RandNLA: Randomized Numerical Linear Algebra

Petros Drineas

Rensselaer Polytechnic Institute
Computer Science Department

To access my web page:
Google drineas

RandNLA: "sketch" a matrix by row/ column sampling

Sampling algorithm (rows)
Input: m-by-n matrix A, sampling parameter r
Output: r-by-n matrix R, consisting of r rows of A

- Let p_{i} for $i=1 \ldots m$ be sampling probabilities summing up to 1 ;
- In r i.i.d. trials (with replacement) pick r rows of A;
(In each trial the i-th row of A is picked with probability p_{i}.)
- Let R be the matrix consisting of the rows;
(We rescale the rows of A prior to including them in R by $1 /\left(r p_{i}\right)^{1 / 2}$.)

RandNLA: "sketch" a matrix by row/ column sampling

Sampling algorithm (rows)
Input: m-by-n matrix A, sampling par
Output: r-by-n matrix R, consist

- Let p_{i} for $i=1 \ldots m$ be sampling prot

Column sampling is equivalent to row sampling, simply by working

- In ri.i.d. trials (with replacement) pich with A^{\top} instead of A.
(In each trial the i-th row of picked with probability p_{i}.)
- Let R be the matrix consisting of the rows;
(We rescale the rows of A prior to including them in R by $1 /\left(r p_{i}\right)^{1 / 2}$.)

The pis: length-squared sampling

Length-squared sampling: sample rows with probability proportional to the square of their Euclidean norms, i.e.,

$$
p_{i}=\frac{\left\|A_{(i)}\right\|_{2}^{2}}{\|A\|_{F}^{2}}
$$

Notation:
$A_{(i)}$: the i-th row of A
$\|A\|_{F}$: the Frobenius norm of A

The p_{i} 's: length-squared sampling

Length-squared sampling: sample rows with probability proportional to the square of their Euclidean norms, i.e.,

$$
p_{i}=\frac{\left\|A_{(i)}\right\|_{2}^{2}}{\|A\|_{F}^{2}}
$$

Notation:
$A_{(i)}$: the i-th row of A
$\|A\|_{F}$: the Frobenius norm of A

Leads to additive-error approximations for

- low-rank matrix approximations and the Singular Value Decomposition (SVD),
- the CUR and CX factorizations,
- the Nystrom method, etc.
(Drineas, Kannan, Mahoney SICOMP 2006a, SICOMP 2006b, SICOMP 2006c, Drineas \& Mahoney JMLR 2005, etc.)

The pis: leverage scores

Leverage score sampling: sample rows with probability proportional to the square of the Euclidean norms of the rows of the top k left singular vectors of A.

$$
p_{i}=\frac{\left\|\left(U_{k}\right)_{(i)}\right\|_{2}^{2}}{\left\|U_{k}\right\|_{F}^{2}}=\frac{\left\|\left(U_{k}\right)_{(i)}\right\|_{2}^{2}}{k}
$$

Notation:
U_{k} : the m-by- k matrix containing the top k left singular vectors of A
$\left(U_{k}\right)_{(i)}$: the i-th row of U_{k}
$k=\left\|U_{k}\right\|_{F}$: the Frobenius norm of U_{k}

The pis: leverage scores

Leverage score sampling: sample rows with probability proportional to the square of the Euclidean norms of the rows of the top k left singular vectors of A.

The pis: leverage scores

Leverage score sampling: sample rows with probability proportional to the square of the Euclidean norms of the rows of the top k left singular vectors of A.

$$
p_{i}=\frac{\left\|\left(U_{k}\right)_{(i)}\right\|_{2}^{2}}{\left\|U_{k}\right\|_{F}^{2}}=\frac{\left\|\left(U_{k}\right)_{(i)}\right\|_{2}^{2}}{k} \quad \begin{gathered}
\begin{array}{c}
\text { Notation: } \\
U_{k}: \text { the m-by-k matrix containing the } \\
\text { top } k \text { left singular vectors of } A \\
\left(U_{k}\right)_{(i)} \text { : the i-th row of } U_{k} \\
k=\left\|U_{k}\right\|_{F}: \text { the Frobenius norm of } U_{k}
\end{array}
\end{gathered}
$$

Leads to relative-error approximations for:

- low-rank matrix approximations and the Singular Value Decomposition (SVD),
- the CUR and CX factorizations,
- Over- and under- constrained least-squares problems
- Solving systems of linear equations with Laplacian input matrices

The pis: leverage scores

Leverage score sampling: sample rows with probability proportional to the square of the Euclidean norms of the rows of the top k left singular vectors of A.

$$
p_{i}=\frac{\left\|\left(U_{k}\right)_{(i)}\right\|_{2}^{2}}{\left\|U_{k}\right\|_{F}^{2}}=\frac{\left\|\left(U_{k}\right)_{(i)}\right\|_{2}^{2}}{k}
$$

Notation:
U_{k} : the m-by- k matrix containing the
top k left singular vectors of A
$\left(U_{k}\right)_{(i)}$: the i-th row of U_{k}
$k=\left\|U_{k}\right\|_{k}$: the Frobenius norm of U_{k}

Column sampling is equivalent to row sampling by focusing on A^{\top} and looking at its top k left singular vectors...
(Which, of course, are the top k right singular vectors of A, often denoted as V_{k}, an n-by-k matrix.)

Leverage scores: tall \& thin matrices

Let A be a (full rank) n-by-d matrix with n>>d whose SVD is:

Leverage scores: tall \& thin matrices

Let A be a (full rank) n-by-d matrix with n>>d whose SVD is:

The (row) leverage scores can now be used to sample rows from A to create a sketch.

Leverage scores: short \& fat matrices

Let A be a (full rank) d-by-n matrix with n>>d:

$$
\begin{gathered}
A \\
d \times n
\end{gathered}
$$

Leverage scores: short \& fat matrices

Let A be a (full rank) d-by-n matrix with n>>d:

The (column) leverage scores can now be used to sample rows from A to create a sketch.

Leverage scores: general case

Let A be an m-by-n matrix A and let A_{k} be its best rank- k approximation (as computed by the SVD) :

$$
A \approx\binom{A_{k}}{m \times n}=\binom{U_{k}}{m \times k} \cdot\left(\begin{array}{c}
\Sigma_{k} \\
V_{k}^{T} \\
\end{array}\right)
$$

Leverage scores: general case

Let A be an m-by-n matrix A and let A_{k} be its best rank-k approximation (as computed by the SVD) :
(Row) Leverage scores:

$$
p_{i}=\frac{\left\|\left(U_{k}\right)_{(i)}\right\|_{2}^{2}}{k}
$$

(Column) Leverage scores:

$$
p_{j}=\frac{\left\|\left(V_{k}^{T}\right)^{(j)}\right\|_{2}^{2}}{k}
$$

The (row/column) leverage scores can now be used to sample rows/ columns from A.

Other ways to create matrix sketches

$>$ Sampling based
> Volume sampling: see Amit Deshpande's talk tomorrow.
> Random projections
> Pre or post-multiply by Gaussian random matrices, random sign matrices, etc.
$>$ (Faster) Pre or post-multiply by the sub-sampled Hadamard Transform.
> (Sparsity) Pre- or post-multiply by ultra-sparse matrices (Michael Mahoney's talk).
$>$ Deterministic/streaming sketches
>Select columns/rows deterministically (some ideas in Nikhil Srivastava's talk on graph sparsification).
> From item frequencies to matrix sketching (see Edo Liberty's talk).
> Element-wise sampling
> Sample elements with probabilities that depend on the absolute value (squared or not) of the matrix entries.
> Sample elements with respect to an element-wise notion of leverage scores!
$>$ Beyond matrices: tensors (Ravi Kannan's talk)

Applications of leverage scores

$>$ Over (or under)-constrained Least Squares problems
> Feature selection and the CX factorization
>Solving systems of linear equations with Laplacian input matrices
> Element-wise sampling

Applications of leverage scores

$>$ Over (or under)-constrained Least Squares problems
> Feature selection and the CX factorization
>Solving systems of linear equations with Laplacian input matrices
> Element-wise sampling

BUT FIRST THINGS FIRST:

> Why do they work?
> How fast can we compute them?

