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Abstract

Recent work on automated augmentation strategies has

led to state-of-the-art results in image classification and ob-

ject detection. An obstacle to a large-scale adoption of

these methods is that they require a separate and expen-

sive search phase. A common way to overcome the ex-

pense of the search phase was to use a smaller proxy task.

However, it was not clear if the optimized hyperparame-

ters found on the proxy task are also optimal for the actual

task. In this work, we rethink the process of designing auto-

mated augmentation strategies. We find that while previous

work required a search for both magnitude and probabil-

ity of each operation independently, it is sufficient to only

search for a single distortion magnitude that jointly controls

all operations. We hence propose a simplified search space

that vastly reduces the computational expense of automated

augmentation, and permits the removal of a separate proxy

task.

Despite the simplifications, our method achieves equal

or better performance over previous automated augmenta-

tion strategies on on CIFAR-10/100, SVHN, ImageNet and

COCO datasets. EfficientNet-B7, we achieve 85.0% accu-

racy, a 1.0% increase over baseline augmentation, a 0.6%

improvement over AutoAugment on the ImageNet dataset.

With EfficientNet-B8, we achieve 85.4% accuracy on Ima-

geNet, which matches a previous result that used 3.5B extra

images. On object detection, the same method as classifica-

tion leads to 1.0-1.3% improvement over baseline augmen-

tation. Code will be made available online.

1. Introduction

Although data augmentation is a widely used method to

inject additional knowledge to train vision models [36, 17,

6, 48], the fact that it is manually designed makes it diffi-

cult to scale to new applications. Learning data augmen-

tation strategies from data has recently emerged as a new

paradigm to automate the design of augmentation and has

∗Equal contribution.

CIFAR-10 SVHN ImageNet

search PyramidNet Wide-ResNet EfficientNet-B7

space cost acc. cost acc. cost acc.

Baseline 0 0 97.3 0 98.5 0 84.0

AA 10
32 5K 98.5 1K 98.9 15K 84.4

Fast AA 10
32 3.5 98.3 1.5 98.8 - -

PBA 10
61 5.0 98.5 1.0 98.9 - -

RA (ours) 10
2 0 98.5 0 99.0 0 85.0

Table 1. RandAugment matches or exceeds predictive perfor-

mance of other augmentation methods with a significantly

reduced search space. We report the computational cost, the

search space size, and the test accuracy achieved for AutoAugment

(AA) [4], Fast AutoAugment [19], Population Based Augmenta-

tion (PBA) [15] and the proposed RandAugment (RA) on CIFAR-

10 [16], SVHN [28], and ImageNet [5] classification tasks. Com-

putational cost is reported as the number of GPU hours expended

for identifying the augmentation policy in a separate search phase

on a proxy task. Search space size is reported as the order of mag-

nitude of the number of possible augmentation policies. Dash in-

dicates that results are not available.

the potential to address some weaknesses of traditional data

augmentation methods [4, 51, 15, 19]. Training a machine

learning model with a learned data augmentation policy

may significantly improve image classification [4, 19, 15],

object detection [51], model robustness [25, 46, 34], and

semi-supervised learning image classification [44]. Unlike

architecture search [53], all of these improvements in pre-

dictive performance incur no additional computational cost

at inference time.

An obstacle to a large-scale adoption of these methods is

that they require a separate and expensive search phase. A

common way to overcome the expense of the search phase

was to use a smaller proxy task. Although the proxy task

helps speeding up the search process, it also adds extra com-

plexity to the methods and causes further issues. For exam-

ple, it was not clear if the optimal hyperparameters found

on the proxy task are also optimal for the actual task. In

fact, we will provide experimental evidence in this paper to

challenge this core assumption. In particular, we demon-

strate that this strategy is sub-optimal as the strength of the

augmentation depends strongly on model and dataset size.

These results suggest that an improved data augmentation

may be possible if one could remove the separate search
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phase on a proxy task.

In this work, we aim to make AutoAugment and related

methods [4, 15, 19] better, and more practical. While previ-

ous work focused on the search methodology [19, 15], our

analysis shows that the search space plays a more significant

role. In previous work, it was required to search for both

the probability and the magnitude of each operation in the

search space. Our experiments show that it is sufficient to

optimize all of the operations jointly with a single distortion

magnitude while setting the probability of each operation to

uniform. The simplified search space vastly reduces the cost

of automated augmentation. With the reduced search space,

we also simplify the whole search process: we no longer

need a separate expensive search phase and proxy tasks.

