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RANDOM CHOICE AS BEHAVIORAL OPTIMIZATION

BY FARUK GUL, PAULO NATENZON, AND WOLFGANG PESENDORFER1

We develop an extