

2. GALLAI-EXTENDIBLE FAMILIES, PROOF OF THEOREM 2

We denote by disty(u,v) the number of edges in a shortest path of H between
u,ve V(H).

Lemma 1. The following families are Gallai-extendible:

o Fi, the family of connected graphs;

o Fa(d), the family of graphs having a spanning tree of height at most d, for any
d>2—equivalently a root x€ V(F) such that dist(x,v) <d for all ve V(F);

o F3(d), the family of graphs with diameter at most d for any d>2;

o Fu, the family of graphs having a spanning double-star—equivalently, two adjacent
vertices forming a dominating set;

o Fs, the family of graphs containing a spanning complete bipartite graph, that is,
the family of graphs F so that V(F) can be partitioned into two nonempty sets A
and B so that abe E(F) for all acA, beB;
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Proof. We prove for all these families F and every FeF, and for all proper
nonempty U C V(F) (or U €eUr) that the graph F’ we get after equalizing in U is still
in F. Since the five families we consider are closed under the addition of edges and it
is immediate from the definition that equalization is a monotonous operation, that is,
F1 CF, implies F} CF, it is sufficient to prove F’ € F for minimal elements F e F.
Whenever it is comfortable to exploit this fact we will do it: for instance, when checking
the statement for J, or F4, F' can be chosen to be a tree of height at most two, or a
double-star.

For Fi the statement is immediate noting that the connectivity of F' implies that
whenever an edge e=xy € E(F),F € F| disappears, there exists a path of length 2 in F’
between its endpoints.

For F=F,(d) or F=F3(d) the following claim will provide the statement:

Claim. For u,veV(F), uweE(F) we have distp/(u,v)<2, and if uv&E(F) then
distgr(u,v) <distp(u,v).

Indeed, if uv € E(F), then either at least one of u and v is not in U, and then uv € E(F"),
or u,ve U, and then—from the connectivity of F' and the fact that U is a proper subset
of V(F)—they have a common F’-neighbor. The first part is proved.

To prove the second part, let P be a shortest path in F between u and v, |E(P)|> 2.
Then P can be subdivided to subpaths induced by U and other subpaths (there must
be others, since otherwise replace P by a two-path from u to v). Define the path P’
in F’ between u and v by replacing the subpaths in U by an arbitrary vertex in the
subpath—in the special case when u or v is on the subpath, replace it by u or v. Since
all vertices of U have the same neighbors outside U, P’ will indeed be a path in F”,
and |E(P)| <|E(P)|, as claimed.

Now if F e F(d) (d>2), apply the claim to the root x and all other vertices ve V(F)
to get that F' € F,(d). Similarly, if F € F3(d), apply the claim to all pairs u,v e V(F).

If FeFy, let xye E(F) be such that V(F) consists of neighbors of x and neighbors
of y. If neither x nor y are in U, no edge is deleted at equalization and there is nothing
to prove. Similarly, if exactly one of them is in U, say xe U, y¢ U, then xy € F implies
that y is adjacent in F’ with every vertex in U, and the vertices that are not in U remain
neighbors of x or y in F" as well.

It remains to check F’ € Fy if both x,y€ U. This is also easy, because every vertex
of F is adjacent to at least one of x and y, and therefore in F’ every vertex of U is
adjacent to every vertex in V(F)\U. We are then done because a complete bipartite
graph contains a spanning double-star.

Let F € Fs. If one of the two classes, say A is disjoint of U, F C F’, so the statement
is obvious. If now U meets both A and B in a vertex a and b, respectively, we are
also done, since all AUB is F-adjacent with either a or b, so all vertices of UN(AUB)
are F’-adjacent with all vertices of (AUB)\ U, and both of these sets are nonempty,
finishing the proof for this class. |

Proof of Theorem 2. Suppose that F is a Gallai-extendible family and ¢ is a
Gallai-coloring of K,,. By Theorem 1, ¢ can be obtained by substituting Gallai-colored

Journal of Graph Theory DOI 10.1002/jgt



240 JOURNAL OF GRAPH THEORY

complete graphs into the vertices {vi,v;,...,v;} of a base graph B with a red-blue
coloring, k>2. Suppose that B is connected in red (in fact, we shall use only that B
has no isolated vertex in red). The vertex sets of the substituted complete graphs give
a partition U/ on V(Kp,).