The reduction in parameter space is in fact so dramatic

that simple grid search is sufficient to find a data augmenta-

tion policy that outperforms all learned augmentation meth-

ods that employ a separate search phase. We name our

method RandAugment because it uniformly samples ops in

the search space. Table 1 shows a summary of our main

results: despite the fact that RandAugment is much faster

thanks to having a much smaller search space. RandAug-

ment also achieves higher accuracy on a wide range of

benchmarks, thanks to its ability to adjust its distortion mag-

nitude on the model and dataset size. Our contributions can

be summarized as follows:

• We demonstrate that the optimal strength of a data

augmentation distortions depends on the model size

and training set size. This observation indicates that

a separate optimization of an augmentation policy on

a smaller proxy task may be sub-optimal for learning

and transferring augmentation policies.

• We analyze AutoAugment methods and identify that

the search space plays an important role in the re-

sults. We hence introduce a vastly simplified search

space for data augmentation containing 2 interpretable

hyper-parameters. One may employ a simple grid

search to tailor the augmentation policy to a model and

dataset, removing the need for a separate search pro-

cess. Our change is however orthogonal to the better

search methods and can be used in combination with

them.

• Despite the simplifications, our method surprisingly

outperforms AutoAugment and related methods. We

achieve state-of-the-art results on a wide range of

datasets: CIFAR, SVHN, and ImageNet. With

EfficientNet-B7, we achieve an accuracy of 85.0%,

a 0.6% increment over AutoAugment and 1.0% over

baseline augmentation [39]. With an even larger net-

work, EfficientNet-B8, we achieve 85.4% accuracy on

ImageNet with no extra data, which matches a previ-

ous result that used an additional 3.5B Instagram im-

ages [26] (with a model that has 9.4 times more param-

eters than ours).

2. Systematic failures of a separate proxy task

A central premise of learned data augmentation is to con-

struct a small, proxy task that may be reflective of a larger

task [52, 53, 4]. Although this assumption is sufficient for

identifying learned augmentation policies to improve per-

formance [4, 51, 30, 19, 15], it is unclear if this assumption

is overly stringent and may lead to sub-optimal data aug-

mentation policies.

In this section, we challenge the hypothesis that formu-

lating the problem in terms of a small proxy task is appropri-

ate for learned data augmentation. In particular, we explore

this question along two separate dimensions that are com-

monly restricted to achieve a small proxy task: model size

and dataset size. To explore this hypothesis, we systemat-

ically measure the effects of data augmentation policies on

CIFAR-10. First, we train a family of Wide-ResNet archi-

tectures [47], where the model size may be systematically

altered through the widening parameter governing the num-

ber of convolutional filters. For each of these networks, we

train the model on CIFAR-10 and measure the final accu-

racy compared to a baseline model trained with default data

augmentations (i.e. horizontal flips and pad-and-crop) [47].

The Wide-ResNet models are trained with the additional

K=14 data augmentations (see Section 3) over a range of

global distortion magnitudes M parameterized on a uniform

linear scale ranging from [0, 30] 1.

Figure 1a demonstrates the relative gain in accuracy of

a model trained across increasing distortion magnitudes for

three Wide-ResNet models. The squares indicate the dis-

tortion magnitude with which achieves the highest accu-

racy. Note that in spite of the measurement noise, Figure

1a demonstrates systematic trends across distortion magni-

tudes. In particular, plotting all Wide-ResNet architectures

versus the optimal distortion magnitude highlights a clear

monotonic trend across increasing network sizes (Figure

1b). Namely, larger networks demand larger data distor-

tions for regularization. Figure 2 highlights the visual dif-

ference in the optimal distortion magnitude for differently

sized models. Conversely, a policy learned on a proxy task

(such as AutoAugment) provides a fixed distortion mag-

nitude (Figure 1b, dashed line) for all architectures that is

clearly sub-optimal.

A second dimension for constructing a small proxy task

is to train the proxy on a small subset of the training

data. Figure 1c demonstrates the relative gain in accu-

1Note that the range of magnitudes exceeds the specified range of mag-

nitudes in the Methods because we wish to explore a larger range of mag-

nitudes for this preliminary experiment. We retain the same scale as [4] for

a value of 10 to maintain comparable results.



