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Ramsey-type theorems with

forbidden subgraphs

Noga Alon ∗ János Pach † József Solymosi ‡

Abstract

A graph is called H-free if it contains no induced copy of H. We discuss the following
question raised by Erdős and Hajnal. Is it true that for every graph H, there exists an ε(H) > 0
such that any H-free graph with n vertices contains either a complete or an empty subgraph
of size at least nε(H)? We answer this question in the affirmative for a special class of graphs,
and give an equivalent reformulation for tournaments. In order to prove the equivalence, we
establish several Ramsey type results for tournaments.

1 Introduction

Given a graph G with vertex set V (G) and edge set E(G), let α(G) and ω(G) denote the size of the
largest independent set (empty subgraph) and the size of the largest clique (complete subgraph) in
G, respectively. A subset U ⊆ V (G) is called homogeneous, if it is either an independent set or a
clique. Denote by hom(G) the size of the largest homogeneous set in G, i.e., let

hom(G) = max (α(G), ω(G)) .

If H is not an induced subgraph of G, then we say that G is an H-free graph.
According to classical Ramsey theory, hom(G) ≥ 1

2 log2 n for every graph G with n vertices
[ES35], and there exists some G with hom(G) < 2 log2 n (see [E47]). Erdős and Hajnal [EH89]
raised the possibility that “the following could be true.”
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Conjecture 1 For every graph H, there exists a positive ε = ε(H) such that every H-free graph

with n vertices has a homogeneous set whose size is at least nε.

Erdős and Hajnal confirmed their conjecture for every graph H which belongs to the class H
defined recursively as follows:

1. K1, the graph consisting of a single vertex, belongs to H;

2. if H1 and H2 are two vertex-disjoint graphs belonging to H, then their disjoint union as well
as the graph obtained from this union by connecting every vertex of H1 to every vertex of
H2 belongs to H.

Gyárfás [G97] noticed that it follows from a well known result of Seinsche [Se74] that Conjecture
1 is also true for all graphs generated by the above rules starting with P4, a simple path with 4
vertices, and K1.

Our first theorem extends both of these results. If Conjecture 1 is true for some graph H, then
we say that H has the Erdős-Hajnal property.

For any graph H with vertex set V (H) = {v1, . . . , vk} and for any other graphs, F1, . . . , Fk,
let H(F1, . . . , Fk) denote the graph obtained from H by replacing each vi with a copy of Fi, and
joining a vertex of the copy of Fi to a vertex of a copy of Fj , j 6= i, if and only if vivj ∈ E(H). The
copies of Fi, i = 1, . . . , k, are supposed to be vertex disjoint.

Theorem 1.1 If H,F1, . . . , Fk have the Erdős-Hajnal property, then so does H(F1, . . . , Fk).

In other words, the Erdős-Hajnal property is preserved by replacement. This enables us to
verify that Conjecture 1 is true, e.g., for the graphs depicted in Figure 1, which answers some
questions of Gyárfás [G97].

Figure 1: G1 and G2 have the Erdős-Hajnal property

No non-perfect graph is known to have the Erdős-Hajnal property. Unfortunately, in this respect
Theorem 1.1 cannot offer any help. Indeed, according to a result of Lovász [L83], which played a
key role in his proof of the Weak Perfect Graph Conjecture [L72], perfectness is also preserved by
replacement. It is an outstanding open problem to decide whether the smallest non-perfect graph,
the cycle of length 5, has the Erdős-Hajnal property. As Lovász pointed out, there is an even
simpler unsolved

Problem Does there exist a positive constant ε so that, for every graph G on n vertices such that

neither G nor its complement Ḡ contains an induced odd cycle whose length is at least 5, we have

hom(G) ≥ nε?
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It is easy to formulate analogous questions for tournaments. A tournament with no directed
cycle is called transitive. If a tournament has no subtournament isomorphic to T , then it is called
T -free.

It is well known [EEH73],[S74] that every tournament of n vertices contains a transitive sub-
tournament whose size is at least c log n, and that this result is tight apart from the value of the
constant.

Conjecture 2 For every tournament T , there exists a positive ε = ε(T ) such that every T -free

tournament with n vertices has a transitive subtournament whose size is at least nε.

Theorem 1.2 Conjecture 1 and Conjecture 2 are equivalent.

In order to prove Theorem 1.2, we need a Ramsey-theoretic result for tournaments, which is inter-
esting on its own right. A tournament T with a linear order < on its vertex set is called an ordered

tournament and is denoted by (T,<). An ordered tournament (T,<) is said to be a subtournament

of another ordered tournament, (T ′, <′), if there is a function f : V (T ) → V (T ′) satisfying the
conditions

(i) f(u) <′ f(v) if and only if u < v,

(ii) ~f(u)f(v) ∈ E(T ′) if and only if ~uv ∈ E(T ).

Theorem 1.3 For any ordered tournament (T,<), there exists a tournament T ′ such that, for

every ordering <′ of T ′, (T,<) is a subtournament of (T ′, <′). Moreover, if T has n vertices, there

exists a T ′ with the required property with O
(

n3 log2 n
)

vertices.

We further show that the O(n3 log2 n) estimate is not very far from being tight. In fact, if
(T,<) is any tournament on n vertices and T ′ satisfies the condition above for T , then T ′ must
have at least Ω(n2) vertices. The proof of the above theorem is very similar to the proof of the
main result of [RW89], which deals with a similar statement for ordered induced subgraphs. This
can be extended to hypergraphs as well.

By choosing a bigger tournament T ′, one can ensure a single tournament that contains all
ordered tournaments on n vertices, in any ordering. Specifically, we prove the following.

Theorem 1.4 Given an integer N , let n0 be the largest integer such that

(

N

n0

)

2−(n0
2
) ≥ 1,

and put n = n0 − 2. Then, for all sufficiently large N , there exists an ordered tournament T ′ on N
vertices such that in any ordering it contains every ordered tournament on n vertices.
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Note that the above estimate for n is clearly tight, up to an additive error of 2. A similar
statement holds for induced subgraphs, as shown in [BK93].

The rest of this paper is organized as follows. Theorem 1.1 is proved in Section 2. The proofs
of Theorems 1.3 and 1.4 appear in Section 3. Section 4 contains the proof of Theorem 1.2.

2 Graphs with the Erdős-Hajnal property

In this section we prove Theorem 1.1. Obviously, it is sufficient to show the following weaker version
of the theorem.

Theorem 2.1 Let H and F be graphs having the Erdős-Hajnal property, V (H) = {v1, v2, . . . , vk}.
Then the graph H(F, v2, . . . , vk), obtained by replacing v1 with F , also has this property.

Proof: Let H0 denote the graph obtained from H by the deletion of v1. For simplicity, write H(F )
for H(F, v2, . . . , vk). Let G be an H(F )-free graph with n vertices, and assume that hom(G) <
nε(H)δ. We would like to get a contradiction, provided that δ > 0 is sufficiently small.

Let m := ⌈nδ⌉ > k. By the definition of ε(H), any m-element subset of U ⊂ V (G) must
induce at least one subgraph isomorphic to H. Otherwise, we would find a homogeneous subset
of mε(H) > hom(G) in the subgraph of G induced by U , which is impossible. Therefore, G has at
least

(n
m

)

/
(n−k
m−k

)

induced subgraphs isomorphic to H. For each of these subgraphs, fix an isomorphic
embedding of H into G.

Since the number of embeddings of H0 into G is smaller than n(n − 1) · · · (n − k + 2), there
exists an embedding, which can be extended to an embedding of H in at least

M :=

(n
m

)

(n−k
m−k

)

n(n − 1) · · · (n − k + 2)
(1)

different ways. In other words, there are k − 1 vertices, v′2, . . . , v
′
k ∈ V (G), and there exists an at

least M -element subset W ⊂ V (G) such that, for every w ∈ W ,

f(v1) = w, f(vi) = v′i (i = 2, . . . , k)

is an isomorphic embedding of H into G.
Consider now the subgraph G|W of G induced by W . This graph must be F -free, otherwise G

would not be H(F )-free. Since F has the Erdős-Hajnal property, we know that

hom(G|W ) ≥ |W |ε(F ) ≥ M ε(F ).

On the other hand,
nε(H)δ > hom(G) ≥ hom(G|W ).
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Comparing the last two inequalities and plugging in the value (1) for M , we obtain that

nδε(H)/ε(F ) >

(n
m

)

(n−k
m−k

)

n(n − 1) · · · (n − k + 2)
=

n − k + 1

m(m − 1) · · · (m − k + 1)
> n1−kδ,

which gives the desired contradiction, provided that

δ <
ε(F )

ε(H) + kε(F )
. ✷

3 Ramsey-type theorems for tournaments

The proof of Theorem 1.3 uses the probabilistic method. The basic idea is a slightly simplified
version of the main argument of Rödl and Winkler in [RW89]. We need the following lemma.

Lemma 3.1 Let t > n > 1 be two positive integers, and let S = {a1, a2, . . . , atn} be a tn-element

set. Let g : S → R = {1, 2, . . . , t} be a function such that for every p ∈ R, we have |{i : g(ai) =
p}| = n. Further, let f : S → N = {1, 2, . . . , n} be a random function obtained by choosing, for

each element ai ∈ S, randomly, independently, and with uniform distribution a value f(ai) ∈ N .

Let E be denote the event that there exist 1 ≤ i1 < i2 < . . . < in ≤ nt such that g(aij ) 6= g(aik) for

all 1 ≤ j < k ≤ n, and f(aij ) = j for all 1 ≤ j ≤ n.

Then the probability that E does not hold is at most

n−1
∑

q=0

(

tn

q

)

nq(n−1)(n − 1)tn−nq

ntn
≤
(

4et

n

)n

e−t.

Proof : To estimate the number of functions f for which the event E fails, we argue as follows.
Given such an f , let i1 be the smallest integer (if it exists) such that f(ai1) = 1. Assuming
i1 < i2 < . . . < ij−1 have already been defined, and assuming that f(is) = s for all s < j and that
the elements g(ais), s < j, are pairwise distinct, let ij be the smallest integer (if it exists) satisfying
ij > ij−1, f(aij ) = j and g(aij ) 6= g(ais) for all s < j. Note that, since the event E fails, this
process must terminate after some q ≤ n − 1 elements is have been defined. Note also that if k
is an index satisfying is−1 < k < is, and g(ak) differs from g(aij ) for all j ≤ q (or even just for
all j < s), then f(ak) cannot be equal to s (since otherwise we would have defined is = k). Since
there is a similar restriction for the value of f(ak) for k < i1 and for k > iq, it follows that once
the sequence i1 < i2 . . . < iq has been defined, the value of f(ak) can attain at most n − 1 values
for all but at most tn − nq elements ak. Therefore, the total number of functions f for which the
event E fails is at most

n−1
∑

q=0

(

tn

q

)

nq(n−1)(n − 1)tn−nq.
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Since the total number of possible functions f is ntn, the probability that E does not hold is at
most

n−1
∑

q=0

(

tn

q

)

nq(n−1)(n − 1)tn−nq

ntn
≤

n−1
∑

q=0

(

etn

q

)q ( nn

(n − 1)n

)q 1

nq

(

1 − 1

n

)tn

≤
(

et

n
(1 +

1

n − 1
)n
)n

e−t ≤
(

4et

n

)n

e−t. ✷

Proof of Theorem 1.3: Let (T,<) be an ordered tournament on the set N = {1, 2, . . . , n} of
n vertices, ordered naturally. We may and will assume that n is sufficiently large. Let c > 3 be
an absolute constant, and let t be the smallest integer satisfying t > cn log n such that t − 1 is a
prime. By the known estimates for the distribution of primes, t = (1 + o(1))cn log n. Let P be a
projective plane of order t− 1. Each line of P contains precisely t points, and the number of points
in P is (t − 1)2 + t < t2. Replace each point p ∈ P by a set Sp of n points, where all sets Sp are
pairwise disjoint. Construct a tournament T ′ on the set ∪p∈P Sp of less than nt2 vertices as follows.
For every line l in P , let fl : ∪p∈lSp → N = {1, 2, . . . , n} be a random function, where each image
fl(u) is chosen randomly, uniformly and independently in N , and the functions corresponding to
different lines are chosen independently. For u, v ∈ ∪p∈lSp, where u ∈ Sp, v ∈ Sp′ and p 6= p′, let ~uv

be a directed edge if and only if ~fl(u)fl(v) is a directed edge of T . The edges with two endpoints
in the same set Sp are oriented arbitrarily.

