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Abstract
This paper focuses on estimating reach probability of a closed unsafe set by a stochastic 
process. A well-developed approach is to make use of multi-level MC simulation, which 
consists of encapsulating the unsafe set by a sequence of increasing closed sets and con-
ducting a sequence of MC simulations to estimate the reach probability of each inner set 
from the previous set. An essential step is to copy (split) particles that have reached the 
next level (inner set) prior to conducting a MC simulation to the next level. The aim of this 
paper is to prove that the variance of the multi-level MC estimated reach probability under 
fixed assignment splitting is smaller or equal than under random assignment splitting meth-
ods. The approaches are illustrated for a geometric Brownian motion example.

Keywords  Multilevel importance splitting · Interacting particles · Reach probability · 
Monte Carlo method · Multi-dimensional diffusion process

1  Introduction

Evaluating the reach probability of an unsafe set is well-studied in the domains of con-
trol and safety verification of complex safety critical system designs. In the control 
domain the focus is on synthesizing a control policy such that a safety critical system 
stays away from the unsafe set with a high probability (Alur et al. 2000; Prandini and 
Hu 2007). From this control synthesis perspective it makes good sense to adopt model 
abstractions in combination with an over-approximation of the unsafe set (Julius and 
Pappas 2009; Abate et al. 2011; Di Benedetto et al. 2015). In safety verification of com-
plex safety critical system design reach probability of the unsafe set is commonly eval-
uated using statistical simulation techniques, e.g. air traffic (Blom et  al. 2006, 2007), 
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actuarial risks (Asmussen and Albrecher 2010), random graphs (Bollobás 2001), com-
munication network reliability (Robert 2003).

To evaluate very small reach probabilities, common practice is to make use of meth-
ods to reduce variance for a given computational effort. Literature on variance reduction 
distinguishes two main approaches: Importance Sampling (IS) and Importance Split-
ting (ISp). IS draws samples from a reference stochastic system model in combination 
with an analytical compensation for sampling from the reference model instead of the 
intended model. Bucklew (2004) gives an overview of IS and analytical compensa-
tion mechanisms. For complex models analytical compensation mechanisms typically 
fall short and multi-level ISp is the preferred approach (e.g. Botev and Kroese 2008; 
L’Ecuyer et al. 2009; Rubinstein 2010; Morio and Balesdent 2016).

In multi-level splitting the safe set, or target set, i.e. the set for which the reach prob-
ability has to be estimated, is enclosed by a series of strictly increasingly subsets. This 
multi-level setting allows to express the small reach probability of the inner level set as 
a product of larger reach probabilities for the sequence of enclosing subsets (see e.g. 
Glasserman et  al. 1998, 1999). Cérou et  al. (2005, 2006) embedded this multi-level 
splitting in the Feynman-Kac factorization equation for strong Markov processes (Del 
Moral 2004). This Feynman-Kac setting subsequently supported the evaluation of the 
reach probability through sequential Monte Carlo simulation in the form of an Interact-
ing Particle System (IPS), including characterization of asymptotic behaviour (Cérou 
et al. 2006).

Particle splitting (copying) of NS successful particles to NP ≥ NS particles can be done 
in multiple ways (e.g. Garvels and Kroese 1998; Cérou et al. 2006; L’Ecuyer et al. 2007; 
L’Ecuyer et al. 2009). The classical approach is Multinomial Resampling, i.e. drawing the 
NP particles at random, with replacement, from the NS successful particles. Cérou et  al. 
(2006) propose the alternative of adding to the set of NS successful particles, NP − NS 
random drawings (with replacement) from the NS successful particles; this we refer to as 
Multinomial Splitting. A third approach is fixed assignment splitting, i.e. copying each 
of the NS successful particles as much as possible the same number of times. Following 
(L’Equyer et al. 2009) fixed assignment splitting is accomplished in two steps. During the 
first step each successful particle is copied 

⌊
NP

/
NS

⌋
 times. During the second step, the 

residual NP − NS

⌊
NP

/
NS

⌋
 particles are randomly chosen (without replacement) from the 

set of successful particles, and these are added to the set of copies from the first step. A 
fourth approach is residual multinomial splitting, i.e. after the first step of fixed assignment 
splitting, the residual NP − NS

⌊
NP

/
NS

⌋
 particles are randomly chosen (with replacement) 

from the NS successful particles.
Under restrictive assumptions Garvels (2000) has proven that fixed assignment split-

ting works better or equal to multinomial resampling. The key assumption is that the sets 
of particles at different levels are independent from each other. In IPS for filtering stud-
ies, e.g. (Del Moral et al. 2001; Gerber et al. 2019), multi-level Feynman-Kac analysis has 
been used to make variance comparisons between different particle resampling methods. 
Through mapping the filtering IPS results of Del Moral et al. (2001) to the reach probabil-
ity IPS, Cérou et al. (2006) argue that multinominal resampling adds extra randomness to 
multinomial splitting, as a result of which the multinomial splitting has a variance advan-
tage over multinomial resampling. Through mapping the filtering IPS results of Gerber 
et al. (2019) to the reach probability IPS, it is clear that residual multinomial splitting has 
a variance advantage over multinomial resampling. Gerber et al. (2019) also conclude that 
existing multi-level Feynman-Kac analysis falls short in handling random drawings with-
out replacement, as is done in the second step of fixed assignment splitting.
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The main objective of this paper is to prove that using fixed assignment splitting in 
reach probability IPS dominates in variance reduction over the random assignment meth-
ods: Multinomial Resampling, Multinomial Splitting and Residual Multinomial Splitting. 
These proofs do not make use of the independence assumption of Garvels (2000). The sto-
chastic process considered is a multi-dimensional diffusion process that is pathwise con-
tinuous. The effect of different splitting methods is also illustrated in reach probability esti-
mation for a geometric Brownian motion example.

This paper is organized as follows. Section 2 reviews the background of IPS based reach 
probability estimation for a multi-dimensional diffusion process. Section  3 characterizes 
the conditional variances of IPS based reach probability estimation under multinominal 
resampling, multinominal splitting, residual multinominal splitting and fixed assignment 
splitting. Section  5 proofs that fixed assignment splitting has a variance advantage over 
these other three ways of splitting. Section 6. presents a case study based on a geomet-
ric Brownian motion for evaluating and comparing multinominal resampling, multinomial 
splitting and fixed assignment splitting. Section 6 draws conclusions.

2 � IPS based Reach Probability Estimation

2.1 � Reach Probability of Multi‑dimensional Diffusion

For the rest of the paper, we define all stochastic processes on a complete probability space 
(Ω,F, P) . The problem is to estimate the probability � that a ℝn-valued pathwise continuous 
diffusion process {xt} reaches a closed subset D ⊂ ℝ

n within finite period [0,T] , i.e.

with � the first hitting time of D by {xt}:

Remark Cérou et al. (2006) and L’Equyer et al. (2009) also address the more general 
situation that T  is a P-a.s. finite stopping time.

2.2 � Multi‑level Factorization

If the reach probability � in   (1) is too small, then a straightforward MC estimator 
requires a considerable amount of samples. To overcome this, we introduce a nested 
sequence of closed subsets Dk of ℝn to factorize the reach probability � , such that 
D = Dm ⊂ Dm−1 ⊂ ⋯ ⊂ D1 ⊂ ℝ

n and P{x0 ∈ D1} = 0. Let �k be the first moment in time 
that {xt} reaches Dk , i.e.

Then, we define {0,1}-valued random variables {�k, k = 1, ..,m} as follows:

By using this �k definition, the factorization becomes:

(1)𝛾 = P(𝜏 < T)

(2)𝜏 = inf{t > 0, xt ∈ D}

(3)𝜏k = inf{t > 0; xt ∈ Dk ∨ t ≥ T}

(4)
𝜒
k
= 1, if𝜏

k
< T or k = 0

= 0, else
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with 𝛾k ≜ P(𝜒k = 1||𝜒k−1 = 1) = P(𝜏k < T||𝜏k−1 < T).