Figure 1. Optimal magnitude of augmentation depends on the size of the model and the training set. All results report CIFAR-10

validation accuracy for Wide-ResNet model architectures [47] averaged over 20 random initializations, where N = 1. (a) Accuracy of

Wide-ResNet-28-2, Wide-ResNet-28-7, and Wide-ResNet-28-10 across varying distortion magnitudes. Models are trained for 200 epochs

on 45K training set examples. Squares indicate the distortion magnitude that achieves the maximal accuracy. (b) Optimal distortion

magnitude across 7 Wide-ResNet-28 architectures with varying widening parameters (k). (c) Accuracy of Wide-ResNet-28-10 for three

training set sizes (1K, 4K, and 10K) across varying distortion magnitudes. Squares indicate the distortion magnitude that achieves the

maximal accuracy. (d) Optimal distortion magnitude across 8 training set sizes. Dashed curves show the scaled expectation value of the

distortion magnitude in the AutoAugment policy. [4]

racy of Wide-ResNet-28-10 trained across increasing dis-

tortion magnitudes for varying amounts of CIFAR-10 train-

ing data. The squares indicate the distortion magnitude with

that achieves the highest accuracy. Note that in spite of

the measurement noise, Figure 1c demonstrates systematic

trends across distortion magnitudes. We first observe that

models trained on smaller training sets may gain more im-

provement from data augmentation (e.g. 3.0% versus 1.5%

in Figure 1c). Furthermore, we see that the optimal distor-

tion magnitude is larger for models that are trained on larger

datasets. At first glance, this may disagree with the expec-

tation that smaller datasets require stronger regularization.

Figure 1d demonstrates that the optimal distortion mag-

nitude increases monotonically with training set size. One

hypothesis for this counter-intuitive behavior is that aggres-

sive data augmentation leads to a low signal-to-noise ratio

in small datasets. Regardless, this trend highlights the need

for increasing the strength of data augmentation on larger

datasets and the shortcomings of optimizing learned aug-

mentation policies on a proxy task comprised of a subset of

the training data. Namely, the learned augmentation may

learn an augmentation strength more tailored to the proxy

task instead of the larger task of interest.

The dependence of augmentation strength on the dataset

and model size indicate that a small proxy task may provide

a sub-optimal indicator of performance on a larger task.

This empirical result suggests that a distinct strategy may be

necessary for finding an optimal data augmentation policy.

In particular, we propose in this work to focus on a unified

optimization of the model weights and data augmentation

policy. Figure 1 suggest that merely searching for a shared

distortion magnitude M across all transformations may pro-

vide sufficient gains that exceed learned optimization meth-

ods using proxy tasks. Additionally, we see that optimizing

individual magnitudes further leads to minor improvement

in performance (see Section A.1.2 in Appendix).

Furthermore, Figure 1a and 1c indicate that merely sam-

pling a few distortion magnitudes is sufficient to achieve

good results. Coupled with a second free parameter N ,

we consider these results to prescribe an algorithm for

learning an augmentation policy. In the subsequent sec-

tions, we identify two free parameters N and M specify-

ing RandAugment through a minimal grid search and com-

pare these results against computationally-heavy learned

data augmentations based on proxy tasks.



3. Automated data augmentation without a

proxy task

Figure 2. Example images augmented by RandAugment. In

these examples N=2 and three magnitudes are shown corre-

sponding to the optimal distortion magnitudes for ResNet-50,

EfficientNet-B5 and EfficientNet-B7, respectively. As the dis-

tortion magnitude increases, the strength of the augmentation in-

creases.

The primary goal of RandAugment is to remove the need

for a separate search phase on a proxy task. The reason we

wish to remove the search phase is because a separate search

phase significantly complicates training and is computation-

ally expensive. More importantly, the proxy task may pro-

vide sub-optimal results, as seen in the previous section. In

order to remove a separate search phase, we aspire to fold

the parameters for the data augmentation strategy into the

hyper-parameters for training a model. Given that previ-

ous learned augmentation methods contained 30+ parame-

ters [4, 19, 15], we focus on vastly reducing the parameter

space for data augmentation.