Why do they work?

ALL proofs that use leverage score sampling use an argument of the following form:

Sample/rescale r rows of U w.r.t. the leverage scores (use the sampling algorithm of slide 2):

$$
p_{i}=\frac{\left\|U_{(i)}\right\|_{2}^{2}}{\|U\|_{F}^{2}}=\frac{\left\|U_{(i)}\right\|_{2}^{2}}{d}
$$

Why do they work?

ALL proofs that use leverage score sampling use an argument of the following form:

Sample/rescale r rows of U w.r.t. the leverage scores (use the sampling algorithm of slide 2):

$$
p_{i}=\frac{\left\|U_{(i)}\right\|_{2}^{2}}{\|U\|_{F}^{2}}=\frac{\left\|U_{(i)}\right\|_{2}^{2}}{d}
$$

Why do they work?

ALL proofs that use leverage score sampling use an argument of the following form:

Then, with probability at least $1-\delta$:

$$
\left\|U^{T} U-\tilde{U}^{T} \tilde{U}\right\|_{2}=\left\|I-\tilde{U}^{T} \tilde{U}\right\|_{2} \leq \varepsilon
$$

It follows that, for all i: $\sqrt{1-\varepsilon} \leq \sigma_{i}(\tilde{U}) \leq \sqrt{1+\varepsilon}$

Why do they work?

Recall: with probability at least $1-\delta$:

$$
\left\|U^{T} U-\tilde{U}^{T} \tilde{U}\right\|_{2}=\left\|I-\tilde{U}^{T} \tilde{U}\right\|_{2} \leq \varepsilon
$$

It follows that, for all i: $\sqrt{1-\varepsilon} \leq \sigma_{i}(\tilde{U}) \leq \sqrt{1+\varepsilon}$
> This implies that Ũ has full rank.
> The result follows from randomized matrix multiplication algorithms and a matrix-Bernstein bound.
(see the tutorials by Drineas, Mahoney, and Tropp at the Simons Big Data Bootcamp, Sep 2-5, 2013)
> These bounds allow us to manipulate the pseudo-inverse of \tilde{U} and products of \tilde{U} with other matrices.

Computing leverage scores

$>$ Trivial: via the Singular Value Decomposition
$O\left(n d^{2}\right)$ time for n-by-d matrices with $n>d$.
$O\left(\min \left\{m^{2} n, m n^{2}\right\}\right)$ time for general m-by- n matrices.
> Non-trivial: relative error $(1+\varepsilon)$ approximations for all leverage scores.
Tall \& thin matrices (short \& fat are similar):

Approximating leverage scores:

1. Pre-multiply A by - say - the subsampled Randomized Hadamard Transform matrix (an s-by-n matrix P).
2. Compute the $Q R$ decomposition $P A=Q R$.
3. Estimate the lengths of the rows of $A R^{-1}$ (another random projection is used for speed)

Computing leverage scores

> Trivial: via the Singular Value Decomposition
$O\left(n d^{2}\right)$ time for n-by-d matrices with $n>d$.
$O\left(\min \left\{m^{2} n, m n^{2}\right\}\right)$ time for general m-by- n matrices.
$>$ Non-trivial: relative error ($1+\varepsilon$) approximations for all leverage scores.
Tall \& thin matrices (short \& fat are similar):

Running time:
It suffices to set $s=O\left(d \varepsilon^{-1}\right.$ polylog $\left.(n / \varepsilon)\right)$.
Overall running time is $O\left(n d \varepsilon^{-1}\right.$ polylog $\left.(n / \varepsilon)\right)$.