Let ¢’ be the 2-coloring of K, obtained from ¢ by recoloring all edges within all
blocks of the partition & to the red color. In the coloring ¢/, by the assumption of
Theorem 2, K, has a subgraph F € F with |V(F)| > f(n), such that F' is monochromatic
inc’. If F is blue then F is amonochromatic subgraph in ¢ as well and the proof is finished.

Thus we may assume that F C E.(red) (the red edges in ¢’). If V(F)C U for some
U €U then—using that B has no isolated vertex in the red colo—we can select a star
S in K, such that § is red in ¢, its center v¢ U and its leaf set is U. Now S € F (because
F contains all stars) and |V(S)|>|V(F)|, finishing the proof.

Thus, we may assume that V(F) is not a subset of any block of /. Now equalize F/
in the blocks of U one after the other. Since F is connected and V(F) is not a subset
of some block, eventually all recolored edges will be deleted during the equalizations.
We claim that the graph F’ resulting from the equalization process is a subgraph of
E(red). Indeed, equalization adds an edge ux (u€U) only if x¢ U, and there exists
veU, vxeE(F). Since E(F)CE.(red), and vx is not a recolored edge, vx € E.(red)
follows. Since every block sends only edges of one and the same color to every vertex,
ux € E.(red) as well, confirming the claim.

Since F is Gallai-extendible, F' € F, and clearly |V(F')|>|V(F)|>f(n). Now the
proof is finished (the extra property stated about F” is obvious). ]

3. PROOF OF THEOREMS 3, 4,5

Proof of Theorem 3. Let f(r) denote the function one less than the claimed value
of RG(r,K3). Observe that

J(N=2f(r—1) ey
for r>2 with equality for odd r, and
J()=5f(r-2) 2

for r>3

To show that RG(r,K3)>f(r) let G; be a 1-colored K, and let G, be a 2-colored
Ks with both colors forming a pentagon. Recursively construct G, for odd r>3 by
substituting two identically colored G,_;’s into the two vertices of G| (colored with
a different color). Similarly, for even r>4, let G, be defined by substituting five
identically colored G,_»’s into the vertices of G» (colored with two different colors).
The r-coloring defined on G, is a Gallai-coloring, clearly has f(r) vertices and contains
no monochromatic triangles.

We prove by induction that if a Gallai-coloring of K with r-colors and without
monochromatic triangles is given then |V(K)| <f(r). Using Theorem 1, the coloring of
K can be obtained by substitution into a 2-colored nontrivial base graph B. In our case
clearly 2<|V(B)| <5.
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Case 1: |V(B)|=2. Since there are no monochromatic triangles, the graphs substi-
tuted cannot contain any edge colored with the color of the base edge, therefore, by
induction, they have at most f(r— 1) vertices. Thus

V) =2f(r—1)<f(r)
using (1).

Case 2: |V(B)|=3. The base graph has no monochromatic triangle so it has an
edge b1by whose color is used only once (as a color on a base edge). Then the graphs
substituted into b1, b, must be colored with at most r—2 colors and the graph substituted
into the third vertex must be colored with at most r—1 colors. Thus

VIO =2f(r=2)+f(r—=D =fr—=D+fr—D=2f(r—1D) =f(r)

using (1) twice.