Previous work indicates that the main benefit of learned

augmentation policies arise from increasing the diversity of

examples [4, 15, 19]. Indeed, previous work enumerated a

policy in terms of choosing which transformations to apply

out of K=14 available transformations, and probabilities for

applying each transformation:

• identity • autoContrast • equalize

• rotate • solarize • color

• posterize • contrast • brightness

• sharpness • shear-x • shear-y

• translate-x • translate-y

In order to reduce the parameter space but still maintain im-

transforms = [

’Identity’, ’AutoContrast’, ’Equalize’, ’Rotate’,

’Solarize’, ’Color’,

’Posterize’, ’Contrast’, ’Brightness’, ’Sharpness’,

’ShearX’, ’ShearY’,

’TranslateX’, ’TranslateY’]

def randaugment(N, M):

"""Generate a set of distortions.

Args:

N: Number of augmentation transformations to apply

sequentially.

M: Magnitude for all the transformations.

"""

sampled_ops = np.random.choice(transforms, N)

return [(op, M) for op in sampled_ops]

Figure 3. Python code for RandAugment based on numpy.

age diversity, we replace the learned policies and probabili-

ties for applying each transformation with a parameter-free

procedure of always selecting a transformation with uni-

form probability 1

K
. Given N transformations for a training

image, RandAugment may thus express KN potential poli-

cies.

The final set of parameters to consider is the magnitude

of the each augmentation distortion. Following [4], we em-

ploy the same linear scale for indicating the strength of each

transformation. Briefly, each transformation resides on an

integer scale from 0 to 10 where a value of 10 indicates

the maximum scale for a given transformation. A data aug-

mentation policy consists of identifying an integer for each

augmentation [4, 19, 15]. In order to reduce the parame-

ter space further, we observe that the learned magnitude for

each transformation follows a similar schedule during train-

ing (e.g. Figure 4 in [15]) and postulate that a single global

distortion M may suffice for parameterizing all transforma-

tions. We experimented with four methods for the schedule

of M during training: constant magnitude, random magni-

tude, a linearly increasing magnitude, and a random magni-

tude with increasing upper bound. The details of this exper-

iment can be found in Appendix A.1.1.

The resulting algorithm contains two parameters N and

M and may be expressed simply in two lines of Python

code (Figure 3). Both parameters are human-interpretable

such that larger values of N and M increase regularization

strength. Standard methods may be employed to efficiently

perform hyperparameter optimization [38], however given

the extremely small search space we find that naive grid

search is quite effective (Section 2). We justify all of the

choices of this proposed algorithm in the subsequent sec-

tions by comparing the efficacy of our simple method to

previous learned data augmentation methods.



baseline PBA Fast AA AA RA

CIFAR-10

Wide-ResNet-28-2 94.9 - - 95.9 95.8

Wide-ResNet-28-10 96.1 97.4 97.3 97.4 97.3

Shake-Shake 97.1 98.0 98.0 98.0 98.0

PyramidNet 97.3 98.5 98.3 98.5 98.5

CIFAR-100

Wide-ResNet-28-2 75.4 - - 78.5 78.3

Wide-ResNet-28-10 81.2 83.3 82.7 82.9 83.3

SVHN (core set)

Wide-ResNet-28-2 96.7 - - 98.0 98.3

Wide-ResNet-28-10 96.9 - - 98.1 98.3

SVHN

Wide-ResNet-28-2 98.2 - - 98.7 98.7

Wide-ResNet-28-10 98.5 98.9 98.8 98.9 99.0

Table 2. Test accuracy (%) on CIFAR-10, CIFAR-100, SVHN

and SVHN core set. Comparisons across default data augmenta-

tion (baseline), Population Based Augmentation (PBA) [15] and

Fast AutoAugment (Fast AA) [19], AutoAugment (AA) [4] and

proposed RandAugment (RA). Note that baseline and AA are

replicated in this work. SVHN core set consists of 73K examples.

The Shake-Shake model [10] employed a 26 2×96d configura-

tion, and the PyramidNet model used the ShakeDrop regulariza-

tion [45]. Results reported by us are averaged over 10 independent

runs. Bold indicates best results.

4. Experiments

To explore the space of data augmentations, we exper-

iment with core image classification and object detection

tasks. In particular, we focus on CIFAR-10, CIFAR-100,

SVHN, and ImageNet datasets as well as COCO object de-

tection so that we may compare with previous work. For all

of these datasets, we replicate the corresponding architec-

tures and set of data transformations. Our goal is to demon-

strate the relative benefits of employing this method over

previous learned augmentation methods.

