
RANDOM ARCS ON THE CIRCLE 

BY 

ANDREW F. SIEGEL 

TECHNICAL REPORT NO. 8 

JULY 26, 1977 

PREPARED UNDER GRANT 

DAAG29-77-G-0031 

FOR THE U.S. ARMY RESEARCH OFFICE 

Reproduction in Whole or in Part is Permitted 
for any purpose of the United States Government 

Approved for public release; distribution unlimited. 

DEPARTMENT OF STATISTICS 

STANFORD UNIVERSITY 

STANFORD, CALIFORNIA 



RANDOM ARCS ON THE CIRCLE 

By 

Andrew P. Siegel 

TECHNICAL REPORT NO. 8 

July 26, 1977 

Prepared under Grant DAAG29-77--G-OQ31 

For the U.S. Army Research Office 

Herbert Solomon, Project Director 

Approved for public release! distribution unlimited. 

DEPARTMENT OF STATISTICS 
STANFORD UNIVERSITY 
STANFORD, CALIFORNIA 

Partially supported under Office of Naval Research Contract NOOOlH-76-0-0^75 
(NR-OU2-267) and issued as Technical Report No. 2l+8. 



THE FINDINGS IN THIS REPORT ARE NOT TO BE 
CONSTRUED AS AN OFFICIAL DEPARTMENT OF 
THE ARMY POSITION, UNLESS ßO DESIGNATED 
BY OTHER AUTHORIZED DOCUMENTS. 



1.  Introduction, Summary, and Historical Notes 

The problem of coverage of the circle by a fixed number of ran- 

domly placed equal arcs has been considered by many investigators. 

In this paper, we present exact expressions for the moments of coverage 

of all orders,, the cumulative distribution of coverage, and we give 

the limiting distribution of coverage as the number of arcs becomes 

large. 

A  recursive integral equation that expresses the moment of 

vacancy of order m+1 in terms of moments of vacancy of lower orders 

is given in theorem 1» This is the basic result from which the others 

follow.  This equation is solved in theorem 2, giving the moments of 

vacancy and of coverage of all orders. A  complete characterization of 

the distribution of the vacancy is given in theorem 5, and the distri- 

bution of the coverage then follows as a corollary. Finally, the 

asymptotic coverage distribution for fixed a as n tends to infinity 

is explored in theorem 4« 

Wo L. Stevens [10] derived an expression for the probability 

of complete coverage of the circle.  C. Domb [5] found the coverage 

probability, the moments of coverage, and the distribution of coverage 

for the related problem in which the number of arcs has a Poisson 

distribution.  He showed that the corresponding quantities for the 

problem of a fixed number of arcs could be found, at least in principle, 

by a series expansion.  However, due to computational difficulties, he 

was unable to produce these formulae. D. A. Darling [k]  treated 

aspects of this problem using characteristic functions. L. Flatto and 



A. G. Konheim [7] explored the asymptotic behavior of the number of arcs 

at which complete coverage first occurs, as the arc length tends to 

zero. L. A,   Shepp [9] also studied some asymptotics of this problem, 

as did P. J. Cooke [3]» G. Ailam [1] has provided a general mathe- 

matical framework within which to consider coverage problems. 

^*  Definitions 

Let n arcs, each of length a, be placed independently with 

centers uniformly distributed over the circumference of a circle of 

length 1»  Denote these random arcs by X, , ...,X ,  the circumference 

of the circle by K, and Lebesgue measure on K by u. 

We define the coverage to be 

(2-1)     • C(n,a) = ^=1 *±> 

so that C/   \ is the random proportion of the circumference that (n,a) 

is contained in some arc. We define the vacancy to be 

(2.2) D/   x = u(lT? _ X?) = 1 - C,   v v   ' (n,a)  ^v i=l i'      (n,a) 

c 
where X.. denotes the complement of X.  in K, 

so that D/   N is the random proportion of the circumference that is (n,aj *    * 

not contained in any arc. Note that C,       \    and D,   x are random (n,a)      (n,a) 

variables taking values in [0,1]. The moments of C,       •, about zero 0 ' (n,a) 

are called moments of coverage. Those of D,       \    are called moments —— (n,a)  

of vacancy. 