Computing leverage scores

> Trivial: via the Singular Value Decomposition
$O\left(n d^{2}\right)$ time for n-by-d matrices with $n>d$.
$O\left(\min \left\{m^{2} n, m n^{2}\right\}\right)$ time for general m-by- n matrices.
> Non-trivial: relative error ($1+\varepsilon$) approximations for all leverage scores.
m-by-n matrices:

Caution:

A direct formulation of the problem is ill-posed.
(The k and ($k+1$)-st singular values could be very close estimating the corresponding singular vectors could result in a "swap".)

A robust objective is to estimate the leverage scores of some rank k matrix X that is "close" to the best rank k approximation to A.
(see Drineas et al. (2012) ICML and JMLR for details)

Computing leverage scores

> Trivial: via the Singular Value Decomposition
$O\left(n d^{2}\right)$ time for n-by-d matrices with $n>d$.
$O\left(\min \left\{m^{2} n, m n^{2}\right\}\right)$ time for general m-by- n matrices.
> Non-trivial: relative error ($1+\varepsilon$) approximations for all leverage scores.
m-by-n matrices:
\(\left(\begin{array}{l}Algorithm:

A

m \times n\end{array}\right) \quad\)| $>$ Approximate the top k left (or right) singular vectors of A. |
| :--- |
| $>$ Use the approximations to estimate the leverage scores. |
| Overall running time is $r=O\left(n d k \varepsilon^{-1} \operatorname{polylog}(n / \varepsilon)\right)$. |

Applications of leverage scores

$>$ Over (or under)-constrained Least Squares problems
> Feature selection and the CX factorization
$>$ Solving systems of linear equations with Laplacian input matrices

- Element-wise sampling

Least-squares problems

We are interested in over-constrained least-squares problems, $n>d$. (Under-constrained problems: see Tygert 2009 and Drineas et al. (2012) JMLR)

Typically, there is no $x_{\text {opt }}$ such that $A x_{\text {opt }}=b$.
Want to find the "best" $x_{\text {opt }}$ such that $A x_{\text {opt }} \approx b$.

Exact solution to L_{2} regression

Cholesky Decomposition:

If A is full rank and well-conditioned, decompose $A^{\top} A=R^{\top} R$, where R is upper triangular, and solve the normal equations: $R^{\top} R x=A^{\top} b$.

QR Decomposition:

Slower but numerically stable, esp. if A is rank-deficient.
Write $A=Q R$, and solve $R x=Q^{\top} b$.

$$
\begin{aligned}
& \begin{array}{c}
\text { Projection of } \mathrm{b} \text { on the } \\
\text { subspace spanned by the } \\
\text { columns of } \mathrm{A}
\end{array} \\
& \mathcal{Z}_{2}^{2}=\|b\|_{2}^{2}-\left\|A A^{+} b\right\|_{2}^{2} \\
& x_{\text {opt }}=A^{+} b \\
& \text { Pseudoinverse of } \mathrm{A}
\end{aligned}
$$

Singular Value Decomposition:
Most expensive, but best if A is very ill-conditioned.
Write $A=U \Sigma V^{\top}$, in which case: $x_{\text {opt }}=A^{+} b=V \Sigma^{-1} U^{\top} b$.
Complexity is $O\left(n d^{2}\right)$, but constant factors differ.