To complete the proof, we show that almost surely (that is, with probability tending to 1 as n
tends to infinity), T ′ contains an ordered copy of T in any ordering. Fix an ordering <′ of T ′, and
let us estimate the probability that in this ordering (T ′, <′) contains no ordered copy of T . For
each line l in the projective plane, the ordering <′ induces an ordering of the tn vertices ∪p∈lSp.
Let S = (a1, a2, . . . , atn) be this induced ordering. Define g(ai) = p if ai ∈ Sp. Then, for every
p ∈ l, |{i : g(ai) = p}| = |Sp| = n. Observe now that, by Lemma 3.1, the probability that (T,<)
is not a subtournament of the ordered subgraph of (T ′, <′) consisting of all edges running between
distinct groups Sp (p ∈ l), is at most (4et

n )ne−t. This follows from the fact that, if the event E in
Lemma 3.1 holds for f = fl, then ai1 , . . . , ain induce a copy of T , as required. Since the events
for distinct lines are totally independent, the probability that (T ′, <′) contains no ordered copy of
(T,<) is at most

(

(
4et

n
)ne−t

)(t−1)2+t

= e−(1+o(1))c3n3 log3 n.

The total number of orderings of T ′ is (n((t − 1)2 + t))! ≤ e(1+o(1))3c2n3 log3 n, and as c > 3, by our
choice, the probability that T ′ fails to contain a copy of T in some ordering is o(1), completing the
proof. ✷

We next show that the O(n3 log2 n) upper bound cannot be replaced by o(n2). We need the
following well-known result.
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Lemma 3.2 ([D67], [A68]) The number |Aut(T )| of automorphisms of any tournament T on n
vertices does not exceed 3(n−1)/2.

Theorem 3.3 There exists an absolute constant b ≥ 1√
3e2

with the following property. Let (T,<)

be an ordered tournament on n vertices, and suppose T ′ is another tournament such that for every

ordering <′ of T ′, (T,<) is an induced subtournament of T . Then T ′ has at least bn2 vertices.

Proof: Let N be the number of vertices of T ′. Then the total number of induced labelled (but
not necessarily ordered) copies of T in T ′ is at most

(N
n

)

|Aut(T )|, which, by Lemma 3.2, does not

exceed ( eN
n )n3n/2. It follows that the probability that for a random ordering <′ of T ′, at least one

of these copies is ordered, is at most

(
eN

n
)n3n/2 1

n!
≤ (

√
3e2N

n2
)n.

If N < n2/(
√

3e2), this number is less than 1, implying that there is an ordering <′ with no ordered
copy of (T,<). Thus, we have N ≥ n2/(

√
3e2), completing the proof. ✷

The discussion for tournaments can be easily adapted to induced subgraphs of graphs. A simple
undirected graph H with a linear order < on its vertex set is called an ordered graph and is denoted
by (H,<). An ordered graph (H,<) is said to be an induced subgraph of another one, (H ′, <′), if
there is a function f : V (H) → V (H ′) such that, for any u, v ∈ V (H),

(i) f(u) <′ f(v) if and only if u < v,

(ii) f(u)f(v) ∈ E(H ′) if and only if uv ∈ E(H).

The proof of Theorem 1.3 can be easily modified to deal with ordered graphs, giving the following
result of Rödl and Winkler.

Theorem 3.4 ([RW89]) For any ordered graph (H,<), there exists a graph H ′ such that, for

every ordering <′ of H ′, (H,<) is an induced subgraph of (H ′, <′). Moreover, if H has n vertices,

there exists an H ′ with the required property with O
(

n3 log2 n
)

vertices.

Note that there is no nontrivial analogue of Theorem 3.3, since the number of automorphisms
of an undirected graph on n vertices can be as large as n!. In fact, if (H,<) is an ordered complete
graph on n vertices, then the graph H ′ = H has only n vertices and contains an induced ordered
copy of (H,<) in any ordering.