3°  Results 

Theorem 1;  The moments of vacancy for n random arcs of length 

on a circle satisfy the recursive integral equation 

T-, ^m+1 ,m+n%-l/n      \m+n 
ED,        v  = (        )     (1-a) 

(n } a )       v   n v 

(5.1) + »   S    (J) J ^(l-.-af^ ^a/*}3* 
k=l a \   7 i    i 

f        m+n-l„ _m , 
+ m x ED/        /   sdx 

«j 
1-a 

(n,a/x) 

when    a < 1/2,     and 

/,  0\ _ T.m+1 /HL+ns-1/..      \m+n   ,        f      m+n-l_ _m , 
(5*2) E %,a)  = <  n   }     (l~a) + m .     X E D(n,a/x)dx 

when    a > 1/2. 

Proof of theorem 1: From (2.2), D,  .   is the coverage of the random 
— — —— (n,a) 

set fi.  X., and we may use Robb ins* [8] formula for its moments: 

^•J)   E D(n,a) = JKm+l
P(V'^m+i

eni=lXi)dul"'dum+l ' 

Since X,,...,X  are independent and identically distributed sets., 

(3A)       P(v...fVler5=;LxJ) = [P(V"'
u
m+i

6
^)^ • 

Using invariance of the integrand under permutations of (u..,...,u , ) 

with rotational symmetry j, (3»3) and (3«*0 may be written as 



(3.5)    E D?n a) = m! f [P(u1,»..Juai,Mj]
adu1...dum 

If the random arc X.,  is to contain none of the ordered points 

u,,...,u ßlß    then it must be between a pair of them» Thus 

(3.6) P(u,,...,u ,leX, ) = (un -a) +(u_-u- -a) + ••• +(u -u _,-a),+(l-u -a) v      x
  I

s
       '  ur  j.7  v 1 ,J

r  
v 2 1 '+ v m m-1 '+  

v  m 7 + 

where (t)+ denotes the larger of t and zero.  The crucial inductive 

step is to observe that from (3.6) it follows that 

U-,        u  ., 1      m-1 ., _„c 
(3.7) P(u1,...,u .lex, ) = u P(— ..... —=== ,ieyn ) + (l-u -a), x      v 1'  'rar       1    m yu '  ' u  '  1

/
       

v  m J
+ m       m 

where    Y,     denotes a random arc of length    a/u .     Substituting (3-7) into 

(3»5) and changing variables to    v.   = u./u ,    we see that 

^'
Q)

    
E D?n^a)=mSI0 "m"1]    fV<vl'-' Vl'^^H^+'V " 'dVr 

&<*!<—   < Vl<l} 

Considering the cases u < a, u < 1-a. u > 1-a,  and expanding the m — ' m —     m    ' 

integrand^ we find that for a < 1/2: 

du m 



m+1 f     m-l/., %n, 
E B,        s  = m        u       (1-u  -a)  du 

(n,a) J0    m    v       m 

+ m IJ 1"a%1f {umP(VlJ'' "Vl'Ml)+(lVV|Ildvr • -dVldum 
(3.9)     "      CO < v, < ... < v . < l) — 1 —    — W"l — 

+ if  m+n-lf [p(v,,...,v ,eY^)]ndv.,.«.dv ..du u•     •  1    m-1 ly   1    m-1 m 
a m   J 

(0 < v., < ,.. < v , < 1} — 1 —    — m-1 — 

We recognize the final, inner integral to be ED,       1     x/(m-l)S Expanding 

the integrand of the second integral, -we recognize terms of the form 

jn. 

s.a/v m 
E D/,  /  \.  If we also perform the first beta Integral and substitute 

^ s
 I  m 

x for u , we have (3.1), completing the proof when a < 1/2. 

If a > 1/2,  then instead of (3°9) we have 

ED/        \  = m      u      (1-u -a)  du \.n, a J,       J „    m    v      m7      m 

(3.10) 

H-mlf   u
m+n"1f  [P(vn,...,v    n,leY°)]ndv_...dv   ..du J      m 1 m-17      1' 1 m-1    i 

a
 J r 

m 

{0 < v-   < ...  < v    .   < 1} 1 — —   m-1 

Changing variables to x = u/(l-a) in the first integral to obtain 

a beta integral, evaluating this, observing that the inner second 

integral is E D,        ,     \/(m-l)l, and substituting x for um, we obtain 
m 

(3.2) and the proof is complete 

Theorem 2;  The moments of vacancy for n random arcs of length a 

on a circle are given by 



(3.11)  ED?  , = (KH-n-l)-l s (m)(n-l)(  fe)m+n-1        1 
^ XX/     (n,a)  v  n '       «=i ^ ^"1 "" 

where (t)  denotes the larger of t and zero. Moments of coverage 

are therefore 

III 

0.^) * <$,,., - i + ^ (-Dk(^)E D^a) 

