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1. Introduction, Summary, and Historical Notes

The problem of coverage of the circle by a fixed number of ran-
domly placed equal arcs hes been considered by many investigators.

In this paper, we present exact expressions for the moments of coverage
of all orders, the cumulative distribution of coverage, and we give
the limiting distribution of coverage as the number of arcs becomes
large.

A recursive Iintegral equation that expresses the moment of
vacancy of order wt+l in terms of moments of vacancy of lower orders
is given in theorem 1. This is the basic result from which the others
follow. This equation is solved in theorem 2, giving the moments of
vacancy and of coverage of all orders. A complete characterization of
the distribution of the vacancy is given in theorem 35, and the distri-
bution of the coverage then follows as a corollary. Finally, the
asymptotic coverage distribution for fixed a as n tends to infinity
is explored in theorem L.

W. L. Stevens [10] derived an expression for the probability
of complete coverage of the circle. C. Domb [5] found the coverage
probability, the moments of coverage, and the distribution of coverage
for the related problem in which the number of.arcs has a Poisson
digtribution. He showed that the corresponding quantities for the
problem of a fixed number of arcs could be found, at least in principle,
by a series expansion. However, due to computational difficulties, he
was unable to produce these formulae. D. A. Darling [4] treated

aspects of this problem using chardcteristic functions. L. Flatto and
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A. G. Konheim [7] explored the asymptotic behavior cf the number of arcs
at which complete coverage first occurs, as the arc length tends to
zero. L. A. Shepp [9] also studied some asymptotics of this problem,

as did P. J. Cooke [3]. G. Ailam [1] has provided a general mathe-

matical framework within which to consider coverage problems.

2. Definitions

Iet n arcs, each of length a, be placed independently with
centers uniformly distributed over the circumference of a circle of
length 1. Denote these random arcs by Xi,u..,Xh, the circumference
of the circle by K, and Lebesgue measure on K by u.

We define the coverage to be

(2.1) ‘ C(n,a) = “(U§.1=l Xi)
so that C(n a) is the random proportion of the circumference that
"3

is contained in some arc. We define the vacancy to be

) = “(nni=l XC

(2.2) :

)=1-¢

P(n,a (n,a)

where Xg denotes the complement of Xi in K,
so that D(n a) is the random proportion of the circumference that is
s
not contained in any arc. Note that C y and D are random
(n,a) (n,a)

variables taking values in [0,1]. The moments of C(n a) about zero
b4

are called moments of coverage. Those of D(n a) are called moments
5 sl 2 od

of vacancy.



D% Resglts

Theorem 1: The moments of vacancy for n random arcs of length a

on a circle satisfy the recursive integral eguation

m+1 sty -1 m+n
B Dy = (") H(1ea)
n L-g .
(3.1) +m 3 (E) j ﬁxmfk-l(l-x-a)ﬂékE D?k ax
k=1 a »8/%)
L e
+ m r _Xmﬁn lE Dm dx
"l-a (n,a/x)
when a < 1/2, and
1
m+l mdn -l min Comin-1_ _m
(3.2) B Dn,a) = (U T(2-a)" ‘fa X E D(n,a/x)dx

when & > 1/2.

Proof of theorem 1: From (2.2), D(n 2) is the coverage of the random
3

set rP_ x5, and we may use Robbins' [8] formula for its moments:
1=1717

(3.3) E D!(rl+l P

n,a) j%m+l

- c ® e 8
(agyeeesupq€ nril=1Xi Jaugterduy g

Since Xiyu.a,Xh are independent and identically distributed sets,

\ ey _ schon
(3.4) P(ul’&°°’um+l€n§=lxi) = [P(ul,,a.,um+l€kl)] >

Using invariance of the integrand under permutations of (ul,...,um+l)

with rotational symmetry, (3.3) and (3.4) may be written as



S . n4+d c-n
(3.5) B D2n5a> =m! | [PluyseoerupleX ] duscendu o

{O S ul Se o S-u.m S ].]
If the random arc Xi is to contain none of the ordered points

uJ,ooa,um,19 then it must be between a pair of them. Thus
rc . .
(3.6) P(ulﬁ“°“’unﬁlek1) = (ulma)++(u2-ulua)++'e°+(umfum_1{ﬂ++(l-um-a)+

