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SUMMARY

This paper proposes a new filtering technique for random and

coherent noise attenuation by means of empirical mode de-

composition (EMD) in the f -x domain. The motivation be-

hind this development is to overcome the potential low perfor-

mance of f -x deconvolution for signal-to-noise enhancement

when processing highly complex geologic sections, data ac-

quired using irregular trace spacing, and/or data contaminated

with steeply dipping coherent noise.

The resulting f -x EMD method is shown to be equivalent

to an auto-adaptive f -k filter with a frequency-dependent,

high-cut wavenumber filtering property. It is useful in re-

moving both random and dipping noise in either pre-stack or

stacked/migrated sections and compares well with other noise-

reduction methods such as f -x deconvolution, median filtering

and local singular value decomposition. In its simplest imple-

mentation, f -x EMD is parameter free and can be applied to

entire datasets in an automatic way.

INTRODUCTION

Spatial prediction filtering in the f -x domain is an effective

method for random noise attenuation. The idea, originally pro-

posed by Canales (1984), exploits signal predictability in the

spatial direction. Noise-free events that are linear in the t-x do-

main, manifest themselves as a superposition of harmonics in

f -x domain. These harmonics are perfectly predictable using

an autoregressive (AR) filter. When the data are corrupted by

random noise, the “signal” is considered to be the part of the

data which can be predicted by the AR filter and the “noise” is

the rest.

However, in reality seismic events do not follow exactly Canales’

assumptions and display nonlinear and nonstationary spatial

behaviour. Examples include a hyperbolic moveout or a linear

event with an amplitude that varies with offset. The “signal”

is no longer mapped to a superposition of simple harmonics,

but rather a superposition of nonlinear and nonstationary ones.

More distortion is added to Canales’s model, when the seismic

data are irregularly sampled in the spatial direction. The use

of a recursion-type filter (e.g. an AR filter), which assumes

regular spacing, is not necessarily optimal in this case.

Standard spatial filtering techniques like f -x deconvolution or

a k-filter cope with nonlinearity and nonstationarity by filter-

ing the data over a short spatial window. This leaves the choice

of finding optimal parameters for the window and the filter to

the processing specialist. The selection of these parameters de-

pends strongly on the smoothness of the data and varies with

the frequency f . Filtering should be ideally data-adaptive to

achieve best performance. This is however difficult to imple-

ment manually and is rarely done in practice.

In this paper we propose a new data-driven technique for noise

attenuation in the f -x domain. Empirical mode decomposition

(EMD) was developed by researchers at NASA with the spe-

cific aim of analysing nonlinear and nonstationary data (Huang

et al., 1998). It constitutes therefore an interesting novel do-

main to design data-adaptive filters for the reduction of seismic

noise.

THE EMPIRICAL MODE DECOMPOSITION (EMD)

General background

EMD decomposes a data series into a finite set of signals,

called intrinsic mode functions (IMFs). The IMFs represent

the different oscillations embedded in the data. They are con-

structed to satisfy two conditions: (1) the number of extrema

and the number of zero-crossing must be equal or differ at most

by one; and (2) at any point the mean value of the envelope de-

fined by the local maxima and the envelope defined by the local

minima must be zero. These conditions are necessary to ensure

that each IMF has a localised frequency content by prevent-

ing frequency spreading due to asymmetric waveforms. Un-

like the Fourier transform, which decomposes the signal into

a sum of single-frequency constant-amplitude harmonics, the

IMFs are elementary amplitude/frequency modulated harmon-

ics, that can model the nonstationarity and the nonlinearity in

the data (Huang et al., 1998).

The IMFs are computed recursively, starting with the most os-

cillatory one. The decomposition method uses the envelopes

defined by the local maxima and the local minima of the data

series. Once the extrema are identified, all the local maxima

are interpolated by a cubic spline to construct the upper en-

velope. The procedure is repeated for local minima to pro-

duce the lower envelope. The mean of the upper and lower

envelopes is subtracted from the initial data, and the same in-

terpolation scheme is reiterated on the remainder. This sifting

process terminates when the mean envelope is reasonably zero

everywhere, and the resultant signal is designated as the most

oscillatory or the first IMF. The first IMF is subtracted from

the data and the difference is treated as a new signal on which

the same sifting procedure is applied to obtain the next IMF.

The decomposition is stopped when the last IMF has a small

amplitude or becomes monotonic.

