
Random Access to Grammar Compressed Strings

Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao
Satti, and Oren Weimann

Random Access to Compressed Strings

text
DNA
XML

Random Access to Compressed Strings

text
DNA
XML

• What is the ith character?

• What is the substring at [i,j]?

• Does pattern P appear in text? (perhaps with k errors?)

Random Access to Grammar Compressed Strings

• Grammar based compression captures many popular compression schemes
with no or little blowup in space [Charikar et al. 2002, Rytter 2003].

• Lempel-Ziv family, Sequitur, Run-Length Encoding, Re-Pair, ...

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

≤n

AGTAGTAG N = 8

X7 → X6X3
X6 → X5X5
X5 → X3X4
X4 → T
X3 → X1X2
X2 → G
X1 → A

n = 7

Tradeoffs and Results

• What is the ith character?

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

n
1 1

1

1 1

26

3 3

2 1

1 1

2

O(N) space
O(1) query

O(n) space
O(n) query

O(n) space
O(log N) query

• What is the substring at [i,j]?
O(n) space
O(log N + j - i) query

Application: Black-Box Compressed String
Matching

• Does “AGGA” appear in the text (perhaps with k errors)?

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

1 1

1

1 1

26

3 3

2 1

1 1

2

Application: Black-Box Compressed String
Matching

• Total time O(n (log N + m + Blackbox(m))).

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

26

✓✓
m+k m+k

• Does “AGGA” appear in the text (perhaps with k errors)?

Extension: Compressed Trees

• Linear space in compressed tree.

• Fast navigation operations (select, access, parent, depth, height,
subtree_size, first_child, next_sibling, level_ancestor, nca).

b c

db

a
c a

d

b

c d

b

b

c d

c d b

db

a
c a

c d

Heavy Path Decomposition

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

n
1 1

1

1 1

26

3 3

2 1

1 1

2

Heavy Path Decomposition

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

n
1 1

1

1 1

26

3 3

2 1

1 1

2

Heavy Path Decomposition

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

n
1 1

1

1 1

26

3 3

2 1

1 1

2

Random Access Query

• The path from root to i goes through O(log N) heavy paths

• Query: Binary search all heavy paths on the way

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 i 4 5 6 7 8

N

n
1 1

1

1 1

26

3 3

2 1

1 1

2

O(log n) ⋅ O(log N)

Random Access Query

• The path from root to i goes through O(log N) heavy paths

• Query: Binary search all heavy paths on the way

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 i 4 5 6 7 8

N

n
1 1

1

1 1

26

3 3

2 1

1 1

2

O(log n) ⋅ O(log N)

Interval Biased Search Tree

• The path from root to i goes through O(log N) heavy paths

• Query: Binary search all heavy paths on the way

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 i 4 5 6 7 8

N

n
1 1

1

1 1

26

3 3

2 1

1 1

2

O(log n) ⋅ O(log N)
O(log N/x)

x =

0 N

?

x

Telescopes to O(log N)

• Space: Each IBSTs uses linear space => total O(n2) space for all heavy paths.

O(n) Representation of Heavy Paths

• Search for i on heavy path = lowest ancestor of distance i.

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

n

X7

X6

X5

X3

X2 X1

Xi Xj

Xk Xl Xp

X4

G A T

XtXm

1 1

1

1 1

26

3 3

2 1

1 1

2

O(n) Representation of Heavy Paths

• Search for i on heavy path = lowest ancestor of distance i.

• A heavy path decomposition of heavy path representation.

• In-path: O(log N/x) time, total O(n) space.

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

n

X7

X6

X5

X3

X2 X1

Xi Xj

Xk Xl Xp

X4

G A T

XtXm

1 1

1

1 1

26

3 3

2 1

1 1

2

O(n) Representation of Heavy Paths

• Search for i on heavy path = lowest ancestor of distance i.

• A heavy path decomposition of heavy path representation.

• In-path: O(log N/x) time, total O(n) space.

• Between-paths: O(log N/x) time, total O(n log n) space.

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

n

X7

X6

X5

X3

X2 X1

Xi Xj

Xk Xl Xp

X4

G A T

XtXm

1 1

1

1 1

26

3 3

2 1

1 1

2 log n

O(n) Representation of Heavy Paths

• Search for i on heavy path = lowest ancestor of distance i.

• A heavy path decomposition of heavy path decomposition.

• In-path: O(log N/x) time, total O(n) space.

• Between-paths: O(log N/x) time, total O(n log n) space.

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

n

X7

X6

X5

X3

X2 X1

Xi Xj

Xk Xl Xp

X4

G A T

XtXm

1 1

1

1 1

26

3 3

2 1

1 1

2

2

log n n/logn leaves

logn
leaves

logn
leaves

logn
leaves

O(n) Representation of Heavy Paths

• Search for i on heavy path = lowest ancestor of distance i.

• A heavy path decomposition of heavy path decomposition.

• In-path: O(log N/x) time, total O(n) space.

• Between-paths: O(log N/x) time, total O(n log n) space.

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

n

X7

X6

X5

X3

X2 X1

Xi Xj

Xk Xl Xp

X4

G A T

XtXm

1 1

1

1 1

26

3 3

2 1

1 1

2

2

log n n/logn leaves

logn
nodes

logn
nodes

logn
nodes

O(n) Representation of Heavy Paths

• Search for i on heavy path = lowest ancestor of distance i.

• A heavy path decomposition of heavy path decomposition.

• In-path: O(log N/x) time, total O(n) space.

• Between-paths: O(log N/x) time, total O(n log n) space.

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

n

X7

X6

X5

X3

X2 X1

Xi Xj

Xk Xl Xp

X4

G A T

XtXm

1 1

1

1 1

26

3 3

2 1

1 1

2

2

log n n/logn leaves

logn
nodes

logn
nodes

logn
nodes

O(nα(n))

O(n) Representation of Heavy Paths

• Search for i on heavy path = lowest ancestor of distance i.

• A heavy path decomposition of heavy path decomposition.

• In-path: O(log N/x) time, total O(n) space.

• Between-paths: O(log N/x) time, total O(n log n) space.

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

n

X7

X6

X5

X3

X2 X1

Xi Xj

Xk Xl Xp

X4

G A T

XtXm

1 1

1

1 1

26

3 3

2 1

1 1

2

2

log n n/logn leaves

logn
nodes

logn
nodes

logn
nodes

O(nα(n))
O(n) with bittricks

Summary

• Random access and substring decompression.

• O(n) space and O(log N + length of substring) time.

• Black compressed (approximate) string matching.

• Random access in compressed trees.

