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We present finite-temperature Monte Carlo studies of a 2D random-anisotropy magnet on lattices
containing one million spins. The correlated spin-glass state predicted by analytical theories is
reproduced in simulations, as are the field-cooled and zero-field-cooled magnetization curves observed
in experiments. The orientations of lattice spins begin to freeze when temperature is lowered. The
freezing transition is due to the energy barriers generated by the random anisotropy rather than
due to random interactions in conventional spin-glasses. We describe freezing by introducing the
time-dependent spin-glass order parameter q and the spin-melting time τM defined via q = τM/t
above freezing, where t is the time of the experiment represented by the number of Monte Carlo
steps.

I. INTRODUCTION

Amorphous and nanocrystalline ferromagnets have
multiple technological applications due to their remark-
able magnetic softness1. Many of such systems are char-
acterized by ferromagnetic exchange and random local
magnetic anisotropy. They received the name of random-
anisotropy (RA) ferromagnets. Their static properties
have been intensively studied in the past, see, e.g., Refs.
2–4 and references therein. Recently, it has been shown
that RA magnets can also be excellent broadband ab-
sorbers of microwave radiation5.

Theoretical research on RA magnets received strong
initial boost from a seminal work of Imry and Ma6 who
argued that random on-site field of strength h, no mat-
ter how weak, destroys ferromagnetic order exponentially
fast beyond the distance Rf that scales as (J/h)2/(4−d),
where J is the exchange constant and d = 1, 2, 3 is the
dimensionality of the system. This gave rise to the con-
cept of Imry-Ma (IM) domains of average size Rf , rep-
resenting a system in which local direction of magnetiza-
tion wanders smoothly on a scale Rf , resulting in a zero
net magnetization of a large system. Although random
anisotropy of strength DR is different from the random
field, it does generate random effective field at the lattice
site, which makes plausible the picture of IM domains of
size Rf ∼ (J/DR)2/(4−d) (in lattice units) in that case,
too. This magnetic state received the name of the corre-
lated spin glass (CSG)7,9.

The CSG theory explained many features of amor-
phous magnets observed in experiments. Conceptu-
ally similar models were developed for arrays of mag-
netic bubbles10, vortex lattices in superconductors11,12,
charge-density waves13–15, liquid crystals16, and He-3 in
aerogel17,18 and on corrugated graphene19. Later on, the
validity of the concept of IM domains was questioned by
people who applied the renormalization group theory and
replica symmetry breaking methods to the RA model and
to the equivalent model of pinned flux lattices in super-
conductors, see, e.g., Refs. 20,21 and references therein.
The Bragg-glass phase characterized by the power-law
decay of correlations instead of exponential decay was

proposed, but that prediction was never confirmed by
any experiment on magnetic systems.

Another criticism of the IM concept came from its ne-
glect of metastable states22–24. It was found numerically
that the RA magnets exhibited metastability and his-
tory dependence25,26, although they do break into IM
domains of size predicted by theory if one begins with a
fully disordered initial state. It was demonstrated that
the relation between the number of spin components and
dimensionality of space in the random-field model deter-
mines whether the model possesses topological defects,
and that the latter is crucial for preservation or decay of
the long-range correlations27–29.

The RA model turned out to be more challenging than
the random-field model. Its exact ground state, spin-spin
correlation functions, and classification of topological de-
fects has never been established with certainty despite
the significance of RA magnets for applications. Previous
analytical work on small lattices, accompanied by Monte
Carlo studies, that assumed thermal equilibrium30–33,
could not describe time-dependent behavior and hystere-
sis observed in real systems. The hysteresis curve and
scaling of coercivity arising from the presence of topolog-
ical defects in a 3D RA model have been studied numer-
ically in Ref. 4. Scaling arguments were developed that
helped understand numerical results.

In this article, with the help of the Monte Carlo tech-
nique, we address temporal behavior of RA systems as it
is usually done for spin glasses. In particular, we study
melting of spin states, that has been seldom investigated
theoretically so far. We study the evolution (in terms
of Monte Carlo steps) of the RA magnet at different
temperatures, starting with the quenched state with a
random orientation of spins. This kind of numerical ex-
periment mimics preparation of an amorphous magnet
from a disordered paramagnetic state by a melt spinning
technique1. It helps to answer a long-standing question34
whether on lowering temperature the RA magnet under-
goes freezing of correlated spin groups due to energy bar-
riers created by the local magnetic anisotropy or it ex-
hibits a spin-glass transition due to interaction between
correlated spin groups.
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Theoretical35 and experimental36 studies of that prob-
lem so far have addressed systems with large RA com-
pared to the exchange, when individual spins behave sim-
ilar to single-domain magnetic particles and extended fer-
romagnetic correlations are absent. Here we study the
less obvious limit of a soft magnet in which the RA of
the order of the exchange or smaller. It is the case of the
CSG with extended ferromagnetic correlations and large
magnetic susceptibility.