2.3 � Recursive Estimation of the Multi‑level Factors

By using the strong Markov property of {xt}, we can develop a recursive estimation 
of � using the factorization in   (5). First, we define �k ≜ (�k, x�k ) , Qk ≜ (0, T) × Dk, for 
k = 1,… ,m, and the following conditional probability measure �k(B) for an arbitrary Borel 
set B of ℝn+1:

Cérou et  al. (2006) show that �k is a solution of the following recursion of 
transformations:

where pk(B) is the conditional probability measure of �k ∈ B given �k−1 ∈ Qk−1 i.e.

Because {xt} is a strong Markov process, {�k} is a Markov sequence. Therefore the 
mutation transformation (I) satisfies a Chapman-Kolmogorov equation prediction for �k:

For the conditioning transformation (II) this means:

Hence, selection transformation (III) satisfies:

With this, the �k terms in   (5) are characterized as solutions of a recursive sequence of 
mutation equation   (6), conditioning equation   (7), and selection equation (8).

2.4 � IPS Algorithmic Steps

Following Cérou et al. (2006), eqs. (5)-(8) yield the IPS algorithmic steps for the numeri-
cal estimation of � ∶

(5)� =

m∏
k=1

�k

�k(B) ≜ P(�k ∈ B|�k ∈ Qk)

�k−1(⋅)
I. mutation
⟶ pk(⋅)

III. selection
⟶ �k(⋅)

↓
�k

II. conditioning

pk(B) ≜ P(�k ∈ B|�k−1 ∈ Qk−1)

(6)pk(B) = ∫E�

p�k|�k−1 (B|�)�k−1(d�) for all B ∈ �(ℝn+1)

(7)𝛾k = P(𝜏k < T|𝜏k−1 < T) = ∫E�

1{𝜉∈Qk}
pk(d𝜉).

(8)�k(B) =
∫
B
1{�∈Qk}

pk(d�)

∫
E� 1{��∈Qk}

pk(d�
�)

= [�B

1{�∈Qk}
pk(d�)]∕�k
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A set of NP particles is used to form empirical density approximations �k, pk and �k, �k 
of pk and �k respectively. By increasing the number NP of particles in a set, the errors in 
these approximations will decrease. When simulating particles from Qk−1 to Qk , a fraction 
�k of the simulated particle trajectories only will reach Qk within the time period [0,T] 
considered; these particles form 𝜋̃k. Prior to starting the next IPS cycle with NP particles, 
(NP − NSk

) copies (also called splittings) from the NSk
 successful particles in 𝜋̃k are added to 

�k. In the next sections we consider four ways of splitting: multinominal resampling, multi-
nominal splitting, residual multinominal splitting and fixed assignment splitting.

Under Multinomial Splitting, Cérou et al. (2006) prove that �  forms an unbiased � esti-
mate, i.e.

Moreover, Cérou et  al. (2006) derive second and higher order asymptotic bounds 
for the error (� − �) based on multi-level Feynman Kac analysis, e.g. Del Moral (2004; 
Theorem 12.2.2).

3 � CONDITIONAL VARIANCE CHARACTERIZATIONS

In this section, conditional characterizations of the variance of �k are developed for IPS 
using multinomial resampling (MR), multinomial splitting (MS), residual multinomial 
splitting (RMS) and fixed assignment splitting (FAS), respectively.

3.1 � IPS using Multinomial Resampling

In IPS using multinomial resampling, NP offspring are cloned randomly from 𝜋̃k . The 
resulting algorithm of IPS with multinomial resampling, starting from �i

k−1
 , is described in 

Algorithm 1 below. 

𝜋k−1(⋅)
I. mutation
⟶ pk(⋅)

III. selection
⟶ 𝜋̃k(⋅)

IV. splitting
⟶ 𝜋k(⋅)

↓
𝛾k

II. conditioning

(9)�
{
�
}
= �

{
m∏
k=1

�k

}
=

m∏
k=1

�
{
�k
}
=

m∏
k=1

�k = �
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Algorithm 1. IPS using multinomial resampling 

In order to gain a better understanding of the probabilistic characteristics of the par-
ticles that reached a level, we now characterize the conditional distribution of particles 
that reach level k + 1, given that at level k the i-th successful particle 𝜉i

k
 is copied Ki

k
 

times, i = 1, ..,NSk
.

Proposition 1:  If NSk
> 0 and Ki

k
 , with i= 1, 2,...,NSk

 , denote the number of particles that 
copies 𝜉i

k
 at level k. Then the number Yk,i

k+1
 , of the Ki

k
 particle copies of 𝜉i

k
 that reach level 

k + 1, has a conditional Binomial distribution of size Ki
k
 and success probability 𝛾k+1(𝜉ik) , 

i.e.

with

Proof:  See 8..

(10)pYk,i

k+1
|Ki

k
,𝜉i
k

(n;Ki
k
, 𝜉i

k
) = Bin(n;Ki

k
, 𝛾k+1(𝜉

i
k
))

(11)𝛾k+1(𝜉
i
k
) ≜ P(𝜏k+1 < T|𝜉k = 𝜉i

k
)
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Theorem 1:  If NSk
≥ 1 and Ki

k
, i = 1, ..NSk

, denotes the number of copies made of the i-th 
successful particle 𝜉i

k
 during the splitting step at level k of the IPS algorithm, then.

Proof:  See 8..

Proposition 2:  If NSk
≥ 1, and we use multinomial resampling at IPS level k then.

Proof:  See 8..

3.2 � IPS using multinomial splitting

IPS using multinomial splitting follows the steps of Algorithm  1, except for splitting 
step IV. Now each particle in 𝜋̃k(⋅) is first copied once, and then 

(
Np − NSk

)
 offspring are 

cloned randomly from 𝜋̃k(⋅)(Cérou et al. 2006, Sect. 3.2, p. 189). This multinomial split-
ting in IPS step IV is specified in Algorithm 2 

(12)�

{
𝛾k+1|𝜉jk, all j

}
=

1

Np

NSk∑
i=1

[
�

{
Ki
k
|𝜉j

k
, all j

}
𝛾k+1(𝜉

i
k
)
]

(13)

Var
{
𝛾k+1|𝜉jk, all j

}

=
1

N2
p

NSk∑
i=1

[
�

{
Ki
k
|𝜉j

k
, all j

}
𝛾k+1(𝜉

i
k
)
(
1 − 𝛾k+1(𝜉

i
k
)
)]

+
1

N2
p

NSk∑
i=1

[
Var

{
Ki
k
|𝜉j

k
, all j

}
𝛾k+1(𝜉

i
k
)2
]

+
1

N2
p

NSk∑
i=1

NSk∑
i� = 1

i� ≠ i

[
Cov

{
Ki
k
,Ki�

k
|𝜉j

k
, all j

}
𝛾k+1(𝜉

i
k
)𝛾k+1(𝜉

i�

k
)
]

(14)�

{
𝛾k+1|𝜉1k , ..., 𝜉

NSk

k

}
=

1

NSk

NSk∑
i=1

𝛾k+1(𝜉
i
k
)

(15)

Var
�
𝛾k+1�𝜉1k , ..., 𝜉

NSk

k

�

=
1

NpNSk

NSk�
i=1

�
𝛾k+1(𝜉

i
k
)
�
1 − 𝛾k+1(𝜉

i
k
)
��

+
1

NpNSk

⎡⎢⎢⎣

NSk�
i=1

��
𝛾k+1(𝜉

i
k
)
�2�

−
1

NSk

NSk�
i=1

NSk�
i�=1

��
𝛾k+1(𝜉

i
k
)𝛾k+1(𝜉

i�

k
)
��⎤⎥⎥⎦
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In IPS using multinomial splitting, all particles have the same weight at any given level. 
Each particle is simulated until it reaches the first subset Q1 . Then 

