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• What is the ith character?

• What is the substring at [i,j]?

• Does pattern P appear in text? (perhaps with k errors?)



Random Access to Grammar Compressed Strings

• Grammar based compression captures many popular compression schemes   
with no or little blowup in space [Charikar et al. 2002, Rytter 2003]. 

• Lempel-Ziv family, Sequitur, Run-Length Encoding, Re-Pair, ...
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Tradeoffs and Results

• What is the ith character?

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

n
1 1

1

1 1

26

3 3

2 1

1 1

2

O(N) space
O(1) query

O(n) space
O(n) query

O(n) space
O(log N) query

• What is the substring at [i,j]?
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Application: Black-Box Compressed String 
Matching

• Does “AGGA” appear in the text (perhaps with k errors)?

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

1 1

1

1 1

26

3 3

2 1

1 1

2



Application: Black-Box Compressed String 
Matching

• Total time O(n (log N + m + Blackbox(m))).
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• Does “AGGA” appear in the text (perhaps with k errors)?



Extension: Compressed Trees

• Linear space in compressed tree. 

• Fast navigation operations (select, access, parent, depth, height, 
subtree_size, first_child, next_sibling, level_ancestor, nca).
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Heavy Path Decomposition
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Heavy Path Decomposition
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Heavy Path Decomposition
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Random Access Query

• The path from root to i goes through O(log N) heavy paths

• Query: Binary search all heavy paths on the way  
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Random Access Query

• The path from root to i goes through O(log N) heavy paths

• Query: Binary search all heavy paths on the way  
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Interval Biased Search Tree

• The path from root to i goes through O(log N) heavy paths

• Query: Binary search all heavy paths on the way  
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• Space: Each IBSTs uses linear space => total O(n2) space for all heavy paths.



O(n) Representation of Heavy Paths

• Search for i on heavy path = lowest ancestor of distance i.
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O(n) Representation of Heavy Paths

• Search for i on heavy path = lowest ancestor of distance i.

• A heavy path decomposition of heavy path representation.

• In-path: O(log N/x) time, total O(n) space.

X3

X2X1

X5

X4 X3

X2X1

X5

X4

X1 X2

X3X6

X7

A G T A G T A G
1 2 3 4 5 6 7 8

N

n

X7

X6

X5

X3

X2 X1

Xi Xj

Xk Xl Xp

X4

G A T

XtXm

1 1

1

1 1

26

3 3

2 1

1 1

2



O(n) Representation of Heavy Paths

• Search for i on heavy path = lowest ancestor of distance i.

• A heavy path decomposition of heavy path representation.

• In-path: O(log N/x) time, total O(n) space.

• Between-paths: O(log N/x) time, total O(n log n) space.
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O(n) Representation of Heavy Paths

• Search for i on heavy path = lowest ancestor of distance i.

• A heavy path decomposition of heavy path decomposition.

• In-path: O(log N/x) time, total O(n) space.

• Between-paths: O(log N/x) time, total O(n log n) space.
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O(n) Representation of Heavy Paths

• Search for i on heavy path = lowest ancestor of distance i.

• A heavy path decomposition of heavy path decomposition.

• In-path: O(log N/x) time, total O(n) space.

• Between-paths: O(log N/x) time, total O(n log n) space.
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O(n) Representation of Heavy Paths

• Search for i on heavy path = lowest ancestor of distance i.

• A heavy path decomposition of heavy path decomposition.

• In-path: O(log N/x) time, total O(n) space.

• Between-paths: O(log N/x) time, total O(n log n) space.
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O(n) Representation of Heavy Paths

• Search for i on heavy path = lowest ancestor of distance i.

• A heavy path decomposition of heavy path decomposition.

• In-path: O(log N/x) time, total O(n) space.

• Between-paths: O(log N/x) time, total O(n log n) space.
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Summary

• Random access and substring decompression.

• O(n) space and O(log N + length of substring) time.

• Black compressed (approximate) string matching.

• Random access in compressed trees.