To study spin correlations in the CSG one needs a large
system. The power of modern computers is better suited
for that task than it was in the past. Still the 3D case
requires impractically large computational times, so we
stick to a 2D system of one million spins. The paper is
organized as follows. The model and properties of the
CSG that follow from the IM argument are discussed
in Section II. The freezing parameter and melting time
that describe physical properties of the system, together
with formulas for magnetization and susceptibility, are
introduced in Section III. Our numerical method is de-
scribed in Section IV. Numerical results on field-cooled
and zero-field-cooled magnetization curves are presented
in Section V-A. The computed temperature dependence
of the freezing parameter and the melting time is given in
Section V-B. Results on the magnetization and suscepti-
bility are included in Section V-C. The final Section VI
contains discussion of the nature of the observed freezing
transition.

II. THE MODEL

We consider the model of a classical random-anisotropy
(RA) ferromagnet on a lattice

H = −1

2

∑
ij

Jijsi · sj −
DR

2

∑
i

(ni · si)2−H ·
∑
i

si. (1)

Here Jij is the nearest-neighbor coupling of the classical
spin vectors |si| = 1 with the coupling constant J > 0,
DR is the RA constant, ni are randomly oriented easy-
axis vectors, and H is the external field in the energy
units. This model shares many features with spin glasses.
At low temperatures for H = 0, spins tend to locally
order in the directions of the locally predominant orien-
tation of the anisotropy axis. For DR/J . 1 there is a
strong short-range order as the ferromagnetic correlation
radius2

Rf ∼ a
(
J

DR

)2/(4−d)

(2)

becomes much larger than the lattice spacing a. There
is a numerical factor of about 10 in this formula, see the
estimations below Eq. (18). At low temperatures, the
magnetic structure consists of large correlated regions in
which spins point in the direction of the predominant
anisotropy that is random. Such correlated regions can

be called “Imry-Ma domains” (IM domains), although
there are no domain walls between them. The correla-
tion radius is especially large in three dimensions, d = 3.
The result for Rf above can be obtained with the help of
the Imry-Ma argument. Suppose the spins are correlated
within the distance Rf . Averaging the RA energy over
this region gives the energy

ERA ∼ −DR

(
a

Rf

)d/2
(3)

per spin for a� Rf . The exchange energy per spin due
to the change of the spin field at the distance Rf is

Eex ∼ J
(
a

Rf

)2

. (4)

Minimizing the total energy Etot = ERA + Eex with re-
spect to Rf yields Eq. (2). For this Rf , both anisotropy
and exchange energies have the same order of magnitude,
|ERA| ∼ Eex. This picture assumes that the spins within
IM domains are directed along the anisotropy axis aver-
aged over the IM domain.

One can estimate the zero-field zero-temperature sus-
ceptibility of the RA magnet as follows.8,9 If a small
uniform field H is applied, the spins deviate from the
dominant-anisotropy direction by a small angle δθ, that
results in the energy change δE ∼ −Hδθ + |ERA| (δθ)2.
Minimizing this energy with respect to δθ and using
|ERA| ∼ Eex, for the susceptibility in the energy units
χ ∼ δθ/H one obtains

χ =
k

J

(
Rf
a

)2

. (5)

where k is a factor of order unity. The latter depends on
the exact form of the spin-spin correlation function. In
2D this factor also contains logarithmic dependence on
Rf . At Rf � a the susceptibility is large, which explains
magnetic softness of RA magnets.

As it was mentioned above, the correlated bunches
of spins (IM domains) tend to orient themselves in the
two possible directions along the predominant anisotropy
axis. The energy barrier ∆U between these orientations
can be estimated as ∆U ∼ ERA, Eq. (3). Using Eq. (2),
one obtains

∆U ∼ DR

(
J

DR

)d/(4−d)
= J

(
DR

J

) 2(2−d)
4−d

. (6)

In particular,

∆U ∼ J


(
DR

J

)2/3
, d = 1

1, d = 2(
J
DR

)2
, d = 3.