4.1. CIFAR-10 and SVHN

CIFAR-10 has been extensively studied with previous

data augmentation methods and we first test this proposed

method on this data. The default augmentations for all

methods include flips, pad-and-crop and Cutout [7]. N and

M were selected based on the validation performance on 5K

held out examples from the training set for 1 and 5 settings

for N and M , respectively. Results indicate that RandAug-

ment achieves either competitive (i.e. within 0.1%) or state-

of-the-art on CIFAR-10 across four network architectures

(Table 2). As a more challenging task, we additionally com-

pare the efficacy of RandAugment on CIFAR-100 for Wide-

ResNet-28-2 and Wide-ResNet-28-10. On the held out 5K

dataset, we sampled 2 and 4 settings for N and M , respec-

tively (i.e. N={1, 2} and M={2, 6, 10, 14}). For Wide-

ResNet-28-2 and Wide-ResNet-28-10, we find that N=1,

M=2 and N=2, M=14 achieves best results, respectively.

Again, RandAugment achieves competitive or superior re-

sults across both architectures (Table 2).

Because SVHN is composed of numbers instead of nat-

ural images, the data augmentation strategy for SVHN may

differ substantially from CIFAR-10. Indeed, [4] identified

a qualitatively different policy for CIFAR-10 than SVHN.

Likewise, in a semi-supervised setting for CIFAR-10, a pol-

icy learned from CIFAR-10 performs better than a policy

learned from SVHN [44].

SVHN has a core training set of 73K images [28]. In

addition, SVHN contains 531K less difficult “extra” im-

ages to augment training. We compare the performance of

the augmentation methods on SVHN with and without the

extra data on Wide-ResNet-28-2 and Wide-ResNet-28-10

(Table 2). In spite of the large differences between SVHN

and CIFAR, RandAugment consistently matches or outper-

forms previous methods with no alteration to the list of

transformations employed. Notably, for Wide-ResNet-28-

2, applying RandAugment to the core training dataset im-

proves performance more than augmenting with 531K ad-

ditional training images (98.3% vs. 98.2%). For, Wide-

ResNet-28-10, RandAugment is competitive with augment-

ing the core training set with 531K training images (i.e.

within 0.2%). Nonetheless, Wide-ResNet-28-10 with Ran-

dAugment matches the previous state-of-the-art accuracy

on SVHN which used a more advanced model [4].

4.2. Image classification with ImageNet dataset

Data augmentation methods that improve CIFAR-10 and

SVHN models do not always improve large-scale tasks such

as ImageNet. For instance, Cutout substantially improves

CIFAR and SVHN performance [7], but fails to improve

ImageNet [25]. Likewise, AutoAugment does not increase

the performance on ImageNet as much as other tasks [4],

especially for large networks (e.g. +0.4% for AmoebaNet-

C [4] and +0.1% for EfficientNet-B5 [41]). One plausible

reason for the lack of strong gains is that the small proxy

task was particularly impoverished by restricting the task to

∼10% of the 1000 ImageNet classes.

Table 3 compares the performance of RandAugment to

other learned augmentation approaches on ImageNet. Ran-

dAugment matches the performance of AutoAugment and

Fast AutoAugment on the smallest model (ResNet-50), but

on larger models RandAugment significantly outperforms

other methods achieving increases of up to +1.3% above

the baseline. For instance, on EfficientNet-B7, the resulting

model achieves 85.0% – a new state-of-the-art accuracy –

exhibiting a 1.0% improvement over the baseline augmen-

tation. These systematic gains are similar to the improve-

ments achieved with engineering new architectures [53, 22],

however these gains arise without incurring additional com-

putational cost at inference time.

4.3. Object detection with COCO dataset

To further test the generality of this approach, we next

explore a related task of large-scale object detection on the



baseline Fast AA AA RA

ResNet-50 76.3 / 93.1 77.6 / 93.7 77.6 / 93.8 77.6 / 93.8

EfficientNet-B5 83.2 / 96.7 - 83.3 / 96.7 83.9 / 96.8

EfficientNet-B7 84.0 / 96.9 - 84.4 / 97.1 85.0 / 97.2

Table 3. ImageNet results. Top-1 and Top-5 accuracies (%) on ImageNet. Baseline and AutoAugment (AA) results on ResNet-50 are

from [4]. Fast AutoAugment (Fast AA) results are from [19]. EfficientNet results with and without AutoAugment are from [41].