An example of applying EMD on a real signal is shown in Fig-

ure 1. The original signal (Figure 1a) is non-stationary and

has a clear nonlinear oscillatory behaviour. The IMFs are it-

eratively derived starting with the fastest component, IMF1,

to the slowest one, IMF7 (Figures 1b–1h). IMF1 captures the

high frequency oscillations in the data and the IMFs become

subsequently smoother. The last IMF represents in general the

trend in the data.

F-x domain EMD

How can EMD be used to remove seismic noise? It is ar-

guably true that random noise corresponds mostly to high-

wavenumber energy in the f -x domain. IMF1 represents the

fastest oscillations in the data, i.e., it contains the largest wavenum-
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Figure 1: Example of using EMD to decompose a signal into

IMFs. The signal (a) exhibits a clear nonstationary behaviour.

The decomposition performed by EMD yields here 7 IMFs (b)-

(h). The number of oscillations decreases with increasing IMF

number. IMF7 (h) represents the trend in the data. EMD is

different from simple bandpass filtering in that different IMFs

can have a partly overlapping frequency content (e.g., IMFs 2

and 3).

ber components for the real and imaginary parts of a spatial

sequence in the f -x domain. Therefore, signal enhancement

can be achieved by subtracting IMF1 from the data.

To process a whole seismic section, f -x EMD filtering is im-

plemented in a similar way to f -x deconvolution.

1. Select a time window and transform the data to the f -x

domain;

2. Then for every frequency:

(a) Separate real and imaginary parts in the spacial

sequence;

(b) Compute IMF 1 for the real signal and subtract

to obtain the filtered real signal;

(c) Repeat for the imaginary part;

(d) Combine to create the filtered complex signal;

3. Transform data back to the t-x domain;

4. Repeat for the next time window.

Unlike f -x deconvolution, which uses a fixed filter order for

all frequencies, EMD adaptively matches its decomposition to

the smoothness of the data offering the ability to implement a

different filtering scheme for each frequency. It is worth em-

phasising that removing IMF1 solely at each frequency is a

single possibility among many. This scheme is the simplest

one and has led to good performance on all datasets we have

tested.

REAL DATA APPLICATIONS

The performance of f -x deconvolution and f -x EMD for signal

enhancement is compared on two real datasets. The f -x anal-

ysis is implemented by a short-time Fourier transform with a

sliding temporal window of length 512 ms and an overlap of

50% to remove edge effects. Frequencies beyond 60% of the

Nyquist frequency are not processed and are damped to zero.

Shot gather

A single shot gather that contains 192 traces of 2.5 s length

sampled at 2 ms is shown in Figure 2a. The data contains

some interesting features such as: shallow back-scattered en-

ergy, a linear right dipping event, ground roll, linear left dip-

ping events and weak amplitude zones, probably due to bad

geophone coupling. The primary objective in processing this

gather is to enhance the target reflections (the nearly flat events)

and to attenuate all others. F-x deconvolution is implemented

using an AR filter of order 4, and 20 spatial samples are used

to estimate the filter coefficients.

F − x deconvolution boosts all coherent events, including the

unwanted ones such as the left dipping events and the ground

roll (Figure 2b). It also interpolates events across the weak

zones. The latter property can be an advantage or a disadvan-

tage depending on the event considered. It is a clear advantage

if we consider the target events, but a disadvantage if we con-

sider the left dipping events. The difference section for f -x de-

convolution (Figure 2c) demonstrates that the back-scattered

energy and the right dipping event are partly removed, yet

other events are emphasised (e.g., the ground roll). The inter-

polation property of f -x deconvolution is also clearly visible

in the weak amplitude zone (around trace number 80).

F-x EMD emphasises the target reflections and filters out the

back-scattered energy and the ground roll very effectively (Fig-

ure 2d). It also removes the right dipping events (Figure 2e).

F-x EMD has less interpolation power compared to f -x de-

convolution. The weak amplitude zone between trace number

70-80 has not been reduced. This is due to the fact that EMD

is not a recursive spatial filtering method, so no signal energy

is passed to the next sample.

Inspection of the difference sections (new minus old) shows

that f -x EMD performs much better than f -x deconvolution

on this shot gather. F-x deconvolution will boost any coher-

ent energy and is therefore less appropriate for this dataset.

Changing its parameter settings does not lead to significantly

better results in this case.

To understand better the filtering behaviour of f -x EMD, we

consider the f -k spectra of the original and filtered data (Fig-

ure 3). The wavenumber axis is normalised by the Nyquist

value. Standard f -k transforms assume implicitly that the data

are regularly sampled both in time and space. This is not the

case here. The trace spacing of this shot gather is highly irreg-

ular and alternates between 5 and 7 m, leading to several alias-

ing artifacts visible in Figure 3a. For instance, the upside-down

half cones centred at normalised wavenumber of ± 1 are arti-

facts caused by the irregularity in the spatial sampling. They

disappear if only regular spaced traces are extracted. Despite

these artifacts, the f -k spectra reveal many interesting features

of f -x EMD versus f -x deconvolution and gives a physical in-

terpretation of its filtering behaviour.