Proof of theorem 2:     The proof is by induction on m, using the 

recursion formulae of theorem 1.  Begin by observing that when m = 1, 

(3.11) yields 

(3.13) EDKa) = (l-a)
n 

which may be verified directly using Robbins' theorem»  It remains 

only to show that (3.1l) satisfies the proper recursion formula,, (3.1) 

or (3»2),. depending on the value of a. 

When a < 1/2, using the induction hypothesis and substituting 

ED/,  / \ from (3»11) into (3.1) we have 
(kj,a/x)      K ' v   ' 

E Df
1
 , = (

m+n
)•
1
(l»a)

m+n 

/•, ,, %       , _ /nvm+k-lN-l    _ /mN/k-l\   (*        /, \n-k/      .   «.m+k-l, 
(3.1*0      + m    E (k)(    k     )        £ (i^i-o/   I (!-x-a)       (x-^a)+        dx 

k=l " 4=1 °a 

m 1 
,m+n-lx-l    _/iii\/n-l-.   f"   /     „   oji+n-l, 

i/ —JL X "el 

6 



The first integral may be done using a change of variables as follows: 

f1"a
/n \n-k,     .   sin+k-1, rf ~a/. \n-k/    .   om+k-1,   lTCia < 1-a} 
(l-x-a)      (x-ia)+        dx = [ j       (1-x-a)       (x-ia; dxjl 

' 1Jia 

(3.15) =[l-(^+l)a]fn    f1(l^-a)n^xm+k-1aX J0 

=  [l-(J+l)a] +     (m+k)     (m+k) 

{ja< 1-a; 
•where    I =1  if   ia<L-a and xs    0    otherwise» 

Substituting this into (3•1*0, interchanging the order of summation, 

simplifying., and using the fact that 

(3.16) S fr]) = (
n

£) 

we obtain 

_ ^m+1    /ffi+ni-l,,,.  -.m-t-n 
ED,   \  ~ {        )     f(l-a) (n,a)  v n '  lx   ' 

m 
(3.17) + S (p(;)[l-(i+l)af 

m 
+ E (p(^)[(l^a)f

n
-(l-(^l)a)f

n
]} 

Gathering coefficients of    (l-£af^ 
n    and simplifying, we obtain 

,  m+1       ,., ^ 
m+1 /m+n\-l    _    ,i+iwn-lw,   „   \m+n (3.18)      E^^rT E ( o  )(,t)(i-*0 
v ' ' ,0=1 

completing the proof for the case a < 1/2 

^ 



When a > 1/2,  (3.11) reduces to 

(3.19) ED?  ,=  m(m+n^)":L(l•a)m+n^ (n,a)   v n '    
K
       ' 

and it is straightforward to verify that this satisfies the recursion 

formula (3.2). 

Moments of coverage (3.12) are easily found using the binominal 

expansion and (2.2).   |j 

We are now in a position to give a complete description of the 

distribution of the vacancy 'D,       •, and of the coverage C,       \. 

Theorem 3:  The vacancy  D,  x   of n random arcs of length ______— (j^a) 

a on a circle may be expressed as a mixture of a degenerate and a 

continuous random variable: 

(n,a) P(n^a) 
(3.20)       D/   ) ~ ( probability 

s I (n,a) "
P
(n^a) 

where    A,       \  = (l-na)      is degenerate and    B,       >    is continuous in^aj + ^n^a; 

with density 

(3.21) f (t) = T-a_. I ^(-i^c^i^c^x^^-Via-t)^ 
(n,a;    1~p(n,a) 1=1  k=l        X

      
k  * X 

subject to the convention that 



i      1-Ja-t > 0 

(3.22) (l-Ja-t)° = ^    if 

0      1-4 a-t < 0 

The mixing probability is 

n 
S (-ljfJd-fer      na>l 

2=0 
l
 

+ 

(3.23)    P/ r. \ = ( if ^ n, a ^ 

(l-na; na <. 1 

and the cumulative distribution function of D,       N is (n, a; 

n n ~1 
sk+i/nv/^-ls/n-l^k/-, „ , \n-k-l 

(5-*' F(n,a)(t)=,P(D(n,a) £* ' "1 + £ ^ ("«  Q(70 I1*-": 

Some cases of f,   \(t) and F,       \(t) are plotted in figures 3.1 

through 3-6. 