∑Np

i=1
1(�

i

1
∈ Q1) is the 

number of particles that have reached the first subset Q1 . The fraction 
�1 =

∑Np

i=1

1

Np

1(�
i

1
∈ Q1) is an unbiased estimate of 𝛾1 = P(𝜏1 < T) . To maintain a suffi-

ciently large population of particles, in IPS step IV (NP − NSk
) copies of these ∑Np

i=1
1(�

i

1
∈ Q1) successful particles are added to the set of NSk

 successful particles. During 
the next IPS cycle each new particle is simulated until it reaches the second subset Q2. 
Again, the fraction �2 =

∑Np

i=1

1

Np

1(�
i

2
∈ Q2) of 

∑Np

i=1
1(�

i

2
∈ Q2) particles that reach the sec-

ond subset Q2 is a natural estimate of 𝛾2 = P(𝜏2 < T|𝜏1 < T). This cycle is repeated until 
particles reach the last subset Qm . The fraction �k =

∑Np

i=1

1

Np

1(�
i

k
∈ Qk) of particles that 

have timely reached the k-th subset from the preceding subset is an unbiased estimate of 
𝛾k = P(𝜏k < T|𝜏k−1 < T) . From Eq. (9) we know that the product of these m fractions is an 
unbiased estimate of 𝛾 = P(𝜏m < T).

It is straightforward to verify that Proposition 1 and Theorem  1 also hold true using 
multinomial splitting in IPS step IV.

Proposition 3:  If NSk
≥ 1, and we use multinomial splitting at IPS level k then.

Proof:  See 8..

3.3 � IPS Using Residual Multinomial Splitting

IPS using residual multinomial splitting follows the steps of Algorithm  1 with a new 
Step IV. Now each successful particle is first copied �k =

⌊
Np

/
NSk

⌋
 times, and then 

(16)�

{
𝛾k+1|𝜉1k , ..., 𝜉

NSk

k

}
=

1

NSk

NSk∑
i=1

𝛾k+1(𝜉
i
k
)

(17)

Var
�
𝛾k+1�𝜉1k , ..., 𝜉

NSk

k

�

=
1

NpNSk

NSk�
i=1

�
𝛾k+1(𝜉

i
k
)
�
1 − 𝛾k+1(𝜉

i
k
)
��

+

�
Np − NSk

�

N2
p
NSk

⎡⎢⎢⎣

NSk�
i=1

��
𝛾k+1(𝜉

i
k
)
�2�

−
1

NSk

NSk�
i=1

NSk�
i�=1

�
𝛾k+1(𝜉

i
k
)𝛾k+1(𝜉

i�

k
)
�⎤⎥⎥⎦
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residual 
(
Np mod NSk

)
 particles are randomly drawn from  𝜋̃k(⋅). The residual multino-

mial splitting step IV is specified in Algorithm 3 below. 

Algorithm 3. Residual multinomial splitting in IPS step IV

IV. Splitting: 
i i
k k� �� for 1,...,

kS
i N� ;

Sk
i N i
k k� �� � for 1,...,

kS
i N� ;

… 

1 Sk

p

Sk

i N
i
kk

N
N

� �
�
� �

�� �
� �� � � for 1,...,

kS
i N� ;

~ (.)
Sk

p

Sk

i N

k k

N
N

� �
�
� �
� �
� �� � for 1,...,

k

k

p
p S

S

N
i N N

N
� �

� � � �
� �� �

.

Each particle receives weight 1/ pN . 

Straightforward verification shows that Proposition 1 and Theorem 1 also hold true 
when using residual multinomial splitting in IPS step IV.

Proposition 4:  If NSk
≥ 1, and we use residual multinomial splitting at IPS level k then.

Proof:  See 8..

3.4 � IPS Using Fixed Assignment Splitting

When using fixed assignment splitting, each particle in 𝜋̃k(⋅) is copied as much as pos-
sible the same number of times. This is applied by first copying each particle 

⌊
Np

/
NSk

⌋
 

times, and then making 
(
Np mod NSk

)
 copies from distinct particles chosen at random 

(without replacement). So the chosen particles would be copied 
⌊
Np

/
NSk

⌋
+ 1 times 

(L’Ecuyer et  al. 2006, 2007). The Fixed Assignment splitting Step IV is specified in 
Algorithm 4 below. 

(18)�

{
𝛾k+1|𝜉1k , ..., 𝜉

NSk

k

}
=

1

NSk

NSk∑
i=1

𝛾k+1(𝜉
i
k
)

(19)

Var
�
𝛾k+1�𝜉1k , ..., 𝜉

NSk

k

�

=
1

NpNSk

NSk�
i=1

�
𝛾k+1(𝜉

i
k
)
�
1 − 𝛾k+1(𝜉

i
k
)
��

+

�
Np mod NSk

�

N2
p
NSk

.

⎡⎢⎢⎣

NSk�
i=1

��
𝛾k+1(𝜉

i
k
)
�2�

−
1

NSk

NSk�
i=1

NSk�
i�=1

��
𝛾k+1(𝜉

i
k
)𝛾k+1(𝜉

i�

k
)
��⎤⎥⎥⎦
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Algorithm 4. Fixed assignment splitting in IPS step IV

IV. Splitting:
1{ } SkNj

k j� � is a random permutations of 1{ } SkNj
k j� � .

Copy:      
i i
k k� �� for 1,...,

kS
i N� ;

Sk
i N i
k k� �� � for 1,...,

kS
i N� ;

… 

1 Sk

p

Sk

i N
i
kk

N
N

� �
�
� �

�� �
� �� � � for 1,...,

kS
i N� ;

Sk

p

Sk

i N
i

k k

N
N

� �
�
� �
� �
� �� � � for 1,...,

k

k

p
p S

S

N
i N N

N
� �

� � � �
� �� �

.

Each particle receives weight 1/ pN

Straightforward verification shows that Proposition 1 and Theorem 1 also hold true using 
fixed assignment splitting in IPS step IV.

Proposition 5:  If NSk
≥ 2, and we use fixed assignment splitting at IPS level k then.

with mod representing modulo operation.

Proof:  See 8..

(20)�

{
𝛾k+1|𝜉1k , ..., 𝜉

NSk

k

}
=

1

NSk

NSk∑
i=1

𝛾k+1(𝜉
i
k
)

(21)

Var
�
𝛾k+1�𝜉1k , ..., 𝜉

NSk

k

�

=
1

NpNSk

NSk�
i=1

�
𝛾k+1(𝜉

i
k
)
�
1 − 𝛾k+1(𝜉

i
k
)
��

+

�
Np mod NSk

��
NSk

−
�
Np mod NSk

��

N2
p
NSk

�
NSk

− 1
�

.

⎡⎢⎢⎣

NSk�
i=1

��
𝛾k+1(𝜉

i
k
)
�2�

−
1

NSk

NSk�
i=1

NSk�
i�=1

�
𝛾k+1(𝜉

i
k
)𝛾k+1(𝜉

i�

k
)
�⎤⎥⎥⎦
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4 � Comparison of Variances

This section proves that IPS using fixed assignment splitting has variance advantage 
over IPS under each of the three Random assignment splitting methods MR, MS and 
RMS. This is accomplished through a sequence of three Theorems. Theorem  2 com-
pares the four splitting strategies at a single level only. Theorem 3 considers multiple 
levels, with difference in splitting strategies at a single level and no differences in split-
ting strategy at the other levels. Theorem 4 uses Theorem 3 to complete the comparison 
of IPS under different ways of splitting.