Highest accuracy for each model is presented in bold. Note that Population Based Augmentation (PBA) [15] has not been implemented on

ImageNet.

augmentation search space ResNet-101 ResNet-200

Baseline 0 38.8 39.9

AutoAugment 10
34 40.4 42.1

RandAugment 10
2 40.1 41.9

Table 4. Results on object detection. Mean average precision

(mAP) on COCO detection task. Search space size is reported as

the order of magnitude of the number of possible augmentation

policies. Models are trained for 300 epochs from random initial-

ization following [51].

COCO dataset [21]. Learned augmentation policies have

improved object detection and lead to state-of-the-art results

[51]. We followed previous work by training on the same

architectures and following the same training schedules (see

Appendix A.3). Briefly, we employed RetinaNet [20] with

ResNet-101 and ResNet-200 as a backbone [12]. Models

were trained for 300 epochs from random initialization.

Table 4 compares results between a baseline model, Au-

toAugment and RandAugment. AutoAugment leveraged

additional, specialized transformations not afforded to Ran-

dAugment in order to augment the localized bounding box

of an image [51]. In addition, note that AutoAugment

expended ∼15K GPU hours for search, where as Ran-

dAugment was tuned by on merely 6 values of the hyper-

parameters (see Appendix A.3). In spite of the smaller li-

brary of specialized transformations and the lack of a sep-

arate search phase, RandAugment surpasses the baseline

model and provides competitive accuracy with AutoAug-

ment. We reserve for future work to expand the transforma-

tion library to include bounding box specific transformation

to potentially improve RandAugment results even further.

4.4. Investigating the dependence on the included
transformations

RandAugment achieves state-of-the-art results across

different tasks and datasets using the same list of transfor-

mations. This result suggests that RandAugment is largely

insensitive to the selection of transformations for differ-

ent datasets. To further study the sensitivity, we experi-

mented with RandAugment on a Wide-ResNet-28-2 trained

on CIFAR-10 for randomly sampled subsets of the full list

of 14 transformations. We did not use flips, pad-and-crop,

or cutout to only focus on the improvements due to Ran-

Figure 4. Average performance improves when more transfor-

mations are included in RandAugment. All panels report me-

dian CIFAR-10 validation accuracy for Wide-ResNet-28-2 model

architectures [47] trained with RandAugment (N = 3, M = 4)

using randomly sampled subsets of transformations. No other data

augmentation is included in training. Error bars indicate 30th and

70th percentile. (a) Median accuracy for randomly sampled subsets

of transformations. (b) Median accuracy for subsets with and with-

out the Rotate transformation. (c) Median accuracy for subsets

with and without the translate-x transformation. (d) Median

accuracy for subsets with and without the posterize transfor-

mation. Dashed curves show the accuracy of the model trained

without any augmentations.

dAugment with random subsets. Figure 4a suggests that the

median validation accuracy due to RandAugment improves

as the number of transformations is increased. However,

even with only two transformations, RandAugment leads to

more than 1% improvement in validation accuracy on aver-

age.

To get a sense for the effect of individual transforma-

tions, we calculate the average improvement in validation

accuracy for each transformation when they are added to a

random subset of transformations. We list the transforma-

tions in order of most helpful to least helpful in Table 5. We

see that while geometric transformations individually make

the most difference, some of the color transformations lead

to a degradation of validation accuracy on average. Note



transformation ∆ (%) transformation ∆ (%)

rotate 1.3 shear-x 0.9

shear-y 0.9 translate-y 0.4

translate-x 0.4 autoContrast 0.1

sharpness 0.1 identity 0.1

contrast 0.0 color 0.0

brightness 0.0 equalize -0.0

solarize -0.1 posterize -0.3

Table 5. Average improvement due to each transformation.