where (%), denotes the larger of t and zero. The crucial inductive

+

step is to observe that from (3.6) it follows that

u u
ey _ 1 m~1 c :
(507) P(u.l,s..,um,lexl) = umP(u—-m gocey -—a—nT- ,leYl> + (l-um-a >+

where Yl denotes a random arc of length a/um. Substituting (3.7) into

(3.5) and changing variables to v, = ui/um? we see that

1
i m-1 S EN (e z
(3.8) E D(n,a)'"m°J; u {umP(vl,wa,vm_ljleYl)ﬂ(l w a)+} dvie-.dvm_l.dum

O<v, <... <v
. - m

;1 < < 1}

<1

Considering the cases u. < a, um.s l-a, u, > l-a, and expanding the

integrand, we find that for a < 1/2:



m+1

ED
(n:a)

a_ .
= jg uﬁ"i(l—um~a)ndum
l-a - e -n
= bl 3 - Gk eo e 3
+In1j o {hmp(vl"'“’Vhwl’l€[1)+(l w a),} dvye..dv, Jdu
a

(3-9) 0gvy <eee gvy , <1)

1 - e\
+ mif ug?ﬂ~l [P(Vi’”°"vm-leYl)] dviuc.dvm_ldum .
a

o<w <aee <v 1 <1

-1 - —= m-l
We recognize the final, inner integral to be E ﬁm / /(m-l)! Expanding
(n,a/u)
the integrand of the second integral, we recognize terms of the form
E D?k a/u ) If we also perform the first beta integral and substitute
2
m
x for u , we have (3.1), completing the proof when a < 1/2.

If a > 1/2, then instead of (3.9) we have

m+).

ED
(n}

a5
= mf WLy -a ) au
a) o M m m
(3.10)
+ m,f lum+n-l
10 m

c\qn
) [P(vl’°’°’vmu1’l€Y1)] dviau.dvm du

-1

(0 € v, € voe <7 < 1}
—— e .—m —

1 -1

Changing variables to x = um/(l—a) in the first integral to obtain
a beta integral, evaluating this, observing that the inner second

: . . i ; . . - .
integral is E D(n,a/um)/(m.l).,and substituting x for u,, we obtain

(3.2) and the proof is complete. ||

Theorem 2: The moments of vacancy for n random arcs of length a

on a circle are given by



(m+m-l)~l ( )( )(l Ja. )m+n -1 , ms 1

(3.11) =& D(n a) = N .

where (t)+ denotes the larger of t and zero. Moments of coverage

are therefore

(3.12) Eca,)—lﬁf (”()Ean

Proof of theorem 2: The proof is by induction on m, wusing the

recursion formulae of theorem 1. Begin by observing that when m = 1,

(3.11) yields

(3.13) = (1-a)"

P(a,a)

which may be verified directly using Robbing' theorem. It remainsg
only to show that (3.11) satisfies the proper recursion formula, (3.1)
or (3.2), depending on the value of &.

When a < 1/2, using the induction hypothesis and substituting

E D from (3.11) into (3.1) we have

(k a/x

m+l - m+n )“‘l

m+n
(nya) = ¢ )

ED (1-a

1-
CRTS z( G }l(’;)({‘;;j) [T PR
= a

m(ME 2() )f Geesa ) e



The first integral way be done using a change of variables as follows:

i-8 1-a
(lmX*a)nmk(Xw,@a )T_ﬁ+k_ldx =] (l_x__a)n“’k (X'-,@a)m+kaldx]1{ga < lweal
L/a, lea
1
+ fia Qe
(3.15) = [1-(£+1 )a]™™ f (Loigog )L
0

= [1-(£+1)a]f*n(m+k)-l(2:;)-1

l-a)
(Ha< =1 if fa<l-a and is O otherwise.

where
Substituting this into (3.1k4), interchanging the order of summation,

simplifying, and using the fact that

n
3.16) s (E-ly o @
( G-
we obtain
B D) = (o) {@-a)""
(5.17) bor (M) )a ]
° =1 L/Np +

nm

+ T (P (L) H - (1= (442 )2 )21

Gathering coefficients of (l-ﬂa)fﬁn and simplifying, we obtain

m+1

(5.18) B D,y = () I OG-

completing the proof for the case a < 1/2.