Theorem 2:  Given successful particles 𝜉1
k
, ..., 𝜉

NSk

k
 at IPS level k with NSk

≥ 1 . The domi-
nance of the four splitting methods (MR, MS, RMS, FAS) in terms of Var

{
𝛾k+1|𝜉1k , ..., 𝜉

NSk

k

}
 

is:

Theorem 3:  If IPS levels 1 to k-1 make use of the same type of splitting (either MR, MS, 
RMS or FAS), then the dominance of the four splitting methods at level k, in terms of 

Var

�
k∏

k�=1

�k�

�
 satisfies:

Theorem 4:  Under the same type of Splitting (either MR, MS, RMS or FAS) at all levels, 
then the dominance of the four splitting methods in terms of Var

{
�
}
 satisfies:

Proof of Theorem 2:  From inequality of arithmetic and geometric means we know:

The right hand term equals:

Substituting this in (25) yields:

If NSk
= 1 , then all four splitting methods do the same. If NSk

≥ 2 , we have to compare 
variances in Propositions 2, 3, 4 and 5. Due to (27) for VarMS ≤ VarMR , VarRMS ≤ VarMS  
and VarFAS ≤ VarRMS this means we have to verify:

(22)Vk
FAS

≤ Vk
RMS

≤ Vk
MS

≤ Vk
MR

(23)VFAS_k ≤ VRMS_k ≤ VMS_k ≤ V
MR_k

(24)V
FAS

≤ V
RMS

≤ V
MS

≤ V
MR

(25)
NSk�
i=1

�
𝛾k+1(𝜉

i
k
)
�2 ≥ 1

NSk

⎛⎜⎜⎝

NSk�
i=1

𝛾k+1(𝜉
i
k
)

⎞⎟⎟⎠

2

(26)
⎛
⎜⎜⎝

NSk�
i=1

𝛾k+1(𝜉
i
k
)

⎞⎟⎟⎠

2

=

NSk�
i=1

NSk�
i�=1

𝛾k+1(𝜉
i
k
)𝛾k+1(𝜉

i�

k
)

(27)
⎡⎢⎢⎣

NSk�
i=1

��
𝛾k+1(𝜉

i
k
)
�2�

−
1

NSk

NSk�
i=1

NSk�
i�=1

�
𝛾k+1(𝜉

i
k
)𝛾k+1(𝜉

i�

k
)
�⎤⎥⎥⎦

≥ 0
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From 1

NSk

−
1

Np

≤ 1

NSk

 follows that inequality (28) holds true.  Substituting �
k
N
S
k
+(

Np mod NSk

)
= Np in. 

(
Np mod NSk

) ≤ (
Np mod NSk

)
+ NSk

(
�k − 1

)
 and subsequent rear-

rangement of terms proves (29).
Because 

(
Np mod NSk

)2 ≥ (
Np mod NSk

)
 we get:

Dividing both sides by 
(
NSk

− 1
)
 proves (30). Q.E.D.

Proof of Theorem 3:  By defining the notation ��
k
≜ k∏

k�=1

�k� , we can write ��
k
= �k�

�

k−1
. By 

also defining the sigma algebra Ck

𝜉
= 𝜎{𝜉i

k�
;i = 1,...,NSk�

, k� = 1, .., k} , we can subsequently 
derive:

where equality (a) holds because Ck−1

𝜉
⊂�{�

�

k−1
}.

If NSk
= 0 , then we have �k =

NSk

Np

= 0 and

Thus if NSk
= 0 , then Var

{
�
�

k

}
 is the same under any of the four splitting methods.

If NSk
≥ 1 , we can derive as follows by using the law of total variance:

By using Var{X} = �
{
X2

}
+ {�(X)}2 , (33) becomes:

Using the property of the conditional expectation, we can derive:

(28)

(
Np − NSk

)

NpNSk

≤ 1

NSk

(29)
(
Np mod NSk

) ≤ (
Np − NSk

)

(30)

(
Np mod NSk

)[
NSk

−
(
Np mod NSk

)]
(
NSk

− 1
) ≤ (

Np mod NSk

)

(
Np mod NSk

)[
NSk

−
(
Np mod NSk

)] ≤ (
Np mod NSk

)(
NSk

− 1
)

(31)�{𝛾
𝜋

k−1
𝛾k|Ck−1

𝜉
}

a
= 𝛾

𝜋

k−1
�{𝛾k|Ck−1

𝜉
}

(32)Var
{
�
�

k−1
�k
}
= Var

{
�
�

k−1
⋅ 0

}
= 0

(33)

Var
{
𝛾
𝜋

k

}
= Var

{
𝛾
𝜋

k−1
𝛾k
}

= �

{
Var

{
𝛾
𝜋

k−1
𝛾k|Ck−1

𝜉

}}
+ Var

{
�

{
𝛾
𝜋

k−1
𝛾k|Ck−1

𝜉

}}

= �

{(
𝛾
𝜋

k−1

)2
Var

{
𝛾k|Ck−1

𝜉

}}
+ Var

{
�

{
𝛾
𝜋

k−1
𝛾k|Ck−1

𝜉

}}

(34)
Var

{
𝛾
𝜋

k

}
= �

{(
𝛾
𝜋

k−1

)2
Var

{
𝛾k|Ck−1

𝜉

}}

+�

{[
�

{
𝛾
𝜋

k−1
𝛾k|Ck−1

𝜉

}]2}
−
{
�

[
�

(
𝛾
𝜋

k−1
𝛾k|Ck−1

𝜉

)]}2
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Further evaluation of (35) yields:

To complete the proof we have to compare (36) under the four splitting methods. 
�

{
𝛾k+1|Ck

𝜉

}
 equals under each of the four splitting methods. To compare the variance 

term we denote by Vk
FAS

,Vk
RMS

 , Vk
MS

 and Vk
MR

 the Var
{
𝛾k|Ck−1

𝜉

}
 under FAS, RMS, MS 

and MR respectively. From Theorem 2, we know Vk
FAS

≤ Vk
RMS

≤ Vk
MS

≤ Vk
MR

 at level k. 
Due to the monotonicity of conditional expectation, this implies �

{
V

k
FAS

|��
k−1

= y
} ≤

�
{
V

k
RMS

|��
k−1

= y
} ≤ �

{
V

k
MS
|��

k−1
= y

} ≤ �
{
V

k
RMS

|��
k−1

= y
}
.  For (36) this means that 

if NSk
≥ 1 , then Var

{
𝛾̄𝜋
k

}
 under FAS, RMS, MS and MR satisfy inequality (24). Q.E.D.

Proof of Theorem 4:  Theorem 3 shows that it is advantageous to use FAS at level k, what-
ever splitting types are used at level 1 to level k-1. For k = m, this implies an advantage to 
use FAS at level m. The same reasoning shows that it also is advantageous to use FAS at 
level k = m-1. This reasoning can be repeated for level m-2, m-3, …, k = 2. At level k = 1, 
there is no difference between the two splitting strategies. Therefore, we can conclude that 
if all levels make use of FAS, then Var

{
�
}
 is less than or equal to that when all levels make 

use of RMS, i.e. V
FAS

≤ V
RMS

 . This reasoning is also be applied for RMS relative to MS 
and MR, which yields V

RMS
≤ V

MS
 . Finally this reasoning is applied to MS relative to MR, 

which yields V
MS

≤ V
MR

 . Q.E.D.