Average difference in validation accuracy (%) when a particular

transformation is added to a randomly sampled set of transfor-

mations. For this ablation study, Wide-ResNet-28-2 models were

trained on CIFAR-10 using RandAugment (N = 3, M = 4) with

the randomly sampled set of transformations, with no other data

augmentation.

that while Table 5 shows the average effect of adding in-

dividual transformations to randomly sampled subsets of

transformations, Figure 4a shows that including all trans-

formations together leads to a good result. The transfor-

mation rotate is most helpful on average, which was also

observed previously [4, 51]. To see the effect of represen-

tative transformations in more detail, we repeat the anal-

ysis in Figure 4a for subsets with and without (rotate,

translate-x, and posterize). Surprisingly, rotate can

significantly improve performance and lower variation even

when included in small subsets of RandAugment transfor-

mations, while posterize seems to hurt all subsets of all

sizes.

4.5. Learning the probabilities for selecting image
transformations

baseline AA RA + 1st

Reduced CIFAR-10

Wide-ResNet-28-2 82.0 85.6 85.3 85.5

Wide-ResNet-28-10 83.5 87.7 86.8 87.4

CIFAR-10

Wide-ResNet-28-2 94.9 95.9 95.8 96.1

Wide-ResNet-28-10 96.1 97.4 97.3 97.4

Table 6. Differentiable optimization for augmentation can im-

prove RandAugment. Test accuracy (%) from differentiable Ran-

dAugment for reduced (4K examples) and full CIFAR-10. The

1st-order approximation (1st) is based on density matching (Sec-

tion 4.5). Models trained on reduced CIFAR-10 were trained for

500 epochs. CIFAR-10 models trained using the same hyperpa-

rameters as previous. Each result is averaged over 10 independent

runs.

RandAugment selects all image transformations with

equal probability. This opens up the question of whether

learning K probabilities may improve performance further.

Most of the image transformations (except posterize, equal-

ize, and autoContrast) are differentiable, which permits back-

propagation to learn the K probabilities [23]. Let us denote

αij as the learned probability of selecting image transfor-

mation i for operation j. For K=14 image transformations

and N=2 operations, αij constitutes 28 parameters. We ini-

tialize all weights such that each transformation is equal

probability (i.e. RandAugment), and update these param-

eters based on how well a model classifies a held out set of

validation images distorted by αij . This approach was in-

spired by density matching [19], but instead uses a differen-

tiable approach in lieu of Bayesian optimization. We label

this method as a 1st-order density matching approximation.

To test the efficacy of density matching to learn the prob-

abilities of each transformation, we trained Wide-ResNet-

28-2 and Wide-ResNet-28-10 on CIFAR-10 and the reduced

form of CIFAR-10 containing 4K training samples. Ta-

ble 6 indicates that learning the probabilities αij slightly

improves performance on reduced and full CIFAR-10 (RA

vs 1st). The 1st-order method improves accuracy by more

than 3.0% for both models on reduced CIFAR-10 compared

to the baseline of flips and pad-and-crop. On CIFAR-10, the

1st-order method improves accuracy by 0.9% on the smaller

model and 1.2% on the larger model compared to the base-

line. We further see that the 1st-order method always per-

forms better than RandAugment, with the largest improve-

ment on Wide-ResNet-28-10 trained on reduced CIFAR-10

(87.4% vs. 86.8%). On CIFAR-10, the 1st-order method

outperforms AutoAugment on Wide-ResNet-28-2 (96.1%

vs. 95.9%) and matches AutoAugment on Wide-ResNet-

28-10 2. Although the density matching approach is promis-

ing, this method can be expensive as one must apply all

K transformations N times to each image independently.

Hence, because the computational demand of KN transfor-

mations is prohibitive for large images, we reserve this for

future exploration. In summary, we take these results to in-

dicate that learning the probabilities through density match-

ing may improve the performance on small-scale tasks and

reserve explorations to larger-scale tasks for the future.

5. Related Work

Data augmentation has played a central role in the train-

ing of deep vision models. On natural images, horizon-

tal flips and random cropping or translations of the images

are commonly used in classification and detection mod-

els [47, 17, 11]. On MNIST, elastic distortions across scale,

position, and orientation have been applied to achieve im-

pressive results [36, 3, 43, 35]. While previous examples

augment the data while keeping it in the training set dis-

tribution, operations that do the opposite can also be effec-

tive in increasing generalization. Some methods randomly

erase or add noise to patches of images for increased vali-

2As a baseline comparison, in preliminary experiments we additionally

learn αij based on differentiating through a virtual training step [23]. In

this approach, the 2nd-order approximation yielded consistently negative

results (see Appendix A.1).



dation accuracy [7, 49], robustness [40, 46, 9], or both [25].

