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We prove the existence of a compact random attractor for
the random dynamical system generated by a damped sine-
Gordon with white noise. And we obtain a precise estimate
of the upper bound of the Hausdorff dimension of the random
attractor, which decreases as the damping grows and shows
that the dimension is uniformly bounded for the damping. In
particular, under certain conditions, the dimension is zero.

1. Introduction

This article is devoted to the existence and estimate of Hausdorff dimension
of the random attractor for a damped sine-Gordon equation with homom-
geneous Dirichlet boundary condition when there is a random term.

Let Ω be an open bounded set of Rn with a smooth boundary ∂Ω. We
consider the equation

utt + αut −∆u+ β sinu = q(x)Ẇ , in Ω× [τ,+∞), τ ∈ R,
u(x, t)|x∈∂Ω = 0, t ≥ τ,

u(x, τ) = u0(x) ∈ H1
0 (Ω), ut(x, τ) = u1(x) ∈ L2(Ω).

(1)

where u = u(x, t) is a real-valued function on Ω× [τ,+∞), for τ ∈ R; α > 0
is called the damping; q(x) ∈ H2(Ω)∩H1

0 (Ω), Ẇ (t) is the derivative of a one-
dimensional two-sided Wiener process W (t); and q(x)Ẇ formally describes
white noise.

A random attractor of a random dynamical system (RDS) is a measurable
and compact invariant random set attracting all the orbits. When such an
attracting exists, it is the smallest attracting compact set and the largest
invariant set [3]. This seems to be a good generalization of the now classi-
cal concept of a global attractor for deterministic dynamical systems. The
notion of a random attractor is very useful for many infinite-dimensional
random dynamical systems [4, 3].

Many authors [8, 10] have studied and estimated the Hausdorff dimension
of the global attractor for a deterministic damped sine-Gordon equation.
H. Crauel and F. Flandoli [4] introduced the notion of a random attractor
and obtained a general theorem on the existence of a random attractor for an
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RDS. Their theorem has been successfully applied to the stochastic reaction-
diffusion equation and the stochastic Navier–Stokes equation. H. Crauel et
al. [3] generalized the notion of an attractor for the stochastic dynamical
system introduced previously and considered a stochastic nonlinear wave
equation. A. Debussche [6, 7] provided a general way to obtain the Hausdorff
dimension of a random invariant set or random attractor and applied it to
the random attractor for a stochastic reaction-diffusion equation. In this
paper, we use the notion and framework in [6, 7, 3] to study a damped sine-
Gordon equation with white noise. We prove the existence of the random
attractor of the equation and estimate its Hausdorff dimension. The upper
bound of the Hausdorff dimension decreases as the damping grows, and
the dimension is uniformly bounded for the damping. In particular, under
certain conditions, the dimension is zero.

2. Random dynamical systems; existence and uniqueness of
solutions

Let (Θ,F , P ) be a probability space and {θt : Θ→Θ, t ∈ R} a family of
measure preserving transformations such that (t, ω) 7→ θtω is measurable,
θ0 = id, and θt+s = θtθs for all s, t ∈ R. The flow θt together with the
probability space

(
Θ,F , P, (θt)t∈R

)
is called as a (measurable) dynamical

system.
A random dynamical system (RDS) on a Polish space (X, d) with Borel

σ-algebra B over θ on (Θ,F , P ) is a measurable map

φ : R+ ×Θ×X → X,

(t, ω, x) 7→ φ(t, ω)x,

such that P -almost surely (P -a.s.) we have:

(i) φ(0, ω) = id on X.
(ii) φ(t+ s, ω) = φ(t, θsω) ◦ φ(s, ω) for all s, t ∈ R+ (cocycle property).

An RDS is continuous or differentiable if φ(t, ω) : X → X is continuous
or differentiable.

A map D : Θ → 2X is said to be a closed (compact) random set if
D(ω) is closed (compact) for P -a.s. ω ∈ Θ and if ω 7→ d(x,D(ω)) is P -a.s.
measurable for all x ∈ X.