Combining the above arguments with some known results about packings, we can extend the
last result to induced hypergraphs as well. Moreover, the estimate for hypergraphs with no edge
of size less than 3 is slightly better than the corresponding result for graphs.

A hypergraph H with a linear order < on its vertex set is called an ordered hypergraph and
is denoted by (H,<). An ordered hypergraph (H,<) is said to be an induced subhypergraph of
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another one, (H ′, <′), if there is a function f : V (H) → V (H ′) such that, for any u, v ∈ V (H),
f(u) <′ f(v) if and only if u < v, and a set of vertices forms an edge iff its image under f forms an
edge.

Theorem 3.5 For any ordered hypergraph (H,<) in which each edge contains at least 3 vertices,

there exists a hypergraph H ′ such that, for every ordering <′ of H ′, (H,<) is an induced subhyper-

graph of (H ′, <′). Moreover, if H has n vertices, there exists an H ′ with the required property with

O
(

n3
)

vertices.

Proof: Let (H,<) be an ordered hypergraph on the set N = {1, 2, . . . , n} of n vertices, ordered
naturally, where each edge of H is of size at least 3. Let c be an absolute constant such that
4ece−c < 1/2 (c = 5, for example, will do). Let t be the smallest prime satisfying t > cn (then
t = (1 + o(1))cn.) As described in [K95], there is a simple, explicit construction of a family L of
t3 subsets of a set P of size t2 such that each member of l is of cardinality t and the intersection
of no two members of L is of size more than 2. Replace each element p ∈ P by a set Sp of n
points, where all sets Sp are pairwise disjoint. Construct a hypergraph H ′ on the set ∪p∈P Sp of
nt2 vertices as follows. For every l ∈ L, let fl : ∪p∈lSp → N = {1, 2, . . . , n} be a random function,
where each image fl(u) is chosen, randomly, uniformly and independently in N , and the functions
corresponding to different members l ∈ L are chosen independently. If u1, . . . , ur are vertices in
∪p∈lSp, then {u1, u2, . . . , ur} is an edge of H ′ iff the vertices ui belong to pairwise distinct sets Sp,
and {fl(u1), fl(u2), . . . , fl(ur)} is an edge of H. Note that, since the intersection of any two distinct
members of L is of size at most 2, and H has no edges with fewer than 3 vertices, none of the edges
defined above can lie in the union ∪p∈l′Sp, for any l′ ∈ L, l′ 6= l.

To complete the proof, we show that almost surely H ′ contains an ordered induced copy of H
in any ordering. Fix an ordering <′ of H ′, and let us estimate the probability that in this ordering
(H ′, <′) contains no ordered induced copy of H. For each l ∈ L, the ordering <′ induces an ordering
of the nt vertices ∪p∈lSp. Let S = (a1, a2, . . . , atn) be this induced ordering. Define g(ai) = p if
ai ∈ Sp. Then, for every p ∈ l, |{i : g(ai) = p}| = |Sp| = n. Observe now that, by Lemma 3.1,
the probability that (H,<) is not an induced subhypergraph of the induced ordered subhypergraph
of (H ′, <′) on S, is at most (4et

n )ne−t ≤ 2−n. This is true, because if the event E in Lemma 3.1
holds for f = fl, then the vertices ai1 , . . . , ain induce a copy of T , as required. Since the events for
distinct sets l ∈ L are totally independent, the probability that (H ′, <′) contains no ordered copy
of (H,<) is at most

(2−n)t3 = 2−(1+o(1))c3n4

.

The total number of orderings of H ′ is (nt2)! ≤ e(1+o(1))3c2n3 log n, and thus the probability that H ′

fails to contain a copy of H in some ordering is o(1), completing the proof. ✷

It is worth noting that the argument in the proof of Theorem 3.3 also works for hypergraphs
whose group of automorphisms is not too large. In particular, if the hypergraph H in the statement
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of the last theorem has no nontrivial automorphisms, then the number of vertices of any hypergraph
H ′ satisfying the assertion of the theorem must be at least Ω(n2).