(7)

Bunches of spins of the size Rf that flip over the barrier
are not independent but interacting with their neighbors
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via the exchange. The interaction energy can be esti-
mated assuming that the distance between the neighbor-
ing regions of correlated spins is Rf , so that the overlap
volume is Rdf . The interaction energy then has the same
form as the exchange energy in the IM argument:

Eint ∼ J
(
a

Rf

)2(
Rf
a

)d
= J

(
Rf
a

)d−2
∼ ∆U. (8)

That is, flipping bunches of correlated spins are strongly
coupled. Thus the RA magnet has a similarity with an
ensemble of interacting magnetic particles with a ran-
dom anisotropy. However, this analogy is incomplete
as IM domains are not real domains and the bound-
aries between these “particles” are washed out. The fact
that the interaction between IM domains is comparable
with their effective anisotropy energy makes the situation
more complicated. Some of IM domains can be directed
along their effective anisotropy axes while some cannot
because of the interaction with their neighbors. There
should be many different ways to minimize the energy
with different sets of “lucky” and “unlucky” IM domains.

The time required to overcome the collective energy
barrier for a large number of correlated spins should be
very long, so that in the intermediate temperature range
the system does not come to equilibrium during sustain-
able simulation times. At higher temperatures, transi-
tions between different states are faster and the system
reaches the full (global) equilibrium. At lower tempera-
tures, spin bunches cannot overcome energy barriers at
all. Here, the local equilibrium near one of the many lo-
cal energy minima of the system is established relatively
fast.

In finite-size systems with linear size L, the results
above are valid for Rf . L. The value of the random
anisotropy at which Rf ∼ L can be estimated as

DR ∼ D∗R = J
( a
L

)(4−d)/2
. (9)

For DR . D∗R the barrier can be estimated as

∆U ∼ DR

(
L

a

)d/2
(10)

that must be smaller than the value for the infinite sys-
tem. Upon increasing L, the barrier approaches its lim-
iting value from below.

III. THE SPIN-GLASS ORDER PARAMETER
AND OTHER COMPUTABLE QUANTITIES

The indicator of the glassy transition is freezing de-
scribed by the time autocorrelation function averaged
over all N spins:

K(τ) =
1

N

N∑
i=1

si(t) · si(t+ τ). (11)

If the system is at global or local equilibrium, the result
does not depend on the time t. However, in the inter-
mediate temperature interval the system evolves in the
direction of equilibrium but cannot reach it during the
observation (simulation) time, thus the result also de-
pends on t. In the glassy state, the spins are frozen and
do not deviate much from their initial positions, so that
K(τ) is finite at large τ . Above the glassy transition,
spins are fluctuating wildly, so that K(τ) → 0 at large
τ . For large systems, computation of K(τ) is prohibitive
as it requires keeping all spin configurations in memory
over a long time interval.

The SG order parameter based on the temporal evolu-
tion of spins can be defined as

q =
1

N

N∑
i=1

〈si〉t · 〈si〉t , (12)

where

〈si〉t ≡
1

tmax

tmaxˆ

0

dtsi(t) (13)

is the time average over a long time interval. In spin
glasses below the freezing point, q → const for tmax →∞.
This definition is similar to Eq. (1.4) of Ref.34. Instead
of the time averaging or ensemble averaging we use av-
eraging over statistical samples generated by the Monte
Carlo process. Averaging over realizations of the RA was
done for smaller systems but it was found that it is bet-
ter to consider larger systems without this averaging as
large systems self-average.

Above the freezing point, the glassy CF K(τ) asymp-
totically vanishes and one can rewrite q as

q ∼=
τM
tmax

, τM ≡
∞̂

−∞

dτK(τ), (14)

where τM is melting time. If there is a true SG transi-
tion on temperature, then melting time should diverge
on approaching it from above. Studying the coefficient
in the asymptotic 1/tmax form of the glassy order param-
eter q above freezing could yield the value of the freezing
temperature.