It is well-known that the operator A = −∆ : D(A) = H1
0 (Ω) ∩H2(Ω) →

L2(Ω) is self-adjoint, positive and linear, and its eigenvalues {λi}i∈N (with
λi ≤ λj for i < j) are positive and satisfy λm → +∞ as m→ +∞. Consider
L2(Ω), H1

0 (Ω) and E = H1
0 (Ω) × L2(Ω) with the usual inner products and

norms:

(u, v) =
∫

Ω
uv dx, ‖u‖0 = (u, u)1/2 for all u, v ∈ L2(Ω),
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((u, v)) =
∫

Ω
∇u · ∇v dx, ‖u‖ = ((u, u))1/2 for all u, v ∈ H1

0 (Ω),

(y1, y2)E = ((u1, u2)) + (v1, v2), ‖y‖E = (y, y)1/2
E ,

for all yi = (ui, vi)T , y = (u, v)T ∈ E, i = 1, 2.

It is convenient to reduce (1) to an evolution equation of the first-order
in time: 

ut = v,

vt = −αv + ∆u− β sinu+ q(x)Ẇ ,
u(x, τ) = u0(x), v(x, τ) = u1(x), x ∈ Ω,

(2)

whose equivalent Itó equation is du = v dt,
dv = −αv dt+ ∆u dt− β sinu dt+ q(x) dW,
u(x, τ) = u0(x), v(x, τ) = u1(x), x ∈ Ω.

(3)

W (t) is a one-dimensional two-sided Wiener process with path ω( · ) in the
space C(R,R) of continuous functions on R, ω(0) = 0. We can define a
family of measure-preserving and ergodic transformations (a flow) {θt}t∈R

by
θtω( · ) = ω( ·+ t)− ω(t).

Let z = v − q(x)W , then v = z + q(x)W . We consider the random partial
differential equation equivalent to (3)

du/dt = z + q(x)W,
dz/dt = −αz + ∆u− β sinu− αq(x)W,
u(x, τ)=u0(x), z(τ, ω)=z(x, τ, ω)=u1(x)− q(x)W (τ), x∈Ω.

(4)

In contrast to the stochastic differential equation (2), no stochastic differen-
tial appears here. Let

ϕ =
(
u

z

)
, L =

(
0 I

−A −αI

)
, F (ϕ, ω) =

(
q(x)W

−β sinu− αq(x)W

)
.

Then (4) can be written as

ϕ̇ = Lϕ+ F (ϕ, ω), ϕ(τ, ω) = (u0, z(τ, ω))T .(5)

We know that L is the infinitesimal generator of a C0-semigroup eLt on
E with the exponential dichotomy from [9]. It is easy to check that the
function F ( · , ω) : E 7→ E is globally Lipschitz continuous with respect to ϕ
and bounded for every ω ∈ Θ. By the classical semigroup theory of existence
and uniqueness of the solutions of evolution differential equations [9], the
unique solution of (5) can be interpreted in a mild sense:

ϕ(t, ω) = eL(t−τ)ϕ(τ, ω) +
∫ t

τ
eL(t−s)F (ϕ(s), ω) ds,
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surely for any ϕ(τ, ω) ∈ E. One can show that for P -a.s. every ω ∈ Θ the
following statements hold for all T > 0:

(i) If ϕ(τ, ω) ∈ E then ϕ(t, ω) lies in

C
(
[τ, τ + T );H1

0 (Ω)
)
× C

(
[τ, τ + T );L2(Ω)

)
.

(ii) ϕ(t, ϕ(τ, ω)) is jointly continuous in t and ϕ(τ, ω).
(iii) The solution mapping of (5) satisfies the properties of an RDS.

This equation has a unique solution for every ω ∈ Θ. No exceptional sets
appear. Hence the solution mapping

Ŝ(t, ω) : ϕ(τ, ω) 7→ ϕ(t, ω)(6)

generates a random dynamical system. So the transformation

S(t, ω) : ϕ(τ, ω) +
(
0, q(x)W (τ)

)T 7→ ϕ(t, ω) +
(
0, q(x)W (t)

)T(7)

also determines a random dynamical system corresponding to problem (2).
We will prove the existence of a nonempty compact random attractor for

the random dynamical system S(t, ω) and estimate the Hausdorff dimension
of the random attractor.

3. Existence of a random attractor

A random set K(ω) is said to absorb the set B ⊂ X for an RDS ϕ if P -a.s.
there exists tB(ω) such that

ϕ(t, θ−tω)B ⊂ K(ω) for all t ≥ tB(ω).