Returning to tournaments, we now describe a proof of Theorem 1.4, using Talagrand’s Inequality
[T95]. An alternative proof can be given using the methods of [BK93].

Proof of Theorem 1.4: Let N,n0 and n be as in the statement of the theorem, and let T ′ be
a random tournament on the vertices 1, 2, . . . , N , obtained by choosing, for each pair of vertices
i, j of T ′, randomly, uniformly, and independently, either the edge ~ij or the edge ~ji. Whenever
it is needed, we assume that N is sufficiently large. To complete the proof, we show that almost
surely in every ordering, T ′ contains an ordered copy of every tournament on n vertices. To this
end, fix an ordering <′ of T ′, and fix an ordered tournament T on n vertices. We use Talagrand’s
Inequality (see, e.g., [AS00], Chapter 7) to estimate the probability that in this ordering T ′ contains
no ordered copy of T . The computation here is very similar to the one estimating the probability
that the clique number of the random graph G(n, 1/2) is less than its expected value by at least 2.

For each set K of n vertices of T ′, let BK be the event that the induced subgraph of (T ′, <′) on

K is an ordered copy of (T,<). Then the probability Pr(BK) of each event BK is precisely 2−(n

2
).

Define µ =
(N

n

)

2−(n

2
), and note that this is the expected number of ordered copies of (T,<) in

(T ′, <′). A simple computation shows that the number n0 defined in the statement of the theorem

satisfies n0 = (1 + o(1))2 log2 N , implying that for the function f(m) =
(N
m

)

2−(m

2
) and for every m

close to n0, we have f(m + 1)/f(m) = N−1+o(1). Therefore, µ ≥ N2−o(1).
For two subsets K and K ′, each containing n vertices of T ′, let K ∼ K ′ stand for the fact that

2 ≤ |K ∩ K ′| ≤ n − 1. Define, further, ∆ =
∑

K∼K′ Pr(BK ∧ BK′), where the sum ranges over
all ordered pairs (K, K ′) with K ∼ K ′. Therefore, 1

2∆ is the expected number of pairs of ordered
copies of T that share an edge.

The technical part of the proof is a careful estimate of the quantity ∆/µ2. Observe that if
|K ∩ K ′| = i (≥ 2) then

Pr(BK ∧ BK′) ≤ 2−2(n

2
)+(i

2
).

In fact, Pr(BK ∧ BK′) is equal either to zero, or to the right-hand side of the above expression.
Thus, it follows that ∆ ≤∑n−1

i=2 ∆i, where

∆i =

(

N

n

)(

n

i

)(

N − n

n − i

)

2−2(n

2
)+(i

2
).

Therefore,

∆i

µ2
=

(N
n

)(n
i

)(N−n
n−i

)

2−2(n

2
)+(i

2
)

(N
n

)2
2−2(n

2
)
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=

(n
i

)(N−n
n−i

)

2(i

2
)

(N
n

)
≤ (

n

N
)i

(

n

i

)

2(i

2
) ≤

(

n2

N
2(i−1)/2

)i

.

It follows that
∆2

µ2
≤ 2

n4

N2
, (2)

and that for each i satisfying, say, 3 ≤ i ≤ 100, we have

∆i

µ2
= O(

n6

N3
). (3)

Furthermore, for 100 < i ≤ 1.9 log2 N , we have

∆i

µ2
≤ (

n2

N0.05
)i <

1

N5
. (4)

For every i in the range 1.9 log2 N ≤ i ≤ n−1, put i = n−j, and note that 1 ≤ j ≤ (0.1+o(1)) log2 N
and

∆i

µ2
≤ 1

N2−o(1)

∆i

µ
=

1

N2−o(1)

(N
n

)(n
j

)(N−n
j

)

2−(n

2
)−j(n−j)−(j

2
)

(N
n

)

2−(n

2
)

≤ 1

N2−o(1)

(

n

j

)(

N − n

j

)

2−j(n−j) ≤ 1

N2−o(1)

(

nN2−(n−j)
)j

≤ 1

N2−o(1)

(

n

N0.9−o(1)

)j

≤ 1

N2.9−o(1)
.