One can also compute the autocorrelation function of
the average spin (magnetization)

m =
1

N

∑
i

si (15)

that is defined by

C(τ) = m(t) ·m(t+ τ), (16)

In simulations on finite-size systems C(τ) is non-zero and
can be used to monitor freezing. Unlike K(τ), it can be
computed for large systems and large time intervals.
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The value of the equal-time correlation function
C(0) = m2 is nonzero in finite-size systems even in the
absence of ling-range order due to short-range correla-
tions. One has

m2 =
1

N2

∑
i,j

si · sj =
1

N

∑
j

〈si · si+j〉 ⇒
1

N

∞̂

0

ddr

ad
G(r),

(17)
where G(r) is the spatial correlation function and d is
the dimensionality of the space. As the RA magnet has
lots of metastable local energy minima, G(r) depends on
the initial conditions and on the details of the energy
minimization routine. In 2D for G(r) = exp [− (r/Rf )

p
]

one obtains

m2 = Kp

πR2
f

Na2
=⇒ Rf

a
= m

√
N

πKp
, (18)

where K1 = 2 and K2 = 1.
Having estimated Rf , one can find the number of IM

domains NIM in the system of size used in the numer-
ical work. In 2D with linear sizes Lx and Ly one has
NIM = LxLy/

(
πR2

f

)
. In particular, for a system with

N = 300 × 340 = 102000 spins and DR/J = 0.3, energy
minimization at T = 0 starting from a random spin state
yields m ≈ 0.21, and with p = 2 one obtains Rf/a ≈ 37.8
and NIM ≈ 23. For DR/J = 1, one obtains m ≈ 0.074
and Rf/a ≈ 13.3 that yields NIM ≈ 183. For the ratio
of the Rf values one obtains R(DR=0.3)

f /R
(DR=1)
f ≈ 2.84

that is close to the value 3.33 given by Eq. (2).
One can compute the linear static susceptibility differ-

entiating the statistical expression for the average mag-
netization value 〈m〉. The differential susceptibility per
spin has the form

χαα =
∂ 〈mα〉
∂Hα

=
N

T

(〈
m2
α

〉
− 〈mα〉2

)
, (19)

where the average is taken over the statistical ensemble
and α = x, y, z. Within the Monte Carlo method, the
average is taken over the statistical sample generated by
the Monte Carlo process. The symmetrized form of the
susceptibility in zero field is given by

χ =
N

3T
(〈m ·m〉 − 〈m〉 · 〈m〉) , (20)

where 〈m ·m〉 =
〈
m2
〉
. Whereas the number of spins

N is very large, the difference of the terms in brackets
can be very small below freezing, so that the result for
a large system does not essentially depend on N . Unlike
the magnetization value 〈m〉 that for a large system can
be computed using only one system’s state, i.e., without
averaging, 〈m〉 ⇒ m, computing χ requires averaging
over different states of the statistical ensemble. With
only one state taken into account, χ vanishes. Above
the freezing temperature in zero field, one has 〈m〉 = 0,
so that only the first term in the susceptibility formula

contributes. In the frozen state, the two terms are close
to each other and their difference is small. For this rea-
son, there is a lot of numerical noise in this formula. In
the intermediate temperature range the system does not
reach equilibrium during the simulation time, so that Eq.
(20) becomes questionable as it was obtained under the
assumption of equilibrium using the statistical ensemble.
The fact that the system does not come to equilibrium is
another source of the noise in the simulation results for χ.
In different simulations, the system is getting stuck in one
of the infinite number of energy valleys of its phase space
that are characterized by different values of 〈m〉. How-
ever, even in this intermediate region the formula gives
plausible results and should be correct at least qualita-
tively. Using χαα = ∂ 〈mα〉 /∂Hα is not much better as
the result depends on the time allowed for the system to
relax. At high and low temperatures Eq. (20) is correct
as either global or local equilibrium is reached.

IV. THE NUMERICAL METHOD

Computation of the static properties of RA magnets
at T > 0 could be done using real dynamics39 or Monte
Carlo. The latter is much faster and is the way to go.
However, as different states of the RA magnet are sepa-
rated by energy barriers and spins are fluctuating as large
correlated groups, there is a very slow relaxation near
and below the freezing point, creating a computational
challenge. To speed-up the relaxation in simulations, one
has to combine the Metropolis Monte Carlo updates that
work as slow diffusion in the phase space of the system
with overrelaxation updates that simulate conservative
dynamics allowing to quickly explore the hypersurfaces of
constant energy. For systems with single-site anisotropy,
the straightforward overrelaxation routine, rotating the
spins by 180° around the effective field, leads to the en-
ergy decrease and thus is not working properly.

To beat this problem, we have developed a thermalized
overrelaxation routine. Here, the spins are rotated by
180° around the different-site part of the effective field
(e.g., around the exchange field). As the result, the en-
ergy increases or decreases due to the RA. To compen-
sate for this, the rotation is accepted or rejected using
the Metropolis criterion, same as in the Monte Carlo up-
dates. In our simulations, for each spin update we used
the Metropolis Monte Carlo with the probability α = 0.1
and thermalized overrelaxation with the probability 1−α.
The thermodynamic consistency of this method has been
checked by computing the dynamical spin temperature
TS given by Eq. (9) of Ref.37. The values of TS were in
a good accordance with the set temperature T .

