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      Ranavirus Taxonomy and Phylogeny 

                           James     K.     Jancovich     ,     Natalie K.     Steckler    , and     Thomas     B.     Waltzek   

1            Introduction 

 Nucleocytoplasmic Large DNA Viruses (NCLDV) are a monophyletic cluster of 
viruses that infect eukaryotes, ranging from single-celled organisms to humans, 
worldwide. The NCLDV group encompasses six virus families:  Poxviridae ,  Asfar-
viridae ,  Iridoviridae ,  Ascoviridae ,  Mimiviridae , and  Phycodnaviridae  (Yutin and 
Koonin  2012 ; Yutin et al.  2009 ; Fig.  1 ). In addition, Marseillevirus isolates can be 
classifi ed as members of the NCLDV, and there may be more viral isolates and fami-
lies that will join the NCLDV cluster as our understanding of this important and 
complex group of dsDNA viruses expands. Recently, a proposal has been made to the 
International Committee on Taxonomy of Viruses (ICTV), the organization that over-
sees viral taxonomy, to classify NCLDV into a new order, designated  Megavirales  
(Colson et al.  2012 ,  2013 ). Classifi cation of NCLDV into a defi ned hierarchy will 
provide needed taxonomic structure for large dsDNA viruses. While this proposed 
taxonomic change will most likely be accepted in the near future, until then, our 
 discussion will refer to this group as the NCLDV cluster of viruses.  

 Members within the NCLDV group have some of the largest known viral 
genomes. For example, members of the family  Mimiviridae  have genomes that 
are ~1.2 million base pairs (bp) in size and encode more than 1,000 viral genes 

        J.  K.   Jancovich      (*) 
  Department of Biological Sciences ,  California State University , 
  333 S. Twin Oaks Valley Rd ,  San Marcos ,  CA   92096 ,  USA   
 e-mail: jjancovich@csusm.edu   

    N.K.   Steckler    •    T.  B.   Waltzek    
     Department of Infectious Diseases and Pathology, College of Veterinary Medicine , 
 University of Florida ,   Gainesville ,  FL   32611 ,  USA    

mailto:jjancovich@csusm.edu


60

(Raoult et al.  2004 ). They replicate within the cytoplasm of infected cells, although 
some members (e.g., family  Iridoviridae ) also include a nuclear stage during their 
replication cycle. As a result, NCLDV members encode many of the genes neces-
sary for replication within the cytoplasm but still rely completely on the host trans-
lational machinery. Comparative analysis of NCLDV genomes reveals a core set of 
50 viral genes that are conserved among the NCLDV (Yutin and Koonin  2012 ), 
supporting the hypothesis that this cluster of viruses originated from a common 
ancestor. Although the best-characterized family within the NCLDV is the  Pox-
viridae , which includes a major human pathogen (smallpox virus), our understand-
ing of the molecular biology, ecology, and infection dynamics of other families 
within the NCLDV, particularly members of the family  Iridoviridae , has increased 
signifi cantly in recent decades. 

 The family  Iridoviridae  is composed of fi ve genera: the  Iridovirus  and  Chlori-
ridovirus  genera whose members infect invertebrate hosts and the  Megalocytivirus , 
 Lymphocystivirus,  and  Ranavirus  genera that infect cold-blooded vertebrates 
(Jancovich et al.  2012 ). Iridoviruses have linear dsDNA genomes that are circu-
larly permutated and terminally redundant (Goorha and Murti  1982 ). Genome 
size is highly variable within the family and ranges from 140 to 303 kbp. However, 
because genomes are terminally redundant, unit-length genome sizes (i.e., the 
sum of the size of only the unique genes) are smaller and range from 105 to 
212 kbp (Jancovich et al.  2012 ). Viruses within the family  Iridoviridae  share 26 
core genes (Eaton et al.  2007 ). This cluster of core genes includes viral structural 
proteins as well as proteins involved in the regulation of gene expression, virus 
replication, and virulence (Jancovich et al.  2015 ; Grayfer et al.  2015 ). Sequence 
analysis of the 26 core genes has been used to generate high-resolution phyloge-
nies (Fig.  2 ) for members of the family  Iridoviridae  as well as members of the 
genus  Ranavirus  (Jancovich et al.  2012 ).   
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  Fig. 1    Phylogenetic 
representation of the NCLDV 
group members. The 
graphical representation tree 
was developed from a 
phylogeny based on 263 
amino acids from a conserved 
region of the DNA 
polymerase B gene originally 
published by    Yutin et al. 
( 2009 ). Tree is not to scale       
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2     Ranavirus Taxonomy 