Combining the last inequality with inequalities (2), (3) and (4), we conclude that ∆
µ2 ≤ (2+o(1)) n4

N2 .

Let X = h(T ′) denote the maximum number of pairwise edge-disjoint ordered copies of T in
(T ′, <′). We claim that the expected value of X = h(T ′) satisfies

E(X) ≥ (
1

4
+ o(1))

N2

n4
. (5)

To see this, define p = N2

2n4µ
, and note that, by a simple computation, we have p < 1. Let S be

a random collection of ordered copies of T in T ′ obtained by choosing each ordered copy of T in
T ′ to be a member of S, randomly and independently, with probability p. The expected number
of copies of T in S is pµ, and the expected number of pairs of members of S that share an edge
is 1

2∆p2. By omitting an arbitrarily chosen member of each such pair, we obtain a collection of
pairwise edge-disjoint copies of T whose expected number is at least pµ − 1

2∆p2. Thus

E(X) ≥ pµ − p2∆

2
≥ N2

2n4
− N4

8n8
(2 + o(1))

n4

N2
= (

1

4
+ o(1))

N2

n4
,
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establishing (5).
To apply Talagrand’s Inequality (in the form presented, for example, in [AS00], Chapter 7),

note that h(T ′) is a Lipschitz function, that is |h(T ′)−h(T ′′)| ≤ 1 if T ′, T ′′ differ in the orientation
of at most one edge. Note also that h is f -certifiable for f(s) =

(n
2

)

s. That is, whenever h(T ′) ≥ s
there is a set of at most

(n
2

)

s oriented edges of T ′ such that for every ordered tournament T ′′ which
agrees with T ′ on these edges, we have h(T ′′) ≥ s.

By Talalgrand’s Inequality we conclude that for every b and t

Pr[X ≤ b − t
√

f(b)] Pr[X ≥ b] ≤ e−t2/4. (6)

Let B denote the median of X = h(T ′). Without trying to optimize the absolute constants, we
claim that

B ≥ N2

16n4
. (7)

Indeed, assume this is false, and apply (6) with b = N2

8n4 and t = N
4n3 . As f(b) =

(n
2

)

N2

8n4 ≤ N2

16n2 , we
obtain that

Pr[X ≤ N2

8n4
− N2

16n4
] Pr[X ≥ N2

8n4
] ≤ e−N2/(64n6).

Since, by assumption, B < N2

16n4 , the first term of the left-hand side is at least 1/2, and we conclude
that

Pr[X ≥ N2

8n4
] ≤ 2e−N2/(64n6).

As X = h(T ′) ≤
(N

n

)

for every T ′, this implies that

E(X) ≤ N2

8n4
+

(

N

n

)

2e−N2/(64n6) =
N2

8n4
+ o(1),

contradicting (5) and hence proving (7).

We can now apply (6) with b = N2

16n4 and t = N
4n3 to obtain that

Pr[X = 0]Pr[X ≥ b] ≤ Pr[X ≤ b − t
√

f(b)]Pr[X ≥ b] ≤ e−N2/(64n6).

By (7), we have Pr[X ≥ b] ≥ 1/2, and hence Pr[X = 0] ≤ 2e−N2/(64n6).
Thus, we have proved that, for every fixed ordering of T ′ and for every fixed ordered T , the

probability that T ′ contains no ordered copy of T is at most 2e−N2/(64n6). Since the total number
of orderings of T ′ is less than NN = eN log N and the total number of tournaments T on n vertices

is 2(n

2
) we conclude that the probability that (T ′, <′) fails to contain some tournament of size n in

some ordering is at most

eN log N2(n

2
)2e−N2/(64n6) = o(1).
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This completes the proof. ✷

The above proof can be modified to deal with graphs in the place of tournaments. We obtain
the following, which is a very slight numerical improvement of the main result in [BK93].

Theorem 3.6 (see also [BK93]) Given an integer N , let n0 be the largest integer such that

(

N

n0

)

2−(n0
2
) ≥ 1,

and put n = n0 − 2. Then, for all sufficiently large N , the following holds almost surely. The

random graph G(N, 1/2) contains, in any ordering, an induced copy of every ordered graph on at

most n vertices.