(35)
Var

{
𝛾
𝜋

k

}
= �

{(
𝛾
𝜋

k−1

)2
Var

{
𝛾k|Ck−1

𝜉

}}

+�

{[
𝛾
𝜋

k−1
�

{
𝛾k|Ck−1

𝜉

}]2}
−
{
�
(
𝛾
𝜋

k−1
𝛾k
)}2

(36)

Var
{
𝛾
𝜋

k

}

= �

{(
𝛾
𝜋

k−1

)2
Var

{
𝛾k|Ck−1

𝜉

}}

+�

{(
𝛾
𝜋

k−1

)2[
�

{
𝛾k|Ck−1

𝜉

}]2}
−
{
𝛾𝜋
k

}2

= �

{(
𝛾
𝜋

k−1

)2
Var

{
𝛾k|Ck−1

𝜉

}
+
(
𝛾
𝜋

k−1

)2[
�

{
𝛾k|Ck−1

𝜉

}]2}

−
{
𝛾𝜋
k

}2

= �

{(
𝛾
𝜋

k−1

)2
Var

{
𝛾k|Ck−1

𝜉

}}

+�

{(
𝛾
𝜋

k−1

)2[
�

{
𝛾k|Ck−1

𝜉

}]2}
−
{
𝛾𝜋
k

}2

= ∫ p𝛾𝜋
k−1
(y)y2�

{
Var

{
𝛾k|Ck−1

𝜉

}
|𝛾k−1 = y

}
dy

+∫ p𝛾𝜋
k−1
(y)y2�

{[
�

{
𝛾k|Ck−1

𝜉

}]2|𝛾k−1 = y

}
dy −

{
𝛾𝜋
k

}2
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5 � Simulation Example

5.1 � Geometric Brownian Motion Example

Following Krystul (2006, pp. 22–26) in this section we apply IPS for the estimation reach 
probability for a Geometric Brownian motion, and compare the results under Fixed Assign-
ment splitting versus those under multinomial splitting versus those under multinomial 
resampling. The SDE of Geometric Brownian motion satisfies:

where 𝜇 > 0 , 𝜎 > 0 and X0 ≥ 1 . We want to estimate the probability ℙ𝜏 < T  with 
𝜏 ≜ inf{t > 0 ∶ Xt ≥ L}.

5.2 � Analytical and MC Simulation Results

Thanks to (Tuckwell and Wan 1984; Karlin and Taylor 1975, p363, Theorem 5.3), we can 
use the following equation to evaluate reach probabilities:

For this example, we use (38) to set the levels {Lk, k = 1, ...,m} , such that the condi-
tional probabilities between successive levels are equal to 1/10. Table 1 shows the resulting 
Lk level values for k = 1,2,…, as well as the analytical �k and � results for these  
levels. The right columns in Table 1 also show the �MC results obtained through straightfor-
ward Monte Carlo (MC) simulation using 10,000 runs with numerical integration time step 
Δ = 2 × 10−3s . The results in Table 1 show that straightforward MC simulation based esti-
mation of � fails to work beyond k = 4. Instead of stopping the simulation of the i-th parti-
cle at each stopping times � i

k
 , we stop it at ti

k
 , i.e. the end of the first integration time step 

that xi
ti
k

 is at or has passed level k. The implication is that it remains to be verified if the 
numerical time step Δ of the IPS simulation is small enough.

(37)dXt = (� +
�2

2
)Xtdt + �XtdWt

(38)𝛾=ℙ(𝜏 < T) = ∫
T

0

ln(L∕X0)√
2𝜋𝜎2t3

exp

�
−(ln(L∕X0) − 𝜇t)2

2𝜎2t

�
dt

Table 1   Analytical and MC 
estimated � and �k, k = 1..10, 
for geometric Brownian motion 
example, with � = 1 , � = 1 , 
X
0
= 1 , T=1s and L = 1717.25 . 

The MC estimated �MC used 
10,000 runs with Δ = 2 × 10

−3s

k L
k

�
k

� �
MC

1 12.27 0.09998 0.09998 0.0957
2 33.038 1.000 × 10–1 1.000 × 10–2 0.0085
3 69.09 1.000 × 10–1 1.000 × 10–3 6.000 × 10–4

4 127.45 1.001 × 10–1 1.001 × 10–4 1.000 × 10–4

5 217.5 1.000 × 10–1 1.000 × 10–5 0
6 351.445 1.000 × 10–1 1.000 × 10–6 0
7 545.14 1.000 × 10–1 1.000 × 10–7 0
8 818.935 1.000 × 10–1 1.000 × 10–8 0
9 1198.75 1.000 × 10–1 1.000 × 10–9 0
10 1717.25 1.000 × 10–1 1.000 × 10–10 0
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5.3 � IPS Simulation Results

In this subsection we apply IPS under Multinomial resampling, under multinomial split-
ting and under fixed assignment splitting. By repeating IPS NIPS times estimates of the 
rate of surviving IPS, �S , and Normalized root-mean-square error, ĉ𝛾̂ ,NRMSE . The results are 
shown in Table 2 with Δ = 2 × 10−3s and Table 3 with Δ = 4 × 10−4s , for Np = 1000 and 
NIPS = 1000 . The measures 𝛾̂ , �S and ĉ𝛾̂ ,NRMSE are defined as follows:

(39)𝛾̂ =

∑NIPS

i=1
𝛾
i

NIPS

Table 2   Multiple times IPS simulation results under Multinomial Resampling vs. Multinomial splitting vs. 
Fixed Assignment splitting for the setting of Table 1, Δ = 2 × 10

−3s , Np = 1000 and NIPS = 1000

Multinomial Resampling Multinomial splitting Fixed Assignment splitting

k 𝛾̂ �
S

ĉ𝛾̂ ,NRMSE
𝛾̂ �

S
ĉ𝛾̂ ,NRMSE

𝛾̂ �
S

ĉ𝛾̂ ,NRMSE

1 9.51 × 10–2 100% 11% 9.60 × 10–2 100% 10% 9.51 × 10–2 100% 11%
2 9.29 × 10–3 100% 19% 9.33 × 10–3 100% 19% 9.31 × 10–3 100% 18%
3 9.17 × 10–4 100% 30% 9.21 × 10–4 100% 29% 9.11 × 10–4 100% 28%
4 9.10 × 10–5 100% 46% 9.11 × 10–5 100% 46% 9.04 × 10–5 100% 43%
5 8.96 × 10–6 100% 71% 8.95 × 10–6 100% 69% 8.89 × 10–6 100% 65%
6 8.90 × 10–7 100% 110% 8.85 × 10–7 100% 102% 8.67 × 10–7 100% 95%
7 9.07 × 10–8 99% 176% 8.67 × 10–8 99% 158% 8.42 × 10–8 100% 134%
8 9.31 × 10–9 96% 292% 8.60 × 10–9 95% 253% 8.06 × 10–9 97% 182%
9 9.72 × 10–10 86% 488% 8.59 × 10–10 88% 398% 7.81 × 10–10 88% 243%
10 1.10 × 10–10 69% 912% 8.36 × 10–11 73% 559% 7.29 × 10–11 73% 292%

Table 3   Multiple times IPS simulation results under Multinomial Resampling vs. Multinomial splitting vs. 
Fixed Assignment splitting for the setting of Table 1, Δ = 4 × 10