A random set A(ω) is said to be a random attractor associated to the RDS
ϕ if P -a.s.:

(i) A(ω) is a random compact set, that is, P -a.s. ω ∈ Θ, A(ω) is compact
and for all x ∈ X and P -a.s. the map x 7→ dis(x,A(ω)) is measurable.

(ii) ϕ(t, ω)A(ω) = A(θtω) for all t ≥ 0 (invariance).
(iii) For all bounded (and nonrandom) B ⊂ X,

lim
t→∞

dis (ϕ(t, θ−tω)B,A(ω)) = 0

where dis( · , · ) denotes the Hausdorff semidistance:

dis(A,B) = supx∈A infy∈B d(x, y), A,B ∈ X.

Note that ϕ(t, θ−tω)x can be interpreted as the position at t = 0 of the
trajectory which was in x at time −t. Thus, the attraction property holds
from t = −∞.
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Theorem 1 (Existence of a random attractor). Let φ be an RDS on a Pol-
ish space (X, d) with Borel σ-algebra B over the flow {θt}t∈R on a probability
space (Θ, F, P ). Suppose there exists a random compact set K(ω) such that
for any bounded nonrandom set B ⊂ X P -a.s.

dis
(
ϕ(t, θ−tω)B, K(ω)

)
→ 0 as t→ +∞.(8)

Then the set
A(ω) =

⋃
B⊂X

Λ(ω)

is a random attractor for φ, where the union is taken over all bounded B ⊂
X, and ΛB(ω) is the omega-limit set of B given by

ΛB(ω) =
⋂
s≥0

⋃
t≥s

φ(t, θ−tω)B.

Moreover, the random attractor is unique.

Proof. Since K(ω) is a random compact set, then by (8), ΛB(ω) is also
random compact and nonempty. By the proof of Theorem 3.11 in [4], A(ω)
is a random attractor for φ and it is unique.

Remark 1. Theorem 1 can be regarded as an analog of [2, Theorem 2.2].
As in [2], the RDS φ can be also said to be uniformly asymptotically com-
pact.

We show the existence of a random attractor for the RDS (7) in the space
E. Let ψ = (u, z)T , z = z + εu, where

ε =
αλ1

2α2 + 3λ1
.(9)

Then the system (4) can be written as

ψt +Qψ = F (ψ, ω), ψ(τ, ω) = (u0, z(τ, ω) + εu0)T , t ≥ τ,(10)

where

Q =
(

εI −I
A− ε(α− ε)I (α− ε)I

)
,

F (ψ, ω) =
(

q(x)W
−β sinu− (α− ε)q(x)W

)
.

The mapping

Ŝε(t, ω) : (u0, z(τ, ω) + εu0)T 7→ (u(t), z(t) + εu(t))T , E 7→ E, t ≥ τ

(11)

defined by (10) has the following relation with Ŝ(t, ω):

Ŝε(t, ω) = RεŜ(t, ω)R−ε(12)
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where Rε : (u, z)T 7→ (u, z+εu)T is an isomorphism of E. So, for the
RDS (7) we only need consider the equivalent random dynamical system
Sε(t, ω) = RεS(t, ω)R−ε, where Sε(t, ω) is decided by

ϑt +Qϑ = G(ϑ, ω), ϑ(τ) = (u0, u1 + εu0)T , t ≥ τ,(13)

where ϑ(t) =
(
u(t), ut(t) + εu(t)

)T and

G(ϑ, ω) =
(

0
−β sinu+ q(x)Ẇ

)
.

First we present a positivity property of the operator Q in E that plays
an important role in this article.

Lemma 1. For any ϕ = (u, v)T ∈ E,

(Qϕ,ϕ)E ≥ ε

2
‖ϕ‖2

E +
ε

4
‖u‖2 +

α

2
‖v‖2

0.

Proof. This is easily obtained after simple computations.

Lemma 2. There exist a random variable r1(ω) > 0 and a bounded ball
B0 of E centered at 0 with random radius r0(ω) such that for any bounded
nonrandom set B of E, there exists a deterministic T (B) ≤ −1 such that
the solution ψ(t, ω;ψ(τ, ω)) = (u(t, ω), z(t, w))T of (10) with initial value(
u0, u1 + εu0

)T ∈ B satisfies for P -a.s. ω ∈ Θ∥∥ψ(−1, ω;ψ(τ, ω))
∥∥

E
≤ r0(ω), τ ≤ T (B),

and for τ ≤ t ≤ 0,∥∥ψ(t, ω;ψ(τ, ω))
∥∥2

E
(14)

≤ 2
(
e−ε(t−τ)(‖u0‖2 + ‖u1 + εu0‖2

0 + ‖q‖2
0|W (τ)|2) + r21(ω)

)
,

where z(t, w) = ut(t) + εu(t)− q(x)W (t).