Case 3: 4<|V(B)| <5. The base graph has no monochromatic triangle so each
vertex in the base is incident to edges of both colors. Therefore

VIO < IVBIf (r—2)<5f(r—=2)=f(r)
using (2). |

Proof of Theorem 4. First, we give an upper bound on RG(r, H) that is exponential
in r by showing RG(r,H) <t"~ D+l where r=R(2,H)—1 and n=|V(H)|. We shall
assume that |V(H)| > 3, therefore n>3,7>2. Suppose indirectly that a Gallai-coloring
with r colors is given on K, |V(K)| > (n=Dr+l byt there is no monochromatic H. The
base graph B of this coloring has no monochromatic H therefore |V(B)| <R(2,H)—1=t.
This implies that some of the graphs, say G, substituted into B has at least *~D"
vertices. Let v; be an arbitrary vertex of K not in V(G1). Note that every edge from
vy to V(G1) has the same color. Iterating this process with G in the role of K, one
can define a sequence of vertices vi,v2,...,V(n—1)r+1 such that for every fixed i and
Jj>1 the colors of the edges v;,v; are the same. By the pigeonhole principle there is a
subsequence of n vertices spanning a monochromatic complete subgraph K, CK and
clearly H is a monochromatic subgraph of K,—a contradiction. Thus, for any—in
particular non-bipartite—H we proved an upper bound exponential in r.

For a bipartite H assume that both color classes of H have at most n vertices.
We show that RG(r,H) <pt(n—1), where p=(n—1)r+2 (and ¢ is as defined earlier),
providing an upper bound linear in r. Indeed, suppose indirectly that a Gallai-coloring
with r colors is given on K, |V(K)|>pt(n—1) but there is no monochromatic H.
The base graph of the Gallai-coloring has at most ¢ vertices, otherwise we have
a monochromatic H. Applying the same argument as in the previous paragraph,
we find that there is a graph Gj, substituted to some vertex of the base graph,
such that |V(G1)| > |V(K)|/t=p(n—1). If |V(K)\ V(G1)| >2n— 1 then—by the pigeon-
hole principle—we can select X C V(K)\V(G1) so that |X|=n and [X,V(G1)] is a
monochromatic complete bipartite graph—this graph contains H and the proof is
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finished. We conclude that |V(G)|=pt(n—1)—2(n—1)=(pt—2)(n—1). Select v| €
V(K)\V(G1) and iterate the argument: into some vertex of the base graph of the
Gallai-coloring on G| a graph G; is substituted with at least (|V(Gyp)|/f)>(p—1)
(n—1) vertices. Selecting v2 € V(G1)\ V(G2) we continue until 7={v,v3,...,vp_1} is
defined. There is still at least 2(n—1)>n vertices in G, thus selecting ¥ C V(G,,—1)
with |Y|=n, we have a complete bipartite graph [Y,T] such that from each veT all
edges from Y to v are colored with the same color. Since |T|=p—1=(n—1)r+1, by
the pigeonhole principle there is ZC T such that |Z|=n and [Y,Z] is a monochromatic
complete bipartite graph which obviously contains a monochromatic H—a contradic-
tion. Thus, for bipartite H we have an upper bound linear in r.

Lower bounds of the same order of magnitude can be easily given. For a non-bipartite
H it is obvious that RG(r,H)>2" because we can easily define a suitable Gallai-coloring
with r colors by repeatedly joining with a new color two identically colored complete
graphs of the same size.

If H is bipartite and not a star, it contains two independent, that is, vertex-disjoint
edges. Then we have RG(r,H)>r+1 because the canonical Gallai-coloring of K,
with r colors (where color class i is a star with i edges) does not have a monochro-
matic H. ]

Proof of Theorem 5. Assume H=Kj ,,p>1,r>3. We use a construction and a
result from [15]. To see that the claimed values of RG(r, H) cannot be lowered, let C be
a K5 colored with red and blue so that both color classes form a pentagon. For odd p
substitute a green K, 1)2 to each vertex of C. For even p substitute K,/ into one vertex
of C and K(,p)—1 to the other four vertices of C. The claimed upper bound of RG(r, H)
for odd p follows immediately from the following result of [15] (Theorem 3.1): any
Gallai-coloring of K contains a monochromatic K, with p>2|V(K)|/5 edges. For
even p one has to gain one over that bound and that can be easily obtained by modifying
the (easy) proof there. ]
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