- Algorithm: Sampling for L_{2} regression
 (Drineas, Mahoney, Muthukrishnan SODA 2006,

Drineas, Mahoney, Muthukrishnan, \& Sarlos NumMath2011)

$$
\mathcal{Z}_{2}=\min _{x \in \mathbb{R}^{d}}\|b-A x\|_{2}^{2}=\left\|b-A x_{\text {opt }}\right\|_{2}^{2}
$$

Algorithm

1. Compute the row-leverage scores of A ($p_{i}, i=1 \ldots n$)
2. In ri.i.d. trials pick r rows of A and the corresponding elements of b with respect to the p_{i}.
(Rescale sampled rows of A and sampled elements of b by $\left(1 /\left(\mathrm{rp}_{\mathrm{i}}\right)^{1 / 2}\right.$.)
3. Solve the induced problem.

' Algorithm: Sampling for least squares

Drineas, Mahoney, Muthukrishnan SODA 2006,
Drineas, Mahoney, Muthukrishnan, \& Sarlos NumMath2011

$$
\tilde{\mathcal{Z}}_{2}=\min _{x \in \mathbb{R}^{d}}\|\tilde{b}-\tilde{A} x\|_{2}^{2}=\left\|\tilde{b}-\tilde{A} \tilde{x}_{o p t}\right\|_{2}^{2}
$$

Algorithm

1. Compute the row-leverage scores of A ($p_{i}, i=1 \ldots n$)
2. In ri.i.d. trials pick r rows of A and the corresponding elements of b with respect to the p_{i}.
(Rescale sampled rows of A and sampled elements of b by $\left(1 /\left(\mathrm{rp}_{\mathrm{i}}\right)^{1 / 2}\right.$.)
3. Solve the induced problem.

Theorem

If the p_{i} are the row leverage scores of A, then, with probability at least 0.8 ,

$$
\left\|b-A x_{o p t}\right\|_{2}^{2} \leq\left\|b-A \tilde{x}_{o p t}\right\|_{2}^{2} \leq(1+\epsilon)\left\|b-A x_{o p t}\right\|_{2}^{2}
$$

The sampling complexity (the value of r) is

$$
r=O\left(\frac{d}{\epsilon} \ln (n d)\right)
$$

(Hiding a loglog factor for simplicity; see Drineas et al. (2011) NumMath for a precise statement.)

Applications of leverage scores

$>$ Over (or under)-constrained Least Squares problems
\rightarrow Feature selection and the CX factorization
$>$ Solving systems of linear equations with Laplacian input matrices
> Element-wise sampling

SVD decomposes a matrix as...

$>$ It is easy to see that $X=U_{k}^{\top} A$.
$>$ SVD has strong optimality properties.
$>$ The columns of U_{k} are linear combinations of up to all columns of A.

The CX decomposition

Mahoney \& Drineas (2009) PNAS

Why?
If A is a data matrix with rows corresponding to objects and columns to features, then selecting representative columns is equivalent to selecting representative features to capture the same structure as the top eigenvectors.

We want c as close to k as possible!

CX decomposition

Easy to prove that optimal $X=C^{+} A$.
(with respect to unitarily invariant norms; C^{+}is the Moore-Penrose pseudoinverse of C)
Thus, the challenging part is to find good columns (features) of A to include in C.
Also known as: the Column Subset Selection Problem (CSSP).

The algorithm

Input: m-by-n matrix A, target rank k
$0<\varepsilon<.5$, the desired accuracy
Output: C, the matrix consisting of the selected columns

Sampling algorithm

- Let p_{j} be the column leverage scores of A, for $j=1$...n.
- In c i.i.d. trials pick columns of A, where in each trial the j-th column of A is picked with probability p_{j}.
(c is a function of ε and k; see next slide)
- Let C be the matrix consisting of the chosen columns.

Relative-error Frobenius norm bounds

Given an m-by-n matrix A, let C be formed as described in the previous algorithm. Then, with probability at least 0.9,

$$
\|A-C X\|_{F}=\left\|A-C C^{\dagger} A\right\|_{F} \leq(1+\varepsilon)\left\|A-A_{k}\right\|_{F}
$$

The sampling complexity (the value of c) is

$$
c=O\left(\frac{k}{\epsilon^{2}} \ln \left(\frac{k}{\epsilon^{2}}\right)\right)
$$

The running time of the algorithm is dominated by the computation of the (column) leverage scores.