To minimize the energy of the system at T = 0,
we used the straightforward overrelaxation routine men-
tioned above that for the systems with uniaxial single-site
anisotropy leads to the energy decrease. This routine
provides a fast convergence. If in the initial state of the
system all spins are collinear, then upon relaxation the
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Figure 1: Pure 2D Heisenberg ferromagnetic model. Upper
panel: Evolution of the magnetization components. Lower
panel: Magnetization, root-mean-square magnetization, and
its running average.

system becomes only partially disordered with a signifi-
cant residual magnetization m. If the initial state of the
system is random, the relaxed state is random, too, with
m being rather small. Most of the simulations were done
with the random initial conditions (RIC).

In the computation of the dependence of the SG order
parameter q on tmax, Eq. (12), we used summation over
Monte Carlo steps (MCS) i.e., system updates, instead
of the integration over time. That is, instead of Eq. (13)
we used

〈si〉 ≡
1

MCS

MCS∑
n=1

si(n), (21)

where n labels the states generated by the Monte Carlo
process. The asymptotic formula for q above freezing

Figure 2: Susceptibility vs simulation time in MCS for the
pure 2D Heisenberg ferromagnetic model.

Figure 3: Energy and heat capacity of the 2D RA model.

becomes

q ∼=
τM

MCS
, τM =

∞∑
n=−∞

K(n). (22)

Here, the melting time τM is measured in Monte Carlo
steps. While the latter are not related to the time in
any simple way, still τM gives an idea if freezing in the
system.

The simulations were done on large 2D systems, typ-
ically 1024 × 1000 spins, with periodic boundary condi-
tions. The very large system size is needed as the system
of many spins behaves as that of a much smaller number
of IM domains. In particular, for DR/J = 1 the system
of 105 spins is too small and shows large fluctuations.
To reduce fluctuations, one can either perform repeated
measurements on such systems or simulate a larger sys-
tem. The latter is preferred.
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Figure 4: FC, ZFC, and FW curves for a 2D RA model with
106 spins.

Usually, in Monte Carlo simulations the system is first
equilibrated and then measurements of the equilibrium
properties are performed. For the RA magnet, the equi-
libration is extremely long, and around the freezing tem-
perature the system does not come to equilibrium at all
after one million MCS that is about our limit for 106

spins. Thus we resorted to performing a fixed number of
MCS for each temperature. Our first attempts included
stepwise lowering T performing from ten to twenty thou-
sand MCS for each temperature point. However, such
simulation duration proved to be too short, and increas-
ing it in the cycle over the temperatures would result in
exceedingly long computation. Therefore, long simula-
tions, up to 106 MCS, for select temperature values have
been performed, each time starting from quenched states
obtained by energy minimization starting from random
spin states. Each of these simulations required several
days.

As the computing software, Wolfram Mathematica
with compilation and parallelization was used. Most of
computations were performed on our Dell Precision work-
station having 20 CPU cores from which 16 cores were
used by Mathematica.

V. TESTING THE NUMERICAL METHOD ON
THE PURE 2D MAGNET

First, we test the numerical method on the pure 2D
Heisenberg ferromagnetic model. In this case, the ther-
malized overrelaxation degenerates to the regular overre-
laxation as it conserves energy. There is no phase tran-
sition on temperature in this model but a strong short-
range order with exponentially large magnetic suscep-
tibility and exponentially long correlation length estab-
lishes with lowering temperature in the infinite system.
This happens around T/J = 0.7 where the heat capac-

ity has a maximum. In simulations on finite-size sys-
tems, further lowering the temperature quickly results
in the correlation length exceeding the system size L,
and the system behaves as an ordered magnetic parti-
cle. In this regime, the susceptibility is not exponentially
large but still huge: χ = N

〈
m2
〉
/(3T ). The results of

a single simulation of the pure 2D Heisenberg ferromag-
netic model at T/J = 0.4 are shown in Figs. 1 and IV.
The equilibrium value of the root-mean-square magne-
tization