When a > 1/2, (3.11) reduces to

(5a19) E D?ﬁya) - m(m+2nl)ml(l“a)m+n-l

and it is straightforward to verify that this satisfies the recursion

formula (3.2).

Moments of coverage (3.12) are easily found tsing the binominal

expansion and (2.2). ||

We are now in a position to give a complete description of the

distribution of the vacancy D(n a) and of the coverage C(n a)’
b4 2

EheoremAE: The vacancy D(ﬁ a) of n random arcs of length
2
a on a circle may be expressed as a mixture of a degenerate and a

continuous random variable:

A
- (n,a) . p(n,a)
(3.20) D(n,a) = probability
B 1-
. | "(n,a) Pln,a)
where A(n,a) = (l—na)+ is degenerate and B(n,a) is continuous
wilth density
(ool) 2, (4)mgmi— 35 (LRl ALy gy gyl
(n,a) 1 / £2-17% k k-l +

“P(n,a) £=1 k=1

subject to the convention that



1 l-ga~t > O

(3.22) lwﬂa—t)i = if
0 l-fa-t <O

The mixing probability is
= £,n n-1
£ (-1)7(,)(1-4a) na > 1
£=0 *

SR _ _ .

(3.23) P(n,a) if

(lnna)n"l na < 1

and the cumulative distribution function of D< is

n,a)

n n-l
<t)=1+ %5 (OO @t

(3.24) B \()=B0) I T e

n,a)

Some cases of f< J(t) and F(

{ - .
n,8) (t) are plotted in figures 3.1

n,a)
through 3.6.

The proof of this theorem will follow from the following technical
lemmas. The first lemms established the decomposition (3.20) with

A degenerate and iven by (3.23).
(nja) %€ P(n,a) EtveR BT (3:23)

Lemma 1l: D +  has mass at least iven b 3.2 at
(n;a) P(n,a) (g Yy ( 3))

(1-na),, and P(n,a) > 0 unless na = 1.

Proof: We consider three cases. First, if a > 1/n, then (l-na) =0

and p( =¥ 330 (-1)2(3)(1-,% )ﬁ:"l. Tn this case, na > 1 and the

nya)

circle will be covered with positive probability. This probability

was found by Stevens [10] to be p(n a)t Since D< 0 idis the
’

n,a)
event that the circle 1s covered, the lemma holds in this case.
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Next, consider the case where a < l/n, so that (1l-na) = l-ne
and P(n,a) = = (1-na)"™. 1In this case, na <1 and with positive
probability none of the arcs will overlap, an event equivalent to

= l=-na. This probability is shown to be this value of p(

D(n;a) n:a)

in Feller volume II [6], problem 22 of chepter I. Thus the iemma is
true in this case as well.
Finally, if na = 1, then p(n a) = 0 and the lemma is trivially
2

true. |

Lemma 2: The moments of B( ;) are the same as the moments of f(n a)’?
T ' s ’

as defined by (3.21).

Proof: First we calculate the moments of B(n o) From the
5

decomposition (3.20) we have

Sk, E Dn,a) = Pa,a)2Px * (12, 0) Ty, o)
so that

‘ L A I m B “p( a) o)
(3.26) E B(n’a) = l_p(n,a) E D(n,a) 'Eja) (1-n )

Substituting for E D?n a) from (3.11) end for Ply,a) from (3.23)
5 2

we have
(l a)m+1’1 l
(3.27) E B 1 min-l 1-4a min-1 ————————-——.
(n,a) " lnp(n g ( 0 ) E ( ) )( ) 1-p(n,a)

16



Now we let

1

_ m, ,
fo 67 gy (t)as

(3.26) g(n,a,m)
denote the mﬁh moment of the function f(n a)’ Substituting for
E

f(n,a)(t) from (3.21) we have

n n-1
n

(3.29) é(n,a,m)zm 421 k=1

The integral may be evaluated by changing variables and performing a

beta integral as follows:

5z LDE D) f T

1 (1-4a)
j m+k l(l ‘a t)n ~k- 1y = f + tmfk—l(l_za_t)n-k-ldt
0 0
(3.30)
X - \n-k- k=1)!(n-k=1)!
= (1- za)mﬁn -1 f tm+ l(l t)n ldt = (1-fa )m+n -1 (m+ (il;fi?!l)

Substituting this into (3.29) and simplifying, we have

n n=-1y=1 n
G2) bpem) “ T Ca )T S L) (51y) g yiad
n-l k=1
kz:l OEE

17



It is not difficult to show that

/o
1)L if f<n -1

n-1
(3.32) kz:l(—l)k(ﬁ)(“ffﬁ -

[l
[

(—l)ﬁ(ﬁ:i)-(ul)n(mg”l) if &

using problems 3 and 9 of chapter III of Feller volume I [6]. Thus

(3.31) becomes

min-1
+

YP(n,a)

. DI | el ome - (1-na)
(3.33) g@yayn)zi:%;";;nﬁﬁAl) 1£§i % (z_i)(z_i)(l_ga)f+ 1.

This is seen to be equal to (3.27), completing the proof. I

Lemma 3: The density of B(n a) is f(n a)(t). In particular, B(n a)
J J 3

is a continuous random variable.
Proof: From lemma 2, we see that

1

= . _ m _
(3.34) B By o) = j' 8, o)(8)as m = 0,1,2,...

0
Because a probability distribution on [O,l] is uniquely characterized
by its moments (theorem 1 of section VII.3 of Feller volume II [6],)
we would be done if we knew f(n a) to be nonnegative. This is .

J
is

difficult to ascertain directly from (3.21), although f(n a)
; . 5

certainly bounded below. Fix n and a, and choose any 0 > O

18



satisfying © + f(n a)(t) >0 for all t€[0,1]. Define a true probability
J

density function

O+f a)(-is)

(3.35) 8(n,a)(t) = —g41— -

Let P denote the probability measure induced b B
(n)a) = 4 4 (n;a)

on [0,1], and let y denote Lebesgue measure. Define the probability

measure v, .y on [0,1] by

su(K)+R y(K)
(3.36) Y(n a)(K) = 5 1’ , @ll measurable K < [0,1]
B4

The moments of g(n,a) and of v(n,a) are easily seen to be eqgual
using lemma 2. Thus g(n a) is the density of V(n a) and it follows
J 2

from

8p(K)+P(n,a)(K) )

(t)at
(3.37) 5T 1 V(n,a)(K) =

n,a)

ou(x)+[ £
j%g(n,a)(t)dt - £

for all measurable K, that f(n
i

Lemna 4: The cumlative distribution funetion of D

a) is the density of P

) (n)a’)

and hence of B(n,a)w

(n,a) is F(n’a)(t)
given by (3.24).

Proof: Let F (t) = (D < t) be the cumilative distribution
— (n,a) (n,a) =

function of D(n o) From lemmas 1 and 3, it follows that
5

it
(3.38) F(n,a)(t) = p(n,a)I{t > (l-na)+} * (l-P(n,a))J; f(n,a)(t)dJG

19



where IX denotes the indicator function of the set X. For convenience,
we will drop the subscripts (n,a) for the rest of the proof; because
n and a are fixed, this will cause no problems. It 1s convenlent to

rewrite (3.21) as
ol 1 £,n-l dﬂ L) n-1
(3.39)  £(t) == B 97 (-1)7(,)) =5 [T (A-da-t) ]

That this is equivalent to (3.21) is seen by expanding the derivative

of the product by Leibniz's rule. Using the form (3.39), the integral

™

in (3.38) is easily done. We need only replace —§7 by "gﬁfi

dt dat

expand again by Leibniz's rule to obtain a piecewise primitive
P

and

(indefinite integral) Fy of f. There may, however, be discontinuities
at t = (l-fa),, £ =1,...,n. We find that
£-1

kKbl = n-k-1
RS Al T (Lm gt )