The proof of this theorem will follow from the following technical 

lemmas» The first lemma, establishes the decomposition (3.20) with 

A/   \ degenerate and p,   x given by (3.23). I. n, a; [nf a; 

Lemma 1:  D,   %, has mass at least p/   \ (given by (3.23)) at ————   (n,a) ^(n^a) ^°    J
   

v   '' 

(l-na),, and v,       % > 0    unless na = 1. x   '+'      -^(n^a) 

Proof; We consider three cases. Firsts if a > l/n, then (l-na) 

and p/   \ = E p Q  (~l) (ß)(l-^a),  •  In this case, na > 1 and the 

circle will be covered with positive probability. This probability 

was found by Stevens [10] to be p,   \. Since T>,       •» = 0 is the 

event that the circle is covered^ the lemma holds in this case. 

0 
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Next, consider the case where a < 1/n,  so that (1-na) = 1-na 

n~l and p,       \ = (l-na)  .  In this ease, na < 1 and with positive 
\ R) 8, ) 

probability none of the arcs vill overlap, an event equivalent to 

D/   \ = 1-na. This probability is shown to be this value of v,.     \ (n,a) * ^(n,a) 

in Feller volume II [6], problem 22 of chapter I.  Thus the lemma is 

true in this case as well. 

Finally, if na = 1, then p/   \ = 0 and the lemma is trivially 

true.   jj 

Lemma 2:  The moments of B,       \    are the same as the moments of f,       \, •• . (n,a) (n,a)' 

as defined by (3-21), 

Proof: First we calculate the moments of B,   •>. From the ——- (n, a) 

decomposition (3.20) we have 

ffl /T        NM   ,   /-• \•-,m (3.25) ED1;        v  = p,        ,(l-naf + (l-p,        V)EB7       v x ' (n,a)      ^(n,a)v '+      
v    J^(n,a)/    (n,a) 

so that 

(3.26) E B?       .  = T-~— B D?n a)  - r^^ (l-naf 

Substituting for    E B,       \    from (3.11) and for    p,       \    from (3»23) (n,a) ^ ' ^(n,a) v ' 

we have 

/..        sm+n-1 
n                      T     T  

m              -i                        T     (1-naj ,-,  0„x          m                  1           /m+n-l\-l _ /Hiwn-lw..   „   xm+n-1    x         '+ (3.27)    EB(        rI—— (     n     )      S(i)(^1)(l^a)+ -^— — 
v   ' (%a) B=l (n,a) 

16 



Now «?e let 

(3.28) t, x = f  tmf,   s(t)dt K
'        ' b(n,a,m)  JQ    (n,.a)x ' 

"th denote the m  moment of the function f,       ,,. Substituting for (n^ a) 

If     „\(t) from (3«21) we have 
\ n_ji a j 

U,a,m; x p(n^a) i=1 k=1      *J. is k-l JQ + 

The integral may be evaluated by changing variables and performing a 

beta integral as follows: 

1 (l-üa) 
f    .m+k-1/,    B    . \n-k-l,,        f K J+

 ,m+k-l/,    .    , \n-k-l,, 
t (1-ia-t) dt = t (1-ia-t) dt 

J0 J0 

(3.30) 

,.,    ,,   vin+n-l   f    ,m+k~l/n   , oi-k-1,.        /,    „   -.m+n-1 (m+k-l)!(n-k-l)l = d-ia)+    jo t     (i-t)    dt = (i.ia)+    ^   (m;;r1): 

Substituting this  into  (3*29) and simplifying,  we have 

(3.31)     g/ x  = 7— ( )        r (-1)    rn-lw,    «   Nin+n-1 

' *=l 

n-1 

k=l 

17 



It Is not difficult to show that 

(3=32) ^(-lftvX*?;1) 

/,   . xi/in-lx . 
(. -1) (^     ) if    ^ < n - 1 

(-1)  {^jj-i-l) (    m    )    xf    & = n 

using problems 3 and 9 of chapter III of Feller volume I [6]. Thus 

(3.31) becomes 

1     1  
n T   -1   n (1-na) 