〈
m2
〉1/2 stabilizes quickly enough with increas-

ing the number of system updates MCS, as can be seen
in the lower panel of Fig. 1). However, computing the
linear susceptibility χ using Eq. (20) for the system of
one million spins requires about a million of system up-
dates, see Fig. IV. Such a long simulation is required
to average out the system’s magnetization vector m that
contributes to the second term in Eq. (20). The slow
evolution of the components of m is shown in the up-
per panel of Fig. 1. After one million of system up-
dates one obtains χJ = 157838 that is almost as large
as the “magnetic-particle” value defined just above with
N = 1024× 1000,

√
〈m2〉 = 0.46, and T/J = 0.4 that is

χJ = 180565.
One also can check what becomes the freezing param-

eter q of Eq. (12) for the pure system. Theoretically,
one expects q = 0 at any T > 0. However, for a system
of 106 spins at T/J = 0.4 one needs to perform hun-
dreds of thousands MCS to see that the system is not
frozen. The dependence of q on the number of MCS per-
formed is added to Fig. 8 below. These simulations of
the pure system show that the problem is computation-
ally involved. In the presence of random anisotropy it
becomes harder because of even longer relaxation due to
thermally-activated barrier crossing by large groups of
correlated spins.

VI. NUMERICAL RESULTS

A. FC-ZFC-FW curves

Figure 4 shows the result for the FC, ZFC, and FW
curves in a 2D RA model with the a million spins and the
RA strength DR/J = 1. Here a very weak field is applied
along z axis and mz ≡ 〈si,z〉 was measured. The ZFC
curve was obtained by first minimizing the system’s en-
ergy starting from a random orientation of spins at T = 0
and H = 0, than applying the field H and gradual warm-
ing the system. The FC curve was obtained by gradual
cooling the system from a high temperature to T = 0 in
the presence of the field. Finally, the field-warmed (FW)
curve was obtained by first minimizing the system’s en-
ergy in the applied field starting from the state with all
spins directed along z axis and then gradually warming
the system. For each temperature point, 10000 system
updates were performed. One can see that the ZFC curve
merges with the other two curves at T/J ' 0.53 that can
be interpreted as spin-glass transition or freezing temper-
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Figure 5: The dependence of the SG order parameter on the
number of Monte Carlo steps in log-log scale. Upper panel:
a smaller system of 105 spins. Lower panel: the system of
106 spins. The dashed line is the asymptote q = τM/MCS for
T/J = 0.59.

ature TSG. The estimated magnetic susceptibility near
freezing is huge, χ = mz/H ' 400. This is unlike that
in the conventional spin glasses with a random exchange.
Each curve was obtained by averaging over three differ-
ent runs. For a system of 105 spins fluctuations are much
stronger, so that a more extensive averaging over runs is
needed.

B. Spin-glass order parameter and melting time

Then, we have performed a long annealing, up to 106

MCS, of the system at different temperatures after the
energy minimization (quenching) starting from random
initial conditions. Each of these simulations took several
days, so they had to be done one-by-one rather than in
a cycle. Each simulation run used its own realization of

Figure 6: Melting rate above freezing – natural and power-law
representations.

Figure 7: Melting rate above freezing – Arrhenius represen-
tation.

the RA and its own random initial spin state. The results
of each run were the dependences of q and the compo-
nents of the average spin m, Eq. (15), vs the number of
MCS. From the m data, the susceptibility components,
Eq. (19) and the symmetrized susceptibility, Eq. (20)
were derived.

The dependence of the SG order parameter q of Eq.
(12) on the number of MCS near the freezing temper-
ature for a smaller system of 105 spins is shown in the
upper panel of Fig. 5. One can see that this size is too
small, as the system behaves as that of a much fewer
number of entities and fluctuations are too strong. For
T/J = 0.53 at MCS = 3 × 106 most of the system’s
105 spins suddenly change their direction that leads to
a sharp decrease of q. A really large system should not
behave like this. One has either to perform an extensive
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Figure 8: The dependence of the SG order parameter on the
number of Monte Carlo steps in linear scale at different tem-
peratures.

Figure 9: Asymptotic values of the spin-glass order parameter
q at different temperatures. The curve with open circles was
obtained by gradually lowering the temperature making 2 ×
104 MCS for each T value. The curve with filled circles was
obtained by making 106 MCS at each T value one by one for
different RA realizations.

averaging over runs of take a larger system that is prefer-
able. The data for 106 spins in the lower panel of Fig. 5
are much smoother and show the asymptotic power-law
dependence q = τM/MCS above the freezing point, in
accordance with Eq. (14).