−4s , Np = 1000 and NIPS = 1000

Multinomial Resampling Multinomial splitting Fixed Assignment splitting

k 𝛾̂ �
S

ĉ𝛾̂ ,NRMSE
𝛾̂ �

S
ĉ𝛾̂ ,NRMSE

𝛾̂ �
S

ĉ𝛾̂ ,NRMSE

1 9.81 × 10–2 100% 10% 9.77 × 10–2 100% 10% 9.78 × 10–2 100% 10%
2 9.75 × 10–3 100% 18% 9.73 × 10–3 100% 17% 9.70 × 10–3 100% 17%
3 9.63 × 10–4 100% 29% 9.72 × 10–4 100% 29% 9.58 × 10–4 100% 28%
4 9.49 × 10–5 100% 46% 9.76 × 10–5 100% 46% 9.43 × 10–5 100% 44%
5 9.47 × 10–6 100% 74% 9.81 × 10–6 100% 73% 9.18 × 10–6 100% 66%
6 9.56 × 10–7 100% 114% 9.95 × 10–7 100% 112% 8.98 × 10–7 100% 94%
7 9.86 × 10–8 99% 173% 1.00 × 10–7 99% 169% 8.65 × 10–8 100% 131%
8 1.03 × 10–8 95% 261% 1.02 × 10–8 96% 241% 8.23 × 10–9 96% 179%
9 1.09 × 10–9 86% 390% 1.04 × 10–9 89% 376% 7.68 × 10–10 89% 235%
10 1.14 × 10–10 72% 554% 1.02 × 10–10 74% 498% 7.17 × 10–11 75% 301%
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with 1
𝛾
i
>0

=

{
1, if 𝛾

i
> 0

0, if 𝛾
i
= 0

 and

where � i denotes the estimated reach probability for the i-th IPS simulation.
The results in Tables  2 and 3 show that the Normalized Root-Mean-Square Error, 

ĉ𝛾̂ ,NRMSE , is under Fixed Assignment splitting better than under Multinomial splitting which 
is better than under Multinomial Resampling. This difference in ĉ𝛾̂ ,NRMSE increases with k.

6 � Conclusion

This paper has studied the estimation of the reach probability of an unsafe set by a multi-
dimensional diffusion process using the Interacting Particle System (IPS) framework of 
Cérou et al. (2006). More specifically it has been proven that IPS using fixed assignment 
splitting  (FAS) dominates in variance reduction over IPS using multinomial resampling 
(MR), multinomial splitting (MS), and residual multinomial splitting (RMS).

First, in Sect. 3, a novel characterization has been derived for the conditional variance 
at level k in Theorem 1. This has been elaborated in Propositions 2, 3, 4 and 5 for MR, 
MS, RMS and FAS respectively. Subsequently, the conditional variances are compared in 
Sect. 5 through Theorems 2, 3 and 4. Theorem 2 proves the aimed results for an arbitrary 
single level k, given the same set of survived particles at the beginning of this level. Sub-
sequently Theorem  3 proves the aimed results for an arbitrary single level k, under the 
condition that there are no differences in splitting strategy used at all earlier levels. Finally 
Theorem 4 completes the proof by induction using Theorem 3.

In Section 5, the difference in IPS performances under different splitting methods has 
been illustrated for a one-dimensional geometric Brownian motion example for which the 
reach probabilities are analytically known.

(40)𝜌S =

∑NIPS

i=1
1
𝛾
i
>0

NIPS

(41)ĉ𝛾̂ ,NRMSE =
RMSE

𝛾
× 100%

(42)RMSE =

����∑NIPS

i=1
(�

i
− �)2

NIPS
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Appendix A. Conditional variance derivations

Proof of Proposition 1

If we consider the particles �j
k
 copies from 𝜉i

k
 as a group, then for IPS step II in Table 1 at 

level k + 1 , �k+1 can be written as follows:

with Yk,i

k+1
 the number of particles that have reached level k + 1 after mutation of the Ki

k
 

copies from 𝜉i
k
 . Hence, Yk,i

k+1
 has a conditional Binomial distribution with size Ki

k
 and suc-

cess probability 𝛾k+1(𝜉ik) given Ki
k
 and 𝜉i

k
 . Therefore, the pdf of Yk,i

k+1
 can be expressed as (10) 

and (11). Q.E.D.

Proof of Theorem 1

Let us define Ck

𝜉
 and Ck

𝜉,K
 as follows:

Substitution of (43) in �
{
𝛾k+1|Ck

𝜉

}
 and subsequent evaluation yields:

where equality (a) holds because Ck

𝜉,K
⊃Ck

𝜉
 and �{X|Y} = �{�{X|Y , Z}|Y}.

In a similar way, we can derive:

(43)�k+1 =
1

Np

Np∑
i=1

1(�
i

k+1
∈ Qk+1) =

1

Np

NSk∑
i=1

Y
k,i

k+1

(44)Ck

𝜉
≜ 𝜎{𝜉i

k�
;i = 1,...,NSk�

, k� = 1, .., k}

(45)Ck

𝜉,K
≜ 𝜎

{
𝜉i
k�
,Ki

k�
;i = 1,...,NSk�

, k� = 1, .., k;
}

(46)

�

�
𝛾k+1�Ck

𝜉

�
= �

⎧
⎪⎨⎪⎩

1

Np

NSk�
i=1

Y
k,i

k+1
�Ck

𝜉

⎫
⎪⎬⎪⎭

=
1

Np

NSk�
i=1

�

�
Y
k,i

k+1
�Ck

𝜉

�
a
=

1

Np

NSk�
i=1

�

�
�

�
Y
k,i

k+1
�Ck

𝜉,K

�
�Ck

𝜉

�
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where equality (a) holds because of the law of total conditional variance (Bowsher and 
Swain 2012).

Further evaluation of (47) yields:

where equality (a) holds because Yk,i

k+1
 and Yk,i�

k+1
 are conditionally independent given Ck

𝜉,K
.

Since each Yk,i

k+1
 has a conditional Binomial distribution with size Ki

k
 and success prob-

ability 𝛾k+1(𝜉ik) . Then, by using Binomial distribution properties, we get:

and

where equality (a) holds because Yk,i

k+1
 is conditionally dependent of Ki

k
 and 𝜉i

k
 , but condi-

tionally independent of Ki′

k
 and 𝜉i′

k
 for i′ ≠ i.

Substituting (49) into (46) and subsequent evaluation yields:

(47)

Var
�
𝛾k+1�Ck

𝜉

�
= Var

⎧
⎪⎨⎪⎩

1

Np

NSk�
i=1

Y
k,i

k+1
�Ck

𝜉

⎫
⎪⎬⎪⎭

=
1

N2
p

NSk�
i=1

Var
�
Y
k,i

k+1
�Ck

𝜉

�
+

1

N2
p

NSk�
i=1

NSk�
i�=1
i�≠i

Cov
�
Y
k,i

k+1
, Y

k,i�

k+1
�Ck

𝜉

�

a
=

1

N2
p

NSk�
i=1

�
�

�
Var

�
Y
k,i

k+1
�Ck

𝜉,K

�
�Ck

𝜉

�
+Var

�
�

�
Y
k,i

k+1
�Ck

𝜉,K

�
�Ck

𝜉

��

+
1

N2
p

NSk�
i=1

NSk�
i�=1
i�≠i

�
�

�
�

�
Y
k,i

k+1
Y
k,i�

k+1
�Ck

𝜉,K

�
�Ck

𝜉

�

−�
�
�

�
Y
k,i

k+1
�Ck

𝜉,K

�
�Ck

𝜉

�
�

�
�

�
Y
k,i�

k+1
�Ck

𝜉,K

�
�Ck

𝜉

��

(48)

Var
{
𝛾k+1|Ck

𝜉

}
a
=

1

N2
p

NSk∑
i=1

[
�

{
Var

{
Y
k,i

k+1
|Ck

𝜉,K

}
|Ck

𝜉

}

+Var
{
�

{
Y
k,i

k+1
|Ck

𝜉,K

}
|Ck

𝜉

}]

+
1

N2
p

NSk∑
i=1

NSk∑
i�=1
i�≠i

[
�

{
�

{
Y
k,i

k+1
|Ck

𝜉,K

}
�

{
Y
k,i�

k+1
|Ck

𝜉,K

}
|Ck

𝜉

}

−�
{
�

{
Y
k,i

k+1
|Ck

𝜉,K

}
|Ck

𝜉

}
�

{
�

{
Y
k,i�

k+1
|Ck

𝜉,K

}
|Ck

𝜉

}]

(49)
�

{
Y
k,i

k+1
|Ck

𝜉,K

}
= �

{
Y
k,i

k+1
|Kj

k
, 𝜉

j

k
, all j

}

a
=�

{
Y
k,i

k+1
|Ki

k
, 𝜉i

k

}
= Ki

k
⋅ 𝛾k+1(𝜉

i
k
)

(50)
Var

{
Y
k,i

k+1
|Ck

𝜉,K

}
= Var

{
Y
k,i

k+1
|Kj

k
, 𝜉

j

k
, all j

}

a
=Var

{
Y
k,i

k+1
|Ki

k
, 𝜉i

k

}
= Ki

k
𝛾k+1(𝜉

i
k
)(1 − 𝛾k+1(𝜉

i
k
))
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where equality (a) holds because �{f (Z)Y|Z} = f (Z)�{Y|Z} ; equality (b) holds because of 
Markov property of {𝜉i

k
}.