Of course one can deduce a similar absorption result for

ϑ(−1) =
(
u(−1), ut(−1) + εu(−1)

)T

instead of ψ(−1).

Proof. Taking the inner product ( · , · )E of (10) with ψ = (u, v)T , in which
v = ut + εu− qW , we obtain

1
2
d

dt
‖ψ‖2

E + (Qψ,ψ)E(15)

= (−β sinu, v)− (α− ε)(q(x), v)W (t) + ((q(x), u))W (t), t ≥ τ.

By Young’s inequality and Lemma 1

d

dt
‖ψ‖2

E + ε‖ψ‖2
E ≤ 2

(
β2

α
+ α‖q‖2

0|W (t)|2 +
‖q‖2

ε
|W (t)|2

)
, t ≥ τ.
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By the Gronwall lemma

‖ψ(t, ω;ψ(τ, ω))‖2
E(16)

≤ e−ε(t−τ)‖ψ(τ, ω))‖E

+ 2
∫ t

τ
e−ε(t−s)

(
β2

α
+ α‖q‖2

0|W (s)|2 +
‖q‖2

ε
|W (s)|2

)
ds

≤ 2e−ε(t−τ)
(
‖u0‖2 + ‖u1 + εu0‖2

0 + ‖q‖2
0|W (τ)|2

)
+ 2

∫ t

τ
e−ε(t−s)

(
β2

α
+

(
α‖q‖2

0 +
‖q‖2

ε

)
|W (s)|2

)
ds.

Put

r20(ω) = 2
(

1 +
β2

εα
+ sup

τ≤−1
eεs‖q‖2

0|W (τ)|2

+
(
α‖q‖2

0 +
‖q‖2

ε

) ∫ −1

−∞
e−ε(−1−s)|W (s)|2ds

)
and

r21(ω) =
β2

εα
+

(
α‖q‖2

0 +
‖q‖2

ε

) ∫ 0

−∞
eεs|W (s)|2ds.

Since limt→∞W (t)/t = 0, the quantities r20(ω) and r21(ω) are finite P -a.s.
Given a bounded set B of E, choose T (B) ≤ −1 such that

e−ε(−1−τ)
(
‖u0‖2 + ‖u1 + εu0‖2

0

)
≤ 1 for all (u0, u1 + εu0)T ∈ B

and

−τeετ
(
‖u0‖2 + ‖u1 + εu0‖2

0

)
≤ 1 for all (u0, u1 + εu0)T ∈ B(17)

for all τ ≤ T (B). The proof is completed from (16).
Let u(t) be a solution of system (1) with initial value (u0, u1 +εu0)T ∈ B.

We make the decomposition u(t) = y1(t) + y2(t), where y1 and y2 satisfy
y1tt + αy1t −∆y1 = 0 in Ω× [τ,+∞),
y1(x, t)|x∈∂Ω = 0, t ≥ τ,

y1(x, τ) = u0(x), y1t(x, τ) = u1(x), x ∈ Ω,
(18)

and 
y2tt + αy2t −∆y2 + β sinu = q(x)Ẇ in Ω× [τ,+∞),
y2(x, t)|x∈∂Ω = 0, t ≥ τ,

y2(x, τ) = y2t(x, τ) = 0, x ∈ Ω.
(19)

Lemma 3. Let B be a bounded nonrandom subset of E. We have, for any
(u0, u1 + εu0)T ∈ B,

‖Y1(0)‖2
E = ‖y1(0)‖2 + ‖y1t(0) + εy1(0)‖2

0 ≤
(
‖u0‖2 + ‖u0 + εu1‖2

0

)
eετ ,

(20)
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and there exists a random radius r2(ω) such that for P -a.s. ω ∈ Θ,

‖A1/2Y2(0, ω;Y2(τ, ω))‖2
E ≤ r22(ω),(21)

where Y1 = (y1, y1t+εy1)T and Y2 = (y2, y2t+εy2−q(x)W ) satisfy (18), (19).