 Members of the genus  Ranavirus  are a promiscuous group of viruses capable of 
infecting a wide variety of cold-blooded vertebrate hosts including fi sh, amphibians, 
and reptiles (Marschang  2011 ; Miller et al.  2011 ; Whittington et al.  2010 ). In addi-
tion, it has been hypothesized that ranaviruses have recently in their evolutionary 
history jumped from fi sh to amphibians and reptiles (Jancovich et al.  2010 ; Mavian 
et al.  2012a ). This wide host range has been the focus of much ranavirus research, as 
investigators seek to understand how ranaviruses are able to infect such a wide vari-
ety of hosts (Brenes et al.  2014 ), when in evolutionary history did jumps from fi sh to 
other cold-blooded vertebrates occur (Chen et al.  2013 ; Jancovich et al.  2010 ; Mavian 
et al.  2012a ), and what genetic elements contribute to ranavirus host range and patho-
genesis (Jancovich et al.  2015 ). 

 There are currently six species recognized by the ICTV within the genus 
 Ranavirus  (Jancovich et al.  2012 ). These species include  Frog virus 3  (FV3), the 
type species of the genus, and the best-characterized member of the family 
 Iridoviridae ;  Ambystoma tigrinum virus  (ATV);  Bohle iridovirus  (BIV);  Epizootic 
hematopoietic necrosis virus  (EHNV);  European catfi sh virus  (ECV); and  Santee - 
Cooper   ranavirus  (SCRV; Jancovich et al.  2012 ). Moreover, there are other geneti-
cally distant ranaviruses that have not yet been recognized as species by the ICTV 
Iridoviridae Study Group. These include Singapore grouper iridovirus (SGIV; Song 
et al.  2004 ), grouper iridovirus (GIV), Rana esculenta virus (REV; Holopainen 
et al.  2009 ), common midwife toad virus (CMTV; Mavian et al.  2012a ),  Andrias 
davidianus  ranavirus (ADRV; also known as Chinese giant salamander iridovirus; 

  Fig. 2    Cladogram depicting the evolutionary relationships among the 11 fully sequenced ranavi-
ruses, based on aligned deduced amino acid (AA) sequences of the concatenated 26 conserved iri-
dovirus genes as defi ned by Eaton et al. ( 2007 ). The dataset contained 13,287 aligned AA positions. 
Maximum likelihood analysis was conducted in MEGA6 (Tamura et al.  2013 ). Numbers above 
each node represent the bootstrap values (1,000 replicates). See Table  1  for taxa abbreviations       
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Chen et al.  2013 ), cod iridovirus (CoIV; Ariel et al.  2010 ), short-fi nned eel ranavi-
rus (SERV; Holopainen et al.  2009 ), pike-perch iridovirus (PPIV; Holopainen et al. 
 2009 ), and Ranavirus maxima (Rmax; Ariel et al.  2010 ). Multiple criteria are used 
to delineate members within the genus  Ranavirus  including restriction endonucle-
ase fragment length polymorphism (RFLP) profi les of genomic DNA, virus protein 
profi les, DNA sequence analysis, and host specifi city (Jancovich et al.  2012 ). In 
addition to these criteria, dot plot analysis using complete genomic sequence infor-
mation as well as phylogenetic analysis of individual and concatenated gene 
sequences have provided insight into the taxonomy of the ranaviruses (Eaton et al. 
 2007 ; Jancovich et al.  2010 ; Mavian et al.  2012a ; Tan et al.  2004 ; Wang et al.  2014 ). 
Dot plot analyses offer a general overview of ranavirus genomic organization and a 
visual way to identify insertions, deletions, and inversions within viral genomes. 
Dot plot studies clearly indicate that although ranaviruses share the majority of 
their genes, gene order is not conserved and may serve as a way to distinguish evo-
lutionarily related isolates or species. For example, gene order is conserved among 
FV3, tiger frog virus (TFV), and soft-shelled turtle virus, and distinct from that 
seen with ATV and EHNV (Jancovich et al.  2015 ). 