Similarly, substituting (49) and (50) into (48) and subsequent evaluation yields:

where equality (a) is thanks to Ck

𝜉
-conditional independence of 𝜉i

k
 and Ki

k
.

Further evaluation of (52) yields:

(51)

�

{
𝛾k+1|Ck

𝜉

}
=

1

Np

NSk∑
i=1

�

{
Ki
k
⋅ 𝛾k+1(𝜉

i
k
)|Ck

𝜉

}

a
=

1

Np

NSk∑
i=1

[
�

{
Ki
k
|Ck

𝜉

}
𝛾k+1(𝜉

i
k
)
]

b
=

1

Np

NSk∑
i=1

[
�

{
Ki
k
|𝜉j

k
, all j

}
𝛾k+1(𝜉

i
k
)
]

(52)

Var
{
𝛾k+1|Ck

𝜉

}

=
1

N2
p

NSk∑
i=1

[
�

{
Ki
k
.𝛾k+1(𝜉

i
k
)(1 − 𝛾k+1(𝜉

i
k
))|Ck

𝜉

}

+Var
{
Ki
k
.𝛾k+1(𝜉

i
k
)|Ck

𝜉

}]

+
1

N2
p

NSk∑
i=1

NSk∑
i�=1
i�≠i

[
�

{
Ki
k
⋅ 𝛾k+1(𝜉

i
k
)Ki�

k
⋅ 𝛾k+1(𝜉

i�

k
)|Ck

𝜉

}

−�
{
Ki
k
⋅ 𝛾k+1(𝜉

i
k
)|Ck

𝜉

}
�

{
Ki�

k
⋅ 𝛾k+1(𝜉

i�

k
)|Ck

𝜉

}]

a
=

1

N2
p

NSk∑
i=1

[
�

{
Ki
k
|Ck

𝜉

}
�

{
𝛾k+1(𝜉

i
k
)
(
1 − 𝛾k+1(𝜉

i
k
)
)|Ck

𝜉

}]

+
1

N2
p

NSk∑
i=1

[
�

{(
Ki
k

)2|Ck

𝜉

}
�

{(
𝛾k+1(𝜉

i
k
)
)2|Ck

𝜉

}

−�
{
Ki
k
|Ck

𝜉

}2

�

{
𝛾k+1(𝜉

i
k
)|Ck

𝜉

}2
]

+
1

N2
p

NSk∑
i=1

NSk∑
i�=1
i�≠i

[(
�

{
Ki
k
⋅ Ki�

k
|Ck

𝜉

}
− �

{
Ki
k
|Ck

𝜉

}
�

{
Ki�

k
|Ck

𝜉

})

.�
{
𝛾k+1(𝜉

i
k
)𝛾k+1(𝜉

i�

k
)|Ck

𝜉

}]
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Due to the strong Markov property of {𝜉i
k
} , the Ck

𝜉
 conditioning in (53) can be replaced 

by the condition {𝜉j
k
, all j}. Q.E.D.

Proof of Proposition 2

For multinomial resampling, the vector (K1
k
,K2

k
, ...,K

NSk

k
) follows a multinomial distribution 

with the number of trials equal to Np , which means K1
k
+ K2

k
+ ... + K

NSk

k
= Np , and with 

equal success probabilities 1

NSk

 . Using multinomial distribution properties, we know for 
i= 1, 2,...,NSk

:

For Ki
k
 and Ki′

k
 ( i ≠ i′ ), we can derive:

Substituting (54) into (51) and substituting (54), (55) and (56) into (53) yield:

(53)

Var
{
𝛾k+1|Ck

𝜉

}

=
1

N2
p

NSk∑
i=1

[
�

{
Ki
k
|Ck

𝜉

}
𝛾k+1(𝜉

i
k
)
(
1 − 𝛾k+1(𝜉

i
k
)
)]

+
1

N2
p

NSk∑
i=1

[(
�

{(
Ki
k

)2|Ck

𝜉

}
− �

{
Ki
k
|Ck

𝜉

}2
)(

𝛾k+1(𝜉
i
k
)
)2]

+
1

N2
p

NSk∑
i=1

NSk∑
i�=1

[(
�

{
Ki
k
⋅ Ki�

k
|Ck

𝜉

}
− �

{
Ki
k
|Ck

𝜉

}
�

{
Ki�

k
|Ck

𝜉

})

.
(
𝛾k+1(𝜉

i�

k
)𝛾k+1(𝜉

i�

k
)
)]

=
1

N2
p

NSk∑
i=1

[
�

{
Ki
k
|Ck

𝜉

}
𝛾k+1(𝜉

i
k
)
(
1 − 𝛾k+1(𝜉

i
k
)
)]

+
1

N2
p

NSk∑
i=1

[
Var

{
Ki
k
|Ck

𝜉

}(
𝛾k+1(𝜉

i
k
)
)2]

+
1

N2
p

NSk∑
i=1

NSk∑
i� = 1

i� ≠ i

[
Cov

{
Ki
k
,Ki�

k
|Ck

𝜉

}
.
(
𝛾k+1(𝜉

i
k
)𝛾k+1(𝜉

i�

k
)
)]

(54)�

{
Ki
k
|𝜉j

k
, all j

}
= Np ⋅

1

NSk

=
Np

NSk

(55)Var
{
Ki
k
|𝜉j

k
, all j

}
= Np

1

NSk

(1 −
1

NSk

) =
Np

NSk

(1 −
1

NSk

)

(56)Cov
{
Ki
k
Ki�

k
|𝜉j

k
, all j

}
= −Np

1

NSk

1

NSk
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Elaboration of (57) and (58) yields the equations of Proposition 2. Q.E.D.

Proof of Proposition 3

For Multinomial Splitting, the vector (K1
k
− 1,K2

k
− 1, ...,K

NSk

k
− 1) follows a multinomial 

distribution with the number of trials equal to Np − NSk
 , which means (

K1
k
− 1

)
+
(
K2
k
− 1

)
+ ... +

(
K

NSk

k
− 1

)
= Np − NSk

 , and with equal success probabilities 
1

NSk

 . Using multinomial distribution properties, we know for i= 1, 2,...,NSk
:

From (59) and (60), we can derive:

and

For Ki
k
 and Ki′

k
 ( i ≠ i′ ), we can derive:

(57)�

{
𝛾k+1|𝜉jk, all j

}
=

1

Np

NSk∑
i=1

[
Np

NSk

𝛾k+1(𝜉
i
k
)

]

(58)

Var
{
𝛾k+1|Ck

𝜉

}

=
1

N2
p

NSk∑
i=1

[
Np

NSk

𝛾k+1(𝜉
i
k
)
(
1 − 𝛾k+1(𝜉

i
k
)
)]

+
1

N2
p

NSk∑
i=1

[
Np

NSk

(1 −
1

NSk

)
(
𝛾k+1(𝜉

i
k
)
)2
]

+
1

N2
p

NSk∑
i=1

NSk∑
i� = 1

i� ≠ i

[
−Np

N2
Sk

(
𝛾k+1(𝜉

i
k
)𝛾k+1(𝜉

i�

k
)
)]

(59)�

{
Ki
k
− 1|𝜉j

k
, all j

}
=

Np − NSk

NSk

(60)

Var
{
Ki
k
− 1|𝜉j

k
, all j

}
=
(
Np − NSk

) 1

NSk

(1 −
1

NSk

)

=
Np − NSk

NSk

(1 −
1

NSk

)

(61)�

{
Ki
k
|𝜉j

k
, all j

}
=

Np

NSk

(62)Var
{
Ki
k
|𝜉j

k
, all j

}
=

Np − NSk

NSk

(1 −
1

NSk

)
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where equality (a) holds because of the multinomial distribution property on the 
covariance.