Proof. Take the inner product of (18) in L2(Ω) with y1t + εy1 whose initial
value is (u0, u1 + εu0)T . After a simple computation using Lemma 1, one
obtains (20).

Set Y2 = (y2, y2t + εy2 − q(x)W )T . Equation (19) can be reduced to

Y2t +QY2 = H(Y2, ω), Y2(τ) = (0,−q(x)W (τ)), t ≥ τ(22)

where

H(Y2, ω) =
(

q(x)W (t)
−β sinu− (α− ε)q(x)W (t)

)
.

Taking the inner product of (22) in E with AY2 and using Young’s inequality,
Lemma 1 and (14), we obtain for τ ≤ T (B)

d

dt
‖A1/2Y2‖2

E + ε‖A1/2Y2‖2
E

≤ 4β2

α

(
e−ε(t−τ)

(
‖u0‖2 + ‖u1 + εu0‖2

0 + ‖q‖2
0|W (τ)|2

)
+ r21(ω)

)
+ 2

(
α‖q‖2 +

‖Aq‖2
0

ε

)
|W (t)|2, τ ≤ t ≤ 0.

By the Gronwall lemma,

‖A1/2Y2(0, ω;Y2(τ, ω))‖2
E(23)

≤ 4β2

εα

(
(−τ)eετ (‖u0‖2 + ‖u1 + εu0‖2

0 + ‖q‖2
0|W (τ)|2) + r21(ω)

)
+ eετ‖q‖2|W (τ)|2 + 2

(
α‖q‖2 +

‖Aq‖2
0

ε

) ∫ 0

τ
eεs|W (s)|2ds.

Put

r22(ω) =
4β2

εα

(
1 + ‖q‖2

0 sup
τ≤0

(−τ)eετ |W (τ)|2 + r21(ω)
)

+ ‖q‖2 sup
τ≤0

eετ |W (τ)|2 + 2
(
α‖q‖2 +

‖Aq‖2
0

ε

) ∫ 0

−∞
eεs|W (s)|2ds.

Since limt→∞W (t)/t = 0, the quantity r22(ω) is finite P -a.s. By (17) and
(23), we have∥∥A1/2Y2(0, ω;Y2(τ, ω))

∥∥2

E
≤ r22(ω) for all (u0, u1 + εu0)T ∈ B, τ ≤ T (B).

The proof is complete.
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Let B1/2(w) be the ball of D(A) × H1
0 (Ω) of radius r1(ω). From the

compact embedding D(A) × H1
0 (Ω) ↪→ E we see that B1/2(w) is compact.

For every bounded nonrandom set B of E, Pick any ψ(0) ∈ Ŝε(t, θ−tω)B.
From Lemma 3, we have Y2(0) = ψ(0) − Y1(0) ∈ B1/2(w) where Y2(t, ω) is
given by (22). Therefore, again by Lemma 3,

inf
`(0)∈B1/2(w)

‖ψ(0)− `(0)‖2
E ≤ ‖Y1(0)‖2

E ≤
(
‖u0‖2 + ‖u0 + εu1‖2

0

)
eετ , τ ≤ 0.

So dis
(
Ŝε(t, θ−tω)B,B1/2(w)

)
≤

(
‖u0‖2 + ‖u0 + εu1‖2

0

)
e−εt, for all t ≥ 0.

From the relation (12) between Sε(t, ω) and Ŝε(t, ω), one can easily obtain
that for any nonrandom bounded B ⊂ E P -a.s.

dis
(
Sε(t, θ−tω)B,B1/2(w)

)
→ 0 as t→ +∞.

Corollary 1. The RDS Sε(t, ω) associated with (7) possesses a uniformly
attracting compact set B1/2(w) ⊂ E. So the RDS Sε(t, ω) is uniformly
asymptotically compact in E.

Theorem 2. The RDS Sε(t, ω) has a nonempty compact random attractor
A(ω).

Proof. This follows from Lemmas 2 and 3 and Corollary 1.