Fitting the dependence of the SG order parameter
with q = τM/MCS one can extract the melting time
τM . The latter becomes very large when the system
freezes. If there is true phase transition at some freez-
ing temperature Tf , one can expect a power-law diver-
gence τM ∝ (T − Tf )

−γ . The results for the melting

Figure 10: Simulation above the freezing point, T/J = 0.58.
Upper panel: evolution of the magnetization components.
Lower panel: dependence of the susceptibility components
(colored curves) and the symmetrized susceptibility (black
curve) on the number of MCS done.

rate 1/τM are shown in Fig. 6. The temperature de-
pendence of 1/τ

1/6
M is a straight line that suggests γ = 6

and Tf/J ' 0.49. The power 6 is too high to be credible
while the freezing temperature is rather low and difficult
to approach from above because of too slow relaxation
requiring exorbitant computing times.

Another way to fit the results for the melting time
is using the Arrhenius temperature dependence τM ∝
exp (∆U/T ). The corresponding data representation
shown in Fig. 7 yields the barrier value ∆U = 23J .
Theoretically, Eq. (7) yields ∆U ∼ J for d = 2 but
there can be a large numerical factor in ∆U . At larger
temperatures, one can see expected deviations from the
Arrhenius law (as well as deviations from the power law
in Fig, 6). This interpretation implies that there is no
phase transition and freezing is a gradual process.

Another argument in favor of a gradual freez-
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Figure 11: Simulation just below the freezing point, T/J =
0.51. Upper panel: evolution of the magnetization compo-
nents. Lower panel: dependence of the susceptibility com-
ponents (colored curves) and the symmetrized susceptibility
(black curve) on the number of MCS done. The system does
not come to equilibrium and χ does not stabilize with increas-
ing of the number of MCS done.

ing/melting is the fact that in systems with quenched
disorder the properties averaged over large regions
should fluctuate. If in one region the averaged random
anisotropy is larger than in the others, freezing /melting
in this region will occur at slightly higher temperatures.
Thus the freezing temperature will be spread. At some
temperature, most of the system will be melted while
some minoruty regions will be still frozen, providing a
small but nonzero value of the spin-glass order param-
eter q. In this scenario, q(T ) dependence is neither a
power nor an exponential of the temperature.

In the frozen state, as can be seen in Fig. 8, the SG or-
der parameter quickly reaches its asymptotic value that is
smaller than one because of the thermal motion of spins
on IM domains in their valleys without crossing the barri-

Figure 12: Simulation at a lower temperature, T/J = 0.2.
Upper panel: evolution of the magnetization components;
Lower panel: dependence of the susceptibility components
(colored curves) and the symmetrized susceptibility (black
curve) on the number of MCS done.

ers to different valleys. With increasing the temperature
towards the melting point, the processes of crossing the
barriers begin and q slowly decreases. Above the freez-
ing point, such as T/J = 0.6, the SG order parameter
quickly decreases to zero.

The values of the SG order parameter q computed at
different temperatures are shown in Fig. 9. The curve
with open circles was obtained by gradually lowering the
temperature making 2×104 MCS for each T value. This
duration of annealing is insufficient to reach stable re-
sults. The points of the curve with filled circled obtained
one by one for different RA realizations with 106 MCS are
significantly shifted down. In this case, the equilibrium
is reached in the main part of the temperature interval
except for the vicinity of the freezing transition. This is
confirmed by the plateaus of q vs the number of MCS in
Fig. 8.
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Figure 13: Linear susceptibility χ at different temperatures.
Upper panel: broad temperature range; Lower panel: Low
temperatures.

C. Magnetization and susceptibility

Above the freezing point, the components of the mag-
netization defined by Eq. (15) fluctuate fast around zero,
as can be seen in the upper panel of Fig. 10. Even for a
disordered system of one million spins the magnetization
is significant that is the consequence of a strong short-
range order that establishes below T/J = 0.7 where the
system has the maximum of the heat capacity, even in the
absence of the RA. Because of the fast fluctuations, the
linear susceptibility computed with the use of Eqs. (19)
and (20) and shown in the lower panel of Fig. 10 reaches
its asymptotic value within the simulation interval of 106

MCS. Different components of the susceptibility have ap-
proximately the same value.

On the contrast, in the intermediate temperature range
at and below freezing, in addition to fast fluctuations of
the magnetization, there is slow dynamics, apparently
due to thermally-activated barrier crossing. As can be

seen in the upper panel of Fig. 11, slow changes of m
do not average out within the simulation interval of 106

MCS. Slow fluctuations of m are large and thus make a
large contribution to the linear susceptibility. As can be
seen in the lower panel of Fig. 11, the susceptibility does
not stabilize and continues to grow. In this temperature
range, the susceptibility values are huge because of the
correlated motion of large groups of spins over energy
barriers.