The ground roll (B) is spatially aliased and mirrored in (B1).

The refraction (C) dominates the signal energy, while the back-

ground noise (D) is spread out over the high-frequency area of
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Figure 2: A land shot gather. (a) Original data, (b) filtering result of f -x deconvolution, (c) residual of f -x deconvolution, (d)

filtering result of f -x EMD, (e) residual of f -x EMD. F-x deconvolution reduces the background noise but it enhances all coherent

energy, whereas f -x EMD removes most background noise, the backscattered energy, most remnant ground roll and the linear

dipping events. Data courtesy of BP.

the spectrum. The target reflections (E) are located around zero

wavenumber (they are predominantly horizontal in Figure 2).

F-x deconvolution removes some of the background noise (D),

enhances the reflections (E), but leaves the ground roll (B, B1)

unaffected (Figure 3b). F-x EMD on the other hand, enhances

the reflections (E), while largely attenuating the ground roll

(B, B1), its aliased energy (B1) and the high frequency com-

ponents (typically above 60Hz) of the refractions (C).

F-x EMD acts as an adaptive high-cut wavenumber filter in

the f -k domain (Figure 3c). At the lower frequency end, the

ground roll has been removed. At the middle-to-high frequency

spectrum, all energy outside the normalised wavenumber [- 1
3

, 1
3
] has been dampened, leading to the automatic suppression

of background noise and much of the aliased energy. The al-

gorithm determines, from the data, what wavenumbers are to

be suppressed as a function of frequency. This is very dif-

ferent from the behaviour of f -x deconvolution which empha-

sises any coherent energy and is mostly appropriate only for

suppression of random noise.

Stacked section

Next, we consider a stacked section containing shallow hor-

izontal and marginally dipping reflectors in the middle (Fig-

ure 4). Some crossing artifacts are present in the bottom of the

section, which are probably due to previous processing applied

to the data. We apply f -x EMD and f -x deconvolution with the

same parameter values as for the first example. The results are

displayed in Figure 4.

F-x deconvolution attenuates some of the background noise.

However it leaves the crossing artifacts untouched (Figures 4b

and 4c). It also causes amplitude distortion by partially re-

moving useful reflector energy (particularly those at 600 ms),

as shown in the difference section (Figure 4c). F-x EMD (Fig-

ure 4d) attenuates also some of the background noise but very

little amplitude distortion occurs, as little reflector energy is

visible in the difference section (Figure 4e). More importantly

f -x EMD is able to remove the crossing artifacts, leading to an

overall performance improvement over f -x deconvolution.

We have also compared f -x EMD with other techniques to re-

duce noise contamination in seismic data such as median fil-

tering and local singular value decomposition (Bekara and Van

der Baan, 2007). It proves to be a very interesting processing

alternative to such local methods for signal-to-noise enhance-

ment.
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Figure 4: A marine stacked section. (a) Original data, (b) filtering result of f -x deconvolution, (c) residual of f -x deconvolution,

(d) filtering result of f -x EMD, (e) residual of f -x EMD. Both f -x deconvolution and f -x EMD reduce the background noise but

only f -x EMD removes the criss-crossing artifacts. Data courtesy of Shell.

CONCLUSION

F-x EMD is equivalent to an auto-adaptive f -k filter, with a

high-cut wavenumber property. It can attenuate both dipping

and random noise and does not require regular spatial sam-

pling. It is expected to work most effectively when the target

events are relatively horizontal, compared with the noise. Typ-

ical examples include NMO corrected and stacked sections.

We recommend routine inspection of difference sections to de-

termine if any useful other signal has been removed, and for

comparison with other noise-reduction tools such as f -x de-

convolution. One of the most interesting aspects of f -x EMD

is the fact that it is a parameter-free filtering tool in its simplest

implementation which removes the first intrinsic mode func-

tion only. Other schemes are possible gaining more flexibil-

ity in the type of noise removed at the expense of introducing

more user interaction.
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Figure 3: F-k spectra related to data sections in Figure 2.

(a) Data and results of (b) f -x deconvolution and (c) f -x EMD

filtering. F-x EMD corresponds to an auto-adaptive filter in

the f -k domain that reduces random and coherent noise and

can handle irregularly spaced data.
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