4. Hausdorff dimension of the random attractor

To bound the attractor’s dimension we use the following result of Debussche
[6, 7]. He treats the case of a random attractor A(ω) invariant under a
random map S(t, ω): for some measure-preserving ergodic transformation θ
on (Θ,F ,P) we have

S(ω)A(ω) = A(θω).
One must make some assumptions about the map S(t, ω): first, we need
S(ω) to be almost surely uniformly differentiable on A(ω), which means
that P -almost surely, for every u ∈ A(ω), there exists a bounded linear
operator DS(u, ω) : X → X such that u+ h ∈ A(ω) implies∣∣S(ω)(u+ h)− S(ω)u−DS(u, ω)h

∣∣ ≤ K(ω)|h|1+δ,

where δ > 0 and K(ω) is a random variable with K(ω) ≥ 1 and E(logK) <
∞. Given a bounded linear operator L on X and n ∈ N , we set

αn(L) = sup
G⊂X

dim G≤n

inf
φ∈G
|φ|=1

|Lφ|

and
εn(L) = α1(L) · · ·αn(L).

Assume that
εd(DS(u, ω)) ≤ ε(ω),
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where ε(ω) is a random variable satisfying E(log ε(ω)) < 0 and the additional
(relatively easy) condition that, for some random variable α(ω) ≥ 1, we have

α1(DS(u, ω)) ≤ α(ω) with E(logα(ω)) <∞.(24)

Under these assumptions, the Hausdorff dimension satisfies dH(A(ω)) < d
almost surely.

Lemma 4. Consider the linearized equation of (13) with initial boundary
conditions

Φt +QΦ = G′ϑ(ϑ, ω)Φ, Φ(0) = (ξ, η)T , t ≥ 0,(25)

where Φ = (U, V )T ∈ E and ϑ(t) = (u(t), ut(t) + εu(t))T ∈ E, t ≥ 0 is the
solution of (13) with initial value ϑ(0) = (u0, u1 + εu0)T , and

G′ϑ(ϑ, ω) =
(

0 0
−β cosu 0

)
.

Then (25) is a P -a.s. well-posed problem in E and Sε(t, ω) is uniformly
differentiable for P -a.s. ω ∈ Θ on the random attractor A(ω), with differ-
ential DSε

(
ϑ(0), t, ω

)
(ξ, η)T = Φ(t, ω) : E 7→ E a bounded linear operator

satisfying P -a.s.

‖Sε(t, ω)(ϑ(0) + (ξ, η)T )− Sε(t, ω)ϑ(0)−DSε(ϑ(0), t, ω)(ξ, η)T ‖E(26)

≤ k(t)‖(ξ, η)T ‖2
E ,

where K(t) ≥ 1 is independent of ω, t ≥ 0.

Proof. It is clear that the problem (25) is P -a.s. well-posed in E.
We consider the Lipschitz property of Sε(t, ω). Set

ϑ(t) = Sε(t, ω)ϑ0 = (u(t), ut(t) + εu(t))T ,

ϑ(t) = Sε(t, ω)(ϑ(0) + (ξ, η)T ) = (u(t), ut(t) + εu(t))T .

Let ϑ̃(t) = ϑ(t)− ϑ(t), which satisfies

ϑ̃t +Qϑ̃ =
(

0
−β(sinu− sinu)

)
, ϑ̃(0) = (ξ, η)T , t ≥ 0.(27)

Taking the inner product of (27) with ϑ̃ in E we have, after a simple com-
putation,

‖ϑ̃(t)‖E = ‖ϑ(t)− ϑ(t)‖E ≤ ‖(ξ, η)T ‖Ee
|β|t.(28)

Next we show the differentiability of the RDS Sε(t, ω). Let Z(t) = ϑ(t) −
ϑ(t)− Φ(t). Then Z(t) satisfies

Zt +QZ =
(

0
−β(sinu− sinu− cosuU)

)
, Z(0) = 0, t ≥ 0.(29)
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It is easily checked that there exists a deterministic constant δ > 0 such that

| sinu− sinu− cosuU | ≤ |u− u|2 + |u− u− U |.
Taking the inner product of (29) with Z in E, by the preceging inequality
and Young’s inequality we see that there exists a deterministic constant
γ1 > 0 such that

d

dt
‖Z(t)‖2

E ≤ γ1‖Z(t)‖2
E + γ1‖ϑ̃(t)‖4

E .

From (28),

d

dt
‖Z(t)‖2

E ≤ γ1‖Z(t)‖2
E + γ1‖(ξ, η)T ‖4

Ee
4|β|t.

By the Gronwall lemma and zero initial value at t = τ , there exist deter-
ministic constants γ2, γ3 > 0 such that∥∥ϑ(t)− ϑ(t)− Φ(t)

∥∥2

E
≤ γ2e

γ3t‖(ξ, η)T ‖4
E .