 Phylogenetic analysis using the 26 core genes from completely sequenced 
 ranaviruses has identifi ed four distinct lineages (Fig.  2 ; Table  1 ): (1) the TFV/FV3/
BIV- like viruses; (2) the CMTV/ADRV-like viruses; (3) the ATV/EHNV-like viruses; 
(4) the SGIV/GIV-like viruses. As suggested by analysis of the MCP, SCRV will likely 
constitute a fi fth lineage (Fig.  3 ; Table  2 ). Furthermore, as additional ranavirus 
genomes are sequenced (e.g., especially those present within diverse fi sh species), it is 
likely that additional lineages will be added. Ranavirus lineages do not have a clearly 
defi ned host range. Lineages include those targeting only fi sh (e.g., the GIV- like and 
SCRV-like ranaviruses), only amphibians (e.g., CMTV/ADRV-like ranaviruses), both 
amphibians and fi sh (e.g., the ATV/EHNV-like viruses), and amphibians, fi sh, and 
reptiles (e.g., TFV/FV3/BIV-like viruses; Fig.  3 ). Therefore, phylogenetic analyses 
will enable investigators to identify and classify newly  discovered ranaviruses.

     Investigators categorize novel ranavirus isolates into viral lineages by sequenc-
ing one or more viral genes. For example, phylogenetic analysis and taxonomic 
classifi cation of newly isolated ranaviruses have focused on a single, highly con-
served gene (e.g., the MCP gene; Allender et al.  2013 ; Duffus and Andrews  2013 ; 
Geng et al.  2011 ; George et al.  2014 ; Kolby et al.  2014 ; Marsh et al.  2002 ; Waltzek 
et al.  2014 ), or on a concatenated set composed of multiple viral genes (Holopainen 
et al.  2009 ; Iwanowicz et al.  2013 ). While analysis of the MCP gene is convenient, 
the highly conserved nature of this protein may mask differences between virus 
isolates. Collectively, either approach provides a useful starting point to character-
ize and classify ranavirus isolates. However, having complete genomic sequence 
information available from a variety of ranavirus isolates will help in developing 
more rapid, sensitive, and universal approaches for the detection and classifi cation 
of new ranaviruses. For example, identifying primers that fl ank hypervariable 
regions within the genome may allow viral isolates to be more readily 
distinguished. 

 There are currently 11 completely sequenced ranaviruses (Table  1 ). In addition, 
complete genomic sequence information is available for multiple strains of the same 
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virus (e.g., FV3; Morrison et al.  2014 ) and closely related viruses (He et al.  2002 ; 
Huang et al.  2009 ; Lei et al.  2012 ). Comparative dot plot analysis of completely 
sequenced ranavirus genomes will be discussed in detail in another chapter of this 
book (Jancovich et al.  2015 ). That said, there are currently four unique genomic 
organizations  identifi ed among ranavirus genomes (Chen et al.  2013 ; Eaton et al. 
 2007 ; Jancovich et al.  2003 ,  2010 ; Mavian et al.  2012a ,  b ; Song et al.  2004 ; Tan 
et al.  2004 ; Tsai et al.  2005 ). The SCRV group may represent a fi fth type 

  Fig. 3    Phylogram depicting the evolutionary relationships among 22 ranaviruses in the family 
 Iridoviridae , based on the aligned full-length nucleotide (nt) sequences of the major capsid gene. 
The dataset contained 1,392 aligned nt positions. Maximum likelihood analysis was conducted in 
MEGA6 (Tamura et al.  2013 ). Numbers above each node represent the bootstrap values (1,000 
replicates). See Tables  1  and  2  for taxa abbreviations. Branch lengths are based on the number of 
inferred substitutions, as indicated by the scale bar       
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(J.K. Jancovich and T.B. Waltzek, unpublished data), and additional ranavirus 
genomic organizations may yet to be discovered. Interestingly, whole genome dot 
plot analyses show that ranaviruses with a similar genomic organization cluster 
together upon phylogenetic analysis using the 26 core genes. Therefore, there 
appears to be a direct correlation between ranavirus genomic organization and the 
26 gene phylogenies. 

 It is unclear why there is such diversity in overall genomic architecture among 
ranaviruses. To that end, no other member of the NCLDV has such a diverse geno-
mic organization. For example, all poxviruses possess genomes that display a con-
served central core and variable, inverted terminal repeat regions. The core contains 
replicative genes common to all poxviruses, whereas the terminal repeat regions 
encode genes that infl uence host specifi city and pathogenesis (Gubser et al.  2004 ; 
Upton et al.  2003 ). In contrast, although most genes are conserved, gene order 
 differs among the four aforementioned ranavirus lineages. Perhaps the diverse 
genomic organization is a refl ection of their inherently high recombination fre-
quency (Chinchar and Granoff  1986 ) that leads to marked rearrangement of the 
viral genome. Therefore, if recombination of the viral genome increases over time, 
then ranaviruses showing greater sequence divergence may also show lower sequ-
ence collinearity. In view of this, future work should focus on understanding this 
genomic variability and diversity among ranaviruses and its relationship to viral 
ecology, host range, and pathogenesis.  