(3.33) L    =^.(mT )  S i (^(^Xl^a)^1 - •- . m 
+ 

(n,a,m) l-pKa)  m    i=1 i i-1 i-1     +       1-P(n^a) 

This is seen to be equal to (3.27), completing the proof.   j| 

Lemma 3: The density of B,       s    is f,   \(t).  In particular, B/ 
    ' \

n
?
a
) \

n, a; ^ n, a, 

is a continuous random variable» 

Proof: From lemma 2, we see that 

(3.3h-)     E B?  x = I  tmf,   x(t)dt     m = 0,1,2, v (n,a)  Jn    (n,a)
v > ' > 

Because a probability distribution on [0,1] is uniquely characterized 

by its moments (theorem 1 of section VII.3 of Feller volume II [6],) 

we would be done if we knew f/   \ to be nonnegative. This is 
\ri.}a.) 

difficult to ascertain directly from (3«21), although f,       •> is 

certainly bounded below» Fix  n and a, and choose any 0 > 0 

18 



satisfying 6 + f,  0\(t) > 0 for all te[0,l]. Define a true probability 
v n,a) 

density function 

9+f, s(t) 

Let P/   % denote the probability measure induced by B/   % 
ysx^Q.) \ n, a) 

on  [0,1],  and let |i denote Lebesgue measure.  Define the probability 

measure v,   \ on [0,1] by 
{n, a; 

0u(K)+P,   *(K) 
(3-36) v, a)(K) -    g + "     »    

a11 measurable  K c [0,1]  . 

The moments of g,   •,    and of v,       \    are easily seen to be equal °(n,a) (n,a) J u 

using lemma 2. Thus g,       \ is the density of v,       >. and it follows (n,a) J     (n,a) 

from 

(3-37)     o J?' }   • »(n,.)W - J/(n,a)<*>« =  iT^  

for all measurable K, that f /   » is the density of T,       , ^n, a y v-^^ a^ 

and hence of B,  so | (n,aj 

Lemma 4:  The cumulative distribution function of D/   \ is F/   \(t) — — (n,a;     (n,a;K 7 

given by (3.24). 

Proof: Let F,       \(t) = P(D/   \ < t) be the cumulative distribution —       (n,a)K       (n,a) - 

function of D/   \. From lemmas 1 and 3. it follows that (n,a) ' 

(3.38, ,(Dfa)(t) - P(n;a)I{t £ (1.na)J + (l-P(n,a))Jo* *<„,.,(*)* 

X9 



•where I  denotes the indicator function of the set X» For convenience^ 
X 

•we will drop  the subscripts (n.a) for the rest of the proof 3  because 

n and a are fixed/this •will cause no problems. It is convenient to 

rewrite (j5.2l) as 

(3,39)  f(t) = r£- E jr (-i)\Yi) —i  [t^l-la-t);-1] 

That this is equivalent to (3«21) is seen by expanding the derivative 

of the product by Leibniz's rule.  Using the form (3-39)j the integral 
di   "  di-l 

in (3»38) is easily done. We need only replace —*   by —pr• and 
dt dt    X 

expand again by Leibniz's rule to obtain a piecewise primitive 

(indefinite integral)    FQ    of    f.     There may^   however,  be discontinuities 

at    t = (l-ia) ,   i = 1,...,n.    We find that 

(3.40)      F(t)=Ti-    E(-1)J(5)    S    (-l)k(i"1)(n-1)tk(l-ia-t)IJ-k"1 
U
 J-~p  i=l k=0 

which is continuous except at t = (l-na) . because when £ =  n and 

k = n-1, we have (l-ia-t),    = L, , /n   \ ,. Adding a constant ' ^      +      {t < (l-naj+j      ° 

to FQ when t < (l-na)+ will yield a true continuous primitive of 

if    namely 

(3.1,1)      ^)^0<
t
)
+
i^t

1
-)r

1
I[t<(l-„a)J  • 

We may use this to calculate 

20 



w0 

U f(t)dt = F1(t)»F1(0) = P0(t)-F0(0) - ^ (l-na);_1I{t > (l__m) } 

1  «, , J,ni „ / , \k, i-lwn-lv^k,, „ , m-k-1 (3.i,2)      = ^_ s(»D(") s (•in':1)(n:1)tK(i-ia-t); 
x"p i=l       k=0 K 

- ^ J^/oa-Mr1 - ^ f1—>rx i{t > (i-na)+} • 

Note that -we may write 

(5.43)       - £ (-D^Xi-Ja)^1 = l-p i{a > 1/n} . 