Mixup [48] is a particularly effective augmentation method

on CIFAR-10 and ImageNet, where the neural network is

trained on convex combinations of images and their corre-

sponding labels. Object-centric cropping is commonly used

for object detection tasks [24], whereas [8] adds new objects

on training images by cut-and-paste.

Moving away from individual operations to augment

data, other work has focused on finding optimal strategies

for combining different operations. For example, Smart

Augmentation learns a network that merges two or more

samples from the same class to generate new data [18]. Tran

et al. generate augmented data via a Bayesian approach,

based on the distribution learned from the training set [42].

DeVries et al. use transformations (e.g. noise, interpo-

lations and extrapolations) in the learned feature space to

augment data [6]. Furthermore, generative adversarial net-

works (GAN) have been used to choose optimal sequences

of data augmentation operations[32]. GANs have also been

used to generate training data directly [31, 27, 50, 1, 37],

however this approach does not seem to be as beneficial as

learning sequences of data augmentation operations that are

pre-defined [33].

Another approach to learning data augmentation strate-

gies from data is AutoAugment [4], which originally used

reinforcement learning to choose a sequence of operations

as well as their probability of application and magnitude.

Application of AutoAugment policies involves stochasticity

at multiple levels: 1) for every image in every minibatch,

a sub-policy is chosen with uniform probability. 2) oper-

ations in each sub-policy has an associated probability of

application. 3) Some operations have stochasticity over di-

rection. For example, an image can be rotated clockwise or

counter-clockwise. The layers of stochasticity increase the

amount of diversity that the network is trained on, which in

turn was found to significantly improve generalization on

many datasets. More recently, several papers used the Au-

toAugment search space and formalism with improved op-

timization algorithms to find AutoAugment policies more

efficiently [15, 19]. Although the time it takes to search

for policies has been reduced significantly, having to imple-

ment these methods in a separate search phase reduces the

applicability of AutoAugment. For this reason, this work

aims to eliminate the search phase on a separate proxy task

completely.

Some of the developments in RandAugment were in-

spired by the recent improvements to searching over data

augmentation policies. For example, PBA [15] found that

the optimal magnitude of augmentations increased during

the course of training, which inspired us to not search over

optimal magnitudes for each transformation but have a fixed

magnitude schedule, which we discuss in detail in Sec-

tion 3. Furthermore, authors of Fast AutoAugment [19]

found that a data augmentation policy that is trained for

density matching leads to improved generalization accu-

racy, which inspired our first order differentiable term for

improving augmentation (see Section 4.5).

6. Discussion

Data augmentation is a necessary method for achieving

state-of-the-art performance [36, 17, 6, 48, 11, 30]. Learned

data augmentation strategies have helped automate the de-

sign of such strategies and likewise achieved state-of-the-

art results [4, 19, 15, 51]. In this work, we demonstrated

that previous methods of learned augmentation suffers from

systematic drawbacks. Namely, not tailoring the number of

distortions and the distortion magnitude to the dataset size

nor the model size leads to sub-optimal performance. To

remedy this situation, we propose a simple parameterization

for targeting augmentation to particular model and dataset

sizes. We demonstrate that RandAugment is competitive

with or outperforms previous approaches [4, 19, 15, 51]

on CIFAR-10/100, SVHN, ImageNet and COCO without

a separate search for data augmentation policies.

In previous work, scaling learned data augmentation to

larger dataset and models have been a notable obstacle. For

example, AutoAugment and Fast AutoAugment could only

be optimized for small models on reduced subsets of data

[4, 19]; PBA was not reported for large-scale problems [15].

The proposed method scales quite well to datasets such as

ImageNet and COCO while incurring minimal computa-

tional cost (e.g. 2 hyper-parameters), but notable predic-

tive performance gains. An open question remains how this

method may improve model robustness [25, 46, 34] or semi-

supervised learning [44]. Future work will study how this

method applies to other machine learning domains, where

data augmentation is known to improve predictive perfor-

mance, such as image segmentation [2], 3-D perception

[29], speech recognition [14] or audio recognition [13]. In

particular, we wish to better understand if or when datasets

or tasks may require a separate search phase to achieve op-

timal performance. Finally, an open question remains how

one may tailor the set of transformations to a given tasks

in order to further improve the predictive performance of a

given model.
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