4 Tournaments and H-free graphs

In this section, we prove Theorem 1.2. We need the following wellknown

Lemma 4.1 ([ES35]) For any two total orderings of the same (k2 + 1)-element set V , there is a

(k + 1)-element subset U ⊆ V such that either the order of any two elements of U is the same, or

the order of any two elements is opposite in the two orderings. ✷

We say that a tournament T has the Erdős-Hajnal property if there exists a positive ε = ε(T )
such that every T -free tournament with n vertices has a transitive subtournament whose size is at
least nε.

To any tournament T and to any ordering < of its vertex set, assign an ordered graph (H(T ), <)
on the same vertex set, as follows. Join two vertices u < v by an edge of H(T ) if and only if the
edge connecting them in T was directed towards v. Similarly, assign to any ordered graph (H,<)
an ordered tournament (T (H), <) with the same vertex set, by connecting u < v with an edge
directed towards v if uv ∈ E(H) and with an edge directed towards u if uv /∈ E(H).

Now we have everything needed for the

Proof of Theorem 1.2: Assume first that Conjecture 1 is true, i.e., every graph has the Erdős-
Hajnal property. Let T be a tournament. We want to show that T also has the Erdős-Hajnal
property.

Choose an arbitrary ordering < of the vertex set of T . Applying Theorem 3.4 to the ordered
graph (H(T ), <) associated with T and <, we obtain that there exists a graph H ′ with the property
that, for any ordering <′ of H ′, (H(T ), <) is an induced subgraph of (H ′, <′). By Conjecture 1,
there exists an ε(H ′) > 0 such that every H ′-free graph with n vertices has a homogeneous subset
of size at least nε(H′).

12



Consider now a T -free tournament T ′ with n vertices and an ordering <′ of V (T ′). Then the
ordered graph (H(T ′), <′) associated with them cannot contain an induced subgraph isomorphic
to H ′ (because, no matter how it is ordered, this would yield a copy of T in T ′). Thus, H(T ′)
must have a homogeneous set of size at least nε(H′). However, a homogeneous set in (H(T ′), <′)
corresponds to a transitive subtournament in T ′.

The proof of the reverse statement is very similar, but the roles of graphs and tournaments have
to be switched. Assume that Conjecture 2 is true, and let H be an arbitrary graph. To establish
that H has the Erdős-Hajnal property, fix a linear order < on V (H), and denote the associated
ordered tournament by (T (H), <).

By Theorem 1.3, there exists a tournament T ′ with the property that, for any ordering <′ of
T ′, (T (H), <) is a subtournament of (T ′, <′). By Conjecture 2, there exists an ε(T ′) > 0 such that
every T ′-free tournament with n vertices has a transitive subtournament of size at least nε(T ′).

Consider now an H-free graph H ′ with n vertices and an ordering <′ of V (H ′). Then the
ordered tournament (T (H ′), <′) associated with them cannot contain a subtournament isomorphic
to T ′ (because, no matter how it is ordered, this would yield a copy of H in H ′). Thus, T (H ′)
must have a transitive subtournament of size at least nε(H′). However, by Lemma 4.1, any such
subtournament has at least nε(H′)/2 vertices such that, with respect to the ordering <′, either
all edges connecting them are directed towards their larger endpoints, or all of them are directed
towards their smaller endpoints. These vertices induce a complete or an empty subgraph of H ′,
respectively. ✷
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Erdős (R. L. Graham and J. Nešetřil, eds.), Algorithms and Combinatorics 14, Volume II,
Springer-Verlag, Heidelberg, 1997, 93–98.

[K95] N. N. Kuzjurin: On the difference between asymptotically good packings and coverings,
European J. Comb. 16 (1995), 35-40.

[L72] L. Lovász: Normal hypergraphs and the perfect graph conjecture, Discrete Mathematics 2
(1972), 253–267.

[L83] L. Lovász: Perfect Graphs, in: Selected Topics in Graph Theory, Volume 2 (L. W. Beineke,
R. J. Wilson, eds.), Academic Prcess, London-New York, 1983, 55–87.
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