Using (3.42) and (3« 43) in (3-38) ve get 

(5.W)  F(t)=l+ £(-1/(5) E (-l)
k
(
i
-
1
)(
n
-
1
)t
k
(l-^a-t)"-

k
-
1 

.0=1        k=0       K   K 

p L    ^   T /  i  +  [p-(l-na),     ]   I,.   .    /n        %   , 
*    {a > 1/nJ       L^ v + {^ > (l~na/+j 

It is easy to see that 

(3.45) p-(l-na)^1 =p I{a> l/n] 

Since a > l/n implies (l-na) = 0,  for t > 0 we have 

(3.46)       [p-d-naJlJ-1] I{t > (l.na)+} = P I{a > l/n} 

so that (3«44) reduces to (3-24), completing the proof« 

21 



Corollary: The cumulative distribution function of the coverage C,       > ___________ ^, n, a} 

of n random arcs of length a on a circle is 

n n-1 
(3.1.7) o(n,a)(t)-p(c(    )<t)   r   xi-ir^Xx't^Xi-tht-^ 

i=l k=0 

Proof:  This is immediate from theorem 3 and the relation C,   x = -—— (n,a) 

1 - D,  QV  I! (n,a) 

Theorem hi     The limiting distribution of nB,   •* for fixed a, as 
 — (n,a) ' 

n tends to infinity is the exponential distribution.  We have 

'3.1(8) lim  P(-A_____. < t) = 1 - e-t 

n —» oo 

and we also have 

nD/   \ - 
(3.^9) p(___I__£i> t) ~n(l-a)

n"1e"t x^a 

for each fixed t, as n tends to infinity. 

Proof:  (3.1+8) is established using the method of moments. We assume 

n > l/a  so that, from (3.23) 

(3.50) p, s  - S {-DYxi-tef-
1 

{n
'aj       £=0 

where b = [l/a], the greatest integer contained in l/a. Note 

also that (l-na) = 0 in this case, so that using the decomposition 

of theorem 3 we have 
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na,       \ m    -)      m 
(3.51)       E(-gjSi) =T^—-~ED"n , 

1 a     2 P(n,a) (l-a)m   (n'd) 

tu Substituting for E D/   \ from theorem 2 and factoring powers of 
\
n

? 
a / 

(l-a)    we may write this as 

nB 
K(-I***2)m    =  [nm(m+n-1)-1] v   l-a v     m 

b     ,      ^ (1-ia),  n-1  -l 
(3.52) [1.^LiL(n)(__l)       J 

b (l-ia)    m+n-1 

Holding m and a fixed^ we take limits in (3°52) as n tends to 

infinity. The first bracketed term satisfies 

-,  -, m-1 
i-z.  cv.\                   -i-    m/m+n-1 N-1 ,.    , -t—r n    i (3.53)       lim  n (    ) lim ml I  —-r = ml v    '               x  m  ' .' I n+i 

n -» co n -> oo   i=0 

For each Z >_2.f    we have 0 < (l~ia) /(l-a) < 1 so that 

(l-ia) n-1 
(3.5+) lim ("X-^-^)   = 0 

n -> «a 

Because of this and the fact that the ranges of summation in (3»52) do 

not depend on nf    we have 

nB/   \ m 
(3.55) um E(-^) =m 

n —» oo 
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These are the moments of the exponential distribution.  To show 

convergence in distribution, we apply the condition in section 8.12 

of L. Breiman [2]: We must show that 

(3.56) lim Ü^l2— < co v   ' m m -» * 

so that the moments do not grow too quickly.  (3.56) is easily seen 

to be the case^ because 

i-,   c„\ (mi) '    , , i  m\l/m . „ (3»57) A_£„__ = (mi/m ) ' < l 

To establish (3*^9)* observe that 

nD/        -v nB,        >. 

(3„58) P(-4^ > t) = (l_P(^a))p(_(^) > t) 

and 

(3.59) iim   Tr^ =    ilril    (1 .     p     L^L. (^)(-TIi—)       ) = 1 
n -* 00 n(l-a; n -»00 i=2 

Using (3.58),   (3.59),  and (3.^)    we have 

nD/       \ .,     , 
(3.60) lim   Pt-^yi > t)/(n(l-a)n~1e~t) = 1 

n -» 00 

completing the proof.       |j 
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