Substituting (61) into (51) and substituting (61), (62) and (63) into (53) yield:

Elaboration of (64) and (65) yields the equations of Proposition 3. Q.E.D.

Proof of Proposition 4

For residual multinomial splitting, the vector (K1
k
− �k,K

2
k
− �k, ...,K

NSk

k
− �k) follows a 

multinomial distribution with the number of trials equal to 
(
Np mod NSk

)
 , and with equal 

success probabilities 1

NSk

 . Using multinomial distribution properties, we know:

From (66) and (67), we can derive:

and

(63)

Cov
{
Ki
k
Ki�

k
|𝜉j

k
, all j

}
= Cov

{(
Ki
k
− 1

)(
Ki�

k
− 1

)|𝜉j
k
, all j

}

a
=
−
(
Np − NSk

)

N2
Sk

(64)�

{
𝛾k+1|𝜉jk, all j

}
=

1

Np

NSk∑
i=1

[
Np

NSk

𝛾k+1(𝜉
i
k
)

]

(65)

Var
{
𝛾k+1|𝜉1k , ..., 𝜉

NSk

k

}

=
1

N2
p

NSk∑
i=1

[
Np

NSk

𝛾k+1(𝜉
i
k
)
(
1 − 𝛾k+1(𝜉

i
k
)
)]

+
1

N2
p

NSk∑
i=1

[
Np − NSk

NSk

(1 −
1

NSk

)
(
𝛾k+1(𝜉

i
k
)
)2
]

+
1

N2
p

NSk∑
i=1

NSk∑
i� = 1

i� ≠ i

[
−
(
Np − NSk

)

N2
Sk

(
𝛾k+1(𝜉

i
k
)𝛾k+1(𝜉

i�

k
)
)]

(66)�

{
Ki
k
− 𝛼k|𝜉jk, all j

}
=

Np mod NSk

NSk

(67)Var
{
Ki
k
− 𝛼k|𝜉jk, all j

}
=

(
Np mod NSk

)

NSk

(1 −
1

NSk

)

(68)�

{
Ki
k
|𝜉j

k
, all j

}
=

(
Np mod NSk

)

NSk

+ 𝛼k =
Np

NSk
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For Ki
k
 and Ki′

k
 ( i ≠ i′ ), we can derive:

Substituting (68) into (51) and substituting (68), (69) and (70) into (53) yield:

Elaboration of (71) and (72) yields the equations of Proposition 4. Q.E.D.

Proof of Proposition 5

To evaluate Ki
k
 , i= 1, 2,...,NSk

 , we define scalar parameter �k as follows:

with floor function ⌊x⌋ ≜ max{i ∈ ℤ�i ≤ x}.
For Fixed Assignment Splitting, the vector (K1

k
− �k,K

2
k
− �k, ...,K

NSk

k
− �k) follows a mul-

tivariate hypergeometric distribution with the number of trials equal to 
(
Np mod NSk

)
 , and 

with equal success probabilities 1

NSk

 . Using multivariate hypergeometric distribution proper-
ties, we know for i= 1, 2,...,NSk

:

(69)Var
{
Ki
k
|𝜉j

k
, all j

}
=

(
Np mod NSk

)

NSk

(1 −
1

NSk

)

(70)Cov
{
Ki
k
Ki�

k
|𝜉j

k
, all j

}
= −

(
Np mod NSk

) 1

NSk

1

NSk

(71)�

{
𝛾k+1|𝜉jk, all j

}
=

1

Np

NSk∑
i=1

[
Np

NSk

𝛾k+1(𝜉
i
k
)

]

(72)

Var
{
𝛾k+1|Ck

𝜉

}

=
1

N2
p

NSk∑
i=1

[
Np

NSk

𝛾k+1(𝜉
i
k
)
(
1 − 𝛾k+1(𝜉

i
k
)
)]

+
1

N2
p

NSk∑
i=1

[(
Np mod NSk

)

NSk

(1 −
1

NSk

)
(
𝛾k+1(𝜉

i
k
)
)2
]

+
1

N2
p

NSk∑
i=1

NSk∑
i� = 1

i� ≠ i

[
−
(
Np mod NSk

)

N2
Sk

(
𝛾k+1(𝜉

i
k
)𝛾k+1(𝜉

i�

k
)
)]

(73)�k ≜
⌊
Np

N
Sk

⌋

(74)�

{
Ki
k
− 𝛼k|𝜉jk, all j

}
=

Np mod NSk

NSk
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From (74) and (75), we can derive:

and

For Ki
k
 and Ki′

k
 ( i ≠ i′ ), we derive:

where equality (a) holds because of the multivariate hypergeometric distribution property 
on the covariance.

Substituting (76) into (51) and substituting (76–78) into (53) yield:

(75)

Var
{
Ki
k
− 𝛼k|𝜉jk, all j

}

=
(
Np mod NSk

)[NSk
−
(
Np mod NSk

)]

NSk
− 1

1

NSk

(
1 −

1

NSk

)

=

(
Np mod NSk

)

NSk

[
NSk

−
(
Np mod NSk

)]

NSk

(76)�

{
Ki
k
|𝜉j

k
, all j

}
=

Np mod NSk

NSk

+ 𝛼k =
Np

NSk

(77)Var
{
Ki
k
|𝜉j

k
, all j

}
=

(
Np mod NSk

)

NSk

[
NSk

−
(
Np mod NSk

)]

NSk

(78)

Cov
{(

Ki
k

)(
Ki�

k

)|𝜉j
k
, all j

}

= Cov
{(

Ki
k
− 𝛼k

)(
Ki�

k
− 𝛼k

)|𝜉j
k
, all j

}

a
=−

(
Np mod NSk

)[NSk
−
(
Np mod NSk

)]

NSk
− 1

1

NSk

1

NSk

(79)�

{
𝛾k+1|𝜉jk, all j

}
=

1

Np

NSk∑
i=1

[
Np

NSk

𝛾k+1(𝜉
i
k
)

]
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Elaboration of (79) and (80) yields the equations of Proposition 5. Q.E.D.

(80)

Var
{
𝛾k+1|Ck

𝜉

}

=
1

N2
p

NSk∑
i=1

[
Np

NSk

𝛾k+1(𝜉
i
k
)
(
1 − 𝛾k+1(𝜉

i
k
)
)]

+
1

N2
p

NSk∑
i=1

[(
Np mod NSk

)

NSk

[
NSk

−
(
Np mod NSk

)]

NSk

(
𝛾k+1(𝜉

i
k
)
)2
]

+
1

N2
p

NSk∑
i=1

NSk∑
i� = 1

i� ≠ i

[
−
(
Np mod NSk

)

N2
Sk

[
NSk

−
(
Np mod NSk

)]

NSk
− 1

⋅

(
𝛾k+1(𝜉

i
k
)𝛾k+1(𝜉

i�

k
)
) ]
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