Leverage scores: human genetics data

Single Nucleotide Polymorphisms: the most common type of genetic variation in the genome across different individuals.

They are known locations at the human genome where two alternate nucleotide bases (alleles) are observed (out of A, C, G, T). GG $\Pi T \Pi$ GG $T T$ CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG $\Pi T A A T T G G G G G T T T$ CC GG TT GG GG TT GG AA ... GG $\Pi T \Pi$ GG $T T C C C C C C C C$ G AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG GG $T T T$ GG $T T C C C C C C$ GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG ... GG $T T T$ GG T CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA GG TT TT GG T CC CC CC CC GG AA AG AG AG AA T AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA $T T$ GG GG GG $T T T$ CC GG TT GG GT TT GG AA

Matrices including thousands of individuals and hundreds of thousands if SNPs are available.

Worldwide data

274 individuals, 9 populations, $\sim 10,000$ SNPs
Shriver et al. (2005) Hum Genom

> PCA projection on the top three left singular vectors.
Populations are clearly separated, BUT not altogether satisfactory:
The principal components are linear combinations of all SNPs.
Hard to interpret or genotype.
> Can we find actual SNPs that capture the information in the left singular vectors?

Leverage scores of the columns of the 274-by-10,000 SNP matrix

SNPs by chromosomal order
Paschou et al (2007; 2008) PLoS Genetics Paschou et al (2010) J Med Gene†

Drineas et al (2010) PLoS One

Selecting ancestry informative SNPs for individual assignment to four continents (Africa, Europe, Asia, America)

SNPs by chromosomal order
Paschou et al (2007; 2008) PLoS Genetics Paschou et al (2010) J Med Gene†

Drineas et al (2010) PLoS One

Applications of leverage scores

- Over (or under)-constrained Least Squares problems
- Feature selection and the CX factorization
> Solving systems of linear equations with Laplacian input matrices
$>$ Element-wise sampling

Leverage scores \& Laplacians

Consider a weighted (positive weights only!) undirected graph G and let L be the Laplacian matrix of G.

Assuming n vertices and $m>n$ edges, L is an n-by- n matrix, defined as follows:

$$
L=\left(B^{T}\right) \cdot\left(\begin{array}{c}
\\
\\
n \times m
\end{array}\right)
$$

Leverage scores \& Laplacians

Consider a weighted (positive weights only!) undirected graph G and let L be the Laplacian matrix of G.

Assuming n vertices and $m>n$ edges, L is an n-by- n matrix, defined as follows:

$$
L=\left(B^{T}\right.
$$

Clearly, $L=\left(B^{\top} W^{1 / 2}\right)\left(W^{1 / 2} B\right)=\left(B^{\top} W^{1 / 2}\right)\left(B^{\top} W^{1 / 2}\right)^{\top}$.

Leverage scores \& effective resistances

Effective resistances:

Let G denote an electrical network, in which each edge e corresponds to a resistor of resistance $1 / w_{e}$ (the edge weight).

The effective resistance R_{e} between two vertices is equal to the potential difference induced between the two vertices when a unit of current is injected at one vertex and extracted at the other vertex.

Leverage scores \& effective resistances

Effective resistances:

Let G denote an electrical network, in which each edge e corresponds to a resistor of resistance $1 / w_{e}$ (the edge weight).

The effective resistance R_{e} between two vertices is equal to the potential difference induced between the two vertices when a unit of current is injected at one vertex and extracted at the other vertex.

Formally, the effective resistances are the diagonal entries of the m-by-m matrix:

$$
R=B L+B^{\top}=B\left(B^{\top} W B\right)^{+} B^{\top}
$$

Leverage scores \& effective resistances

Lemma: The (row) leverage scores of the m-by-n matrix $\mathrm{W}^{1 / 2} \mathrm{~B}$ are equal to the effective resistances of the edges of G.