(3.50)  Folt) = 155 £§3<—1)£<3>

which is continuous except at t

k = n-l, we have (l-ﬂa»t)ﬁ“k_l = I{t < (1-na) }. Adding a constant
o +

(l—na)+, because when £ =n and

to FO when +t < (l=na)+ will yield a true continuous primitive of

f, mnamely

(3.41) P (8) = Fo(6) + 7 (1me )} T gy
+

We may use this to calculate



]

jﬁo £(t)at = ¥, (6)-F (0) = Fo(8)-F,(0) - 55 (L. na )} {t > (1-na),)
(5.42) - %( 2)°(%) 23 DN G R U C RS

1. = n-l 1 -1
= -J-;v- ?( l) ( )(l ﬂa) & T:ﬁ (l 1’13‘)1;l I{"t; > (l»na)+}

Note that we may write

n

(3.43) < E CINGICEIALEEES A

Using (3.42) and (3.43) in (3.38) we get
(3.11) F@)-1+L(1)()z D e el o R

=]
"2 Ty iyt [p-(1-na )5 ™1 Tt > (1na), ]

It is easy to see that

- e B
(5.)4-)) P—(l'na)+ =D I{a > l/n}

since a > 1/n implies (l-na) =0, for t > O we have

(3.46) [p-(1-na)y™] . Tt > (1-na),3 ~ * !

> 1/n}

so that (3.L44) reduces to (3.24), completing the proof. |
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Corollary: The cumilative distribution function of the coverage C(n a)
>

of n random arcs of length a on a circle is

(3:4T) Gy 4y(8) = B(C(y, oy <t) x *zs(-l)w’*l( YO Yot F-sa )RR

£=1 k=0

Proof: This is immediate from theorem 3 and the relation

I

(n,a) ~
L D(n:a)‘

Theorem 4: The limiting distribution of nB ) for fixed a, as

(nJa

n tends to infinity is the exponential distribution. We have

(5.18) | lim p(--ﬁllﬁ_) <t)=1-e"
n —©

and we also have

(5.9) p(:2) 5 1) ~ n(z-a)* Tt
for each fixed t, as n tends to infinity. .

Proof: (3.48) is established using the method of moments. We assume

n>1l/a so that, from (3.23)

(3.50)

p(n)a>

b
= T (-1 (s
£=0

where b = [1/a], the greatest integer contained in 1/a. Note
also that (l—na)+ = 0 in this case, so that using the decomposition

of theorem 3 we have

22



(3.51) pma)® 3 oo
l-a l-p(n’a) (l_a)m (n,a)

11l

Substituting for E D(n 5 ) from theorem 2 and factoring powers of
3 iV

(1-a) we may write this as

(ny8)\® _ ;o min-ly-1,
(n (o™ (M)

b 4 1~4 n-l -
(3.52) n- g 0 (ﬁ)(g—-i-;a-li') T
£=2

b e _ (1-%2), mn-1
1+ z‘_?g‘]i’ GG )]

Holding m and a fixed, we take limits in (3.52) as n tends to

infinity. The first bracketed term satisfies

m-1.

. m  mtn-l -1 _ . - n o o_ _,
(3.53) 1im o ( o )" = lim m! I =5 = m!

n —> oo n -—ow =

For each £ > 2, we have O < (l-ﬂa)+/(l-a) <1 so that

. ' n (l-ﬂa)+ n-1
(3.54) nlimm G A

Because of this and the fact that the ranges of summation in (3.52) do

not depend on n, we have

nB m_ _,
(3.55) lin B(—22)) =™
n ->e

23



These are the moments of the exponential distribution. To show
convergence in distribution, we spply the condition in section 8.12

of L. Breiman [2]: We must show that

(\L/m
(3.56) Tim Lr&%_,._w
m --»

so that the moments do not grow hoo quickly. (3.56) is easily seen

to be the case, because

3

1
(3.57) m—n%ﬁl = (mt/m®)m <2

To establish (3.49), observe that

nD(n a) nB(n a)
(3.58) P(—gtt > %) = (l"P(n,a))P(‘i“:é‘L—">t)
and
. 1-p, " [1/a] (-1)* (1-4a), n-1
- nli-)moa ;l(l-i.)nzi])— i nlml-fﬂ.m S ,@2::2 n (ﬁ)('—]'f:é‘i )

Using (3.58), (3.59), and (3.48) we have

nD
(5.60) Lim P 228) 5 4)/(n(1-a)"eF) < 2

n - w

completing the proof. ||
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