The proof is complete.

Lemma 5. Let
{
(ξj , ωj)T

}m

j=1
be an orthonormal family of elements of

(E, ‖ · ‖E). We have
m∑

j=1

‖ξj‖2
0 ≤

m∑
j=1

λ−1
j .(30)

Proof. This is a direct consequence of [10, Lemma VI.6.3].

Theorem 3. If

β2 >
α2λ1

2(2α2 + 3λ1)
,

the Hausdorff dimension of the random attractor A(ω) for the RDS (7)
satisfies

dH(A(ω)) ≤ min
{
m ∈ N

∣∣∣ 1
m

m∑
j=1

λ−1
j <

2α2λ1

2β2(2α2 + 3λ1)− α2λ1

}
.(31)

Otherwise dH(A(ω)) = 0.

Proof. We apply Debussche’s result. Let DSε(ϑ(0), ω) = DSε(ϑ(0), 1, ω).
Firstly, check that there exists a deterministic constant α ≥ 1 such that
α1(DSε(ϑ(0), ω)) ≤ α from (26).

To find a d such that εd(DSε(ϑ(0), ω)) < 1, we use the trace formula (see
also Témam [10], Chapter V). This allows us to write εd in another way
more dependent on the dynamics. Since DSε(ϑ(0), ω)(ξ, η)T is the solution
of the linear equation

dΦ/dt = M(t, ϑ(t))Φ, Φ(0) = (ξ, η)T ,
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where
M(t, ϑ(t)) = −Q+G′ϑ(ϑ, ω),

and ϑ(t) is the solution of (13) with ϑ(0) = (u0, u1 + εu0)T , we can write

DSε(ϑ(0), ω) = exp
(∫ 1

0
M(s, ϑ(s)) ds

)
.

Let {Φj}m
j=1 be m solutions of (25) with initial values Φj(0), j = 1, 2, . . . ,m.

Let P (s) be an orthogonal projector of rank m at the time t = s, onto the
space spanned by {Φj}m

j=1 in E. Then

εd(DSε(ϑ(0), ω)) = sup
P (0)

exp
(

Tr
∫ 1

0
M(s, ϑ(s))P (s) ds

)
.(32)

Let
{
Ψj = (ξj , ηj)T )

}m

j=1
be a standard orthonormal basis of the space

spanned by {Φj}m
j=1. By Young’s inequality and Lemma 1, We have

(M(s, ϑ(s))Ψj ,Ψj)E = −(QΨj ,Ψj)E − (G′ϑ(ϑ, ω)Ψj ,Ψj)E(33)

≤ −ε
2

+
(β2

2α
− ε

4

)
‖ξj‖2

0.

If β2 >
α2λ1

2(2α2 + 3λ1)
, by (33) and (30) of Lemma 5,

Tr (M(s, ϑ(s))P (s)) =
m∑

j=1

(M(s, ϕ(s))Φj ,Φj)E(34)

≤ −εm
2

+
(β2

2α
− ε

4

) m∑
j=1

λ−1
j .

If there exists a number m ∈ N such that

1
m

m∑
j=1

λ−1
j <

2α2λ1

2β2(2α2 + 3λ1)− α2λ1
,

by (32) and (34), we obtain E(log εd(DSε(ϑ(0), ω)) < 0, then dH(A(ω)) ≤
m. If β2 ≤ α2λ1

2(2α2+3λ1)
, then we deduce from (33) that

(M(s, ϑ(s))Ψj ,Ψj)E < 0, j = 1, 2, . . . ,m.

Then dH(A(ω)) = 0.

Corollary 2. If

α2λ1

2(2α2 + 3λ1)
< β2 <

α2λ1(2λ1 + 1)
2(2α2 + 3λ1)

,

the Hausdorff dimension of the random attractor A(ω) for the RDS (7)
satisfies dH(A(ω)) = 0.
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Remark 2. The upper bound in the right side of (31) decreases as α grows
because the function 1/m

∑m
j=1 λ

−1
j is decreasing in m and tends to zero as

m→∞, while the function

2α2λ1

2β2(2α2 + 3λ1)− α2λ1

is increasing and uniformly bounded in α. So, the dimension dH(A(ω)) is
uniformly bounded for the damping α.
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