Diagonal matrix of edge weights

Leverage scores \& effective resistances

Lemma: The (row) leverage scores of the m-by-n matrix $\mathrm{W}^{1 / 2} \mathrm{~B}$ are equal to the effective resistances of the edges of G.

Diagonal matrix of edge weights

GRAPH SPARSIFICATION

> Sample r edges to sparsify our graph G with respect to the row leverage scores of $W^{1 / 2} B$ (equivalently, the effective resistances of the edges of G).
> This process sparsifies the Laplacian L to construct a sparser Laplacian.

Leverage scores \& effective resistances

Theorem: Let L be the sparsified Laplacian that emerges by sampling r edges of G with respect to the row leverage scores of the m-by-n matrix $W^{1 / 2} B$.
Consider the following two least-squares problems (for any vector b):

$$
\begin{aligned}
& x_{o p t}=\arg \min _{x \in \mathbb{R}^{n}}\|L x-b\|_{2}=L^{+} b \\
& \tilde{x}_{o p t}=\arg \min _{x \in \mathbb{R}^{n}}\|\tilde{L} x-b\|_{2}=\tilde{L}^{+} b
\end{aligned}
$$

Let $r=O\left(\frac{n}{\epsilon} \ln \frac{n}{\epsilon}\right)$
Notation:
$x^{\top} L x=\|x\|_{L}$: energy norm
(as in the Spielman \& Teng work)
Then, with probability at least 2/3: $\left\|x_{\text {opt }}-\tilde{x}_{\text {opt }}\right\|_{L} \leq \epsilon\left\|x_{\text {opt }}\right\|_{L}$

Leverage scores \& effective resistances

Theorem: Let L be the sparsified Laplacian that emerges by sampling r edges of G with respect to the row leverage scores of the m-by-n matrix $\mathrm{W}^{1 / 2} \mathrm{~B}$.
Consider the following two least-squares problems (for any vector b):

$$
\begin{aligned}
& x_{o p t}=\arg \min _{x \in \mathbb{R}^{n}}\|L x-b\|_{2}=L^{+} b \\
& \tilde{x}_{\text {opt }}=\arg \min _{x \in \mathbb{R}^{n}}\|\tilde{L} x-b\|_{2}=\tilde{L}^{+} b
\end{aligned}
$$

Let $r=O\left(\frac{n}{\epsilon} \ln \frac{n}{\epsilon}\right)$
Then, with probability at least 2/3: $\left\|x_{\text {opt }}-\tilde{x}_{o p t}\right\|_{L} \leq \epsilon\left\|x_{o p t}\right\|_{L}$

Computational savings depend on (i) efficiently computing leverage scores/effective resistances, and (ii) efficiently solving the "sparse" problem.

Running time issues

Approximating effective resistances (Spielman \& Srivastava STOC 2008)
They can be approximated using the Laplacian solver of Spielman and Teng.

Breakthrough by Koutis, Miller, \& Peng (FOCS 2010, FOCS 2011):

Low-stretch spanning trees provide a means to approximate effective resistances!
This observation (and a new, improved algorithm to approximate low-stretch spanning trees) led to almost optimal algorithms for solving Laplacian systems of linear equations.

Are leverage scores a viable alternative to approximate effective resistances?
Not yet! Our approximation algorithms are not good enough for $W^{1 / 2} B$, which is very sparse.
(2 m non-zero entries).
We must take advantage of the sparsity and approximate the leverage scores/effective resistances in $O(m$ polylog $(m))$ time.