At lower temperatures, there are no large fluctuations
of the magnetization due to overbarrier transitions, as
can be seen in the upper panel of Fig. 12. The fluctu-
ations seen in the figure are due to the motion of corre-
lated spin bundles within their valleys. Note that z axis
is chosen in the direction of the magnetization in the ini-
tial state obtained by the energy minimization from the
random spin state.

The values of the symmetrized linear susceptibility χ
at different temperatures computed using Eq. (20) are
shown in Fig. 13. At higher temperatures, the suscepti-
bility is small and practically coincides with that of the
pure system. One can see that χ has huge values in the
region of freezing. However, the values obtained in this
region strongly fluctuate and are only approximate as
the simulation duration of 106 MCS proves to be insuffi-
cient to average out the magnetization fluctuations (see
the upper panel of Fig. 11). Better results, probably,
could be obtained for the simulation longer by an order
of magnitude that for such a large system is problematic.
At low temperatures, the scatter in the susceptibility de-
creases and the susceptibility values approach a plateau
with the height in a fair accordance with Eq. (5) that for
DR/J = 1 with Rf/a ≈ 13.3 and k = 0.5 yields χJ ' 88.

In addition, one could compute the correlation func-
tions (CFs) of the m time series shown in figures above.
Above freezing, these CFs quickly decay to zero, At in-
termediate temperatures, they decrease slowly with large
fluctuations, as suggested by the upper panel of Fig. 11.
At low temperatures where there are no overbarrier tran-
sitions, time CFs quickly decrease from their equal-time
values to their plateau values. These CFs have been com-
puted for the same model from the dynamical evolution
and shown in Fig. 3 of Ref. 39, Those results suggest
freezing at T/J between 0.5 and 0.6, in accordance with
the current, more precise, results.

VII. DISCUSSION

Most of the previous studies of random-anisotropy
(RA) magnets were focused on their equilibrium behav-
ior or on their quasi-equilibrium properties in a frozen
glassy state. Rigorous analytical solution of this set of
problems has never been provided, while numerical stud-
ies have been hampered by the necessity to consider large
systems in order to account for extended ferromagnetic
correlations. Capabilities of modern computers have al-
lowed us to revisit this problem. In this paper we have
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studied glassy properties of the random-anisotropy mag-
net as a function of temperature with the combination of
the Metropolis Monte Carlo method and specially devel-
oped thermalized overrelaxation.

The questions we asked are the extent to which
metastability plays a role in defining magnetic properties
of such a system, the freezing of the magnetic configura-
tion due to energy barriers on lowering temperature vs
a spin-glass transition due to exchange interaction be-
tween spins, the time evolution of a conventionally de-
fined spin-glass order parameter, the characteristic melt-
ing time in the temperature region just above freezing,
the field-cooled (FC) and zero-field-cooled (ZFC) magne-
tization curves, and the temperature dependence of the
magnetic susceptibility of RA magnets. The computed
energy barriers agree within order of magnitude with the
Imry-Ma argument for systems with quenched disorder.
The computed FC and ZFC magnetization curves have
close resemblance with the experimental curves. These
findings provide confidence in our numerical method.

A more challenging task has been distinguishing be-
tween blocking of overbarrier spin-group transitions on
reducing temperature (that implies the Arrhenius tem-
perature dependence of the melting time above freezing)
and a true spin-glass phase transition (that implies a
power-law divergence of the melting time at transition
point). While we cannot say with confidence that we have

answered this question unambiguously, our findings pro-
vide a stronger argument in favor of a continuous freez-
ing (blocking) transition on lowering temperature. The
main evidence of this is a rather high power in the power-
law fit of the melting time and a rather low resulting
transition temperature. In accordance with our numer-
ical experiments, the maximum of the susceptibility oc-
curs where the FC and ZFC magnetization curves merge.
The low temperature value of the susceptibility roughly
agrees with the one derived from the Imry-Ma argument.
The temperature dependence of the susceptibility near
and below the maximum has a strong scatter caused by
the finite size of the system (one million spins) and fi-
nite computing time (one million Monte Carlo steps). It
did not allow us to distinguish between a smooth behav-
ior at the maximum and a cusp that was experimentally
observed in spin glasses. Studies of larger systems and
longer computation times would be needed to make such
a distinction.
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