3     The Future of Ranavirus Taxonomy: 
Where Do We Go from Here? 

 To envision the future of ranavirus taxonomy, one must fi rst understand how the 
ICTV defi nes the different levels of virus taxonomy. The ICTV defi nes a species as 
“a monophyletic group of viruses whose properties can be distinguished from those 
of other species by multiple criteria” (Adams et al.  2013 ). The criteria for defi ning 
a viral species is determined by individual ICTV study groups and may include 
“natural and experimental host range, cell and tissue tropism, pathogenicity, vector 
specifi city, antigenicity, and the degree of relatedness of their genomes or genes” 
(Adams et al.  2013 ). However, the critical component is that a viral species must be 
defi ned by “multiple” criteria, not a single distinguishing criterion. In addition, the 
ICTV recognizes a genus as “a group of species that share certain common criteria” 
(Adams et al.  2013 ). 

 As discussed above, ranavirus taxonomy has been based on RFLP profi les of 
genomic DNA, virus protein profi les, DNA sequence analysis, and host specifi city 
(Jancovich et al.  2012 ). Unfortunately, these criteria do not allow us to quantify and 
differentiate between intraspecifi c and interspecifi c diversity in order to delineate 
one species from another. However, our understanding of ranavirus diversity has 
signifi cantly increased in recent years through sequence analysis of individual 
 ranavirus genes and sequencing of complete viral genomes. As a result, the Irido-
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viridae Study Group will need to reassess the criteria necessary to assign species 
and genera within the family. For example, the grouper iridoviruses, GIV and SGIV, 
appear to be the most distantly related viruses among the current isolates of the 
genus  Ranavirus  (Figs.  2  and  3 ). Whole genome dot plot analysis shows collinearity 
between the genomes of GIV and SGIV. However, grouper iridoviruses possess few 
regions of collinearity with other ranaviruses (Jancovich et al.  2015 ). In addition, 
GIV/SGIV lack the DNA methyltransferase gene seen among other ranaviruses, 
and as a result, do not have a methylated genome (Song et al.  2004 ; Tsai et al.  2005 ). 
Therefore, GIV/SGIV may need to be considered as a new genus, or at the very 
least, recognized as a distinct species in the genus  Ranavirus . 

 Similarly, the SCRV-like ranaviruses, a group that includes doctor fi sh virus 
(DFV), largemouth bass virus (LMBV), and guppy virus 6 (GV6), are another col-
lection of related ranaviruses that may also need to be considered as a new genus in 
the family (Fig.  3 ). Having the genomic sequence of LMBV would allow for a more 
complete comparison and may help delineate the taxonomic position of the SCRV 
group of ranaviruses. We are currently in the process of completing the genomic 
sequence of LMBV, DFV, and GV6. Once completed, we should be able to perform 
a more comprehensive analysis of this group of viruses and determine if they should 
be considered a unique genus in the family  Iridoviridae . 

 Other partially characterized fi sh ranaviruses include the cod and turbot ranavi-
ruses (Ariel et al.  2010 ), short-fi nned eel ranavirus (Holopainen et al.  2009 ) and 
pike-perch iridovirus (Tapiovaara et al.  1998 ). Although preliminary sequencing of 
the aforementioned viruses has been undertaken (Ariel et al.  2010 ; Holopainen et al. 
 2009 ), full genomic sequencing for these viruses will be needed to determine if they 
belong in the genus or require the formation of new genera. Therefore, the future of 
ranavirus taxonomy may refl ect the need to “lump” currently recognized species 
(e.g., ATV/EHNV, TFV/FV3/BIV and CMTV/ADRV) into a single composite spe-
cies while adding new species (e.g., SGIV/GIV and LMBV/DFV/GV6) or “split” 
species into distinct genera. To that end, the Iridoviridae Study Group will need to 
assess the consequences of these possible changes before taxonomic alterations can 
be fi nalized.  

4     Final Thoughts 

 The taxonomy of ranaviruses is continually evolving, especially as new isolates are 
discovered worldwide. Taxonomic classifi cation of newly discovered ranavirus iso-
lates has been based on single and multiple viral genes as well as host, protein, 
serological, and morphological characteristics; however, single-gene taxonomic 
analysis is unlikely to be as robust as whole genome analysis or phylogenetic com-
parisons using the 26 core ranavirus genes. As more complete genomic sequences 
become available, our understanding of the diversity and complexity of ranavirus 
taxonomy will be delineated.     
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