Applications of leverage scores

- Over (or under)-constrained Least Squares problems
\rightarrow Feature selection and the CX factorization
$>$ Solving systems of linear equations with Laplacian input matrices
$>$ Element-wise sampling

Element-wise sampling
 (Drineas \& Kundu 2013)

Element-wise sampling

- Introduced by Achlioptas and McSherry in STOC 2001.
- Current state-of-the-art: additive error bounds for arbitrary matrices and exact reconstruction under (very) restrictive assumptions using trace minimization.
(important breakthroughs by Candes, Recht, Tao, Wainright, and others)

The setup: let A be an m-by-n matrix of rank ρ, whose $S V D$ is $A=U \Sigma V^{\top}$.
$>$ Sample r elements of A in r i.i.d. trials, where in each trial the (i, j)-th element of A is sampled with probability p_{ij}.
$>$ Let Ω be the set of the r sampled indices and solve:

$$
\begin{gathered}
\min \|X\|_{*} \\
\text { s.t. } X_{i j}=A_{i j}, \forall(i, j) \in \Omega
\end{gathered}
$$

Element-wise sampling

The setup: let A be an m-by-n matrix of rank ρ, whose $S V D$ is $A=U \Sigma V^{\top}$.
$>$ Sample r elements of A in r i.i.d. trials, where in each trial the (i, j)-th element of A is sampled with probability p_{ij}.
$>$ Let Ω be the set of the r sampled indices and solve: $\min \|X\|_{*}$ s.t. $X_{i j}=A_{i j}, \forall(i, j) \in \Omega$

Let $r=O\left((m+n) \rho^{2}\right)$
Let $p_{i j}=\frac{1}{2} \frac{\left\|U_{(i)}\right\|_{2}^{2}+\left\|V_{(j)}\right\|_{2}^{2}-\left\|U_{(i)}\right\|_{2}^{2}\left\|V_{(j)}\right\|_{2}^{2}}{(m+n) \rho-\rho^{2}}+\frac{1}{4} \frac{\left(U V^{T}\right)_{i j}^{2}}{\rho}+\frac{1}{4} \frac{\left|\left(U V^{T}\right)_{i j}\right|}{\sum_{i, j=1}^{m, n}\left|\left(U V^{T}\right)_{i j}\right|}$

Then, with constant probability, A can be recovered exactly.

Element-wise sampling

The setup: let A be an m-by-n matrix of rank ρ, whose SVD is $A=U \Sigma V^{\top}$.
$>$ Sample r elements of A in r i.i.d. trials, where in each trial the (i, j)-th element of A is sampled with probability p_{ij}.
$>$ Let Ω be the set of the r sampled indices and solve: $\min \|X\|_{*}$ s.t. $X_{i j}=A_{i j}, \forall(i, j) \in \Omega$

$$
\text { Let } r=O\left((m+n) \rho^{2}\right) \quad \text { Let } p_{i j}=\frac{1}{2} \frac{\left.\left\|U_{(i)}\right\|_{2}^{\rho}\right)+\left\|V_{(j)}\right\|_{2}^{2}-U_{(i)} \|_{2}^{2}}{(m+n) \rho-\rho^{2}}+\frac{1}{4} \frac{1 U V_{(j)}^{2} \|_{2}^{2}}{\rho}+\frac{1}{4} \frac{\left|\left(U V^{T}\right)_{i j}\right|}{\sum_{i, j=1}^{m, n}\left|\left(U V^{T}\right)_{i j}\right|}
$$

Then, with constant probability, A can be recovered exactly.
The proof uses a novel result on approximating the product of two linear operators by elementwise sampling and builds upon Recht (JMLR) 2011, Drineas \& Zouzias (2011) IPL, and uses the idea of L_{1} sampling from Achlioptas, Karnin, \& Liberty ArXiv 2013.

Conclusions

- Leverage scores: a statistic on rows/columns of matrices that reveals the most influential rows/columns of a matrix.
- Can also be used for element-wise sampling!
- Leverage scores: equivalent to effective resistances.
- Additional Fact: Leverage scores can be "uniformized" by preprocessing the matrix via random projection-type matrices.
(E.g., random sign matrices, Gaussian matrices, or Fast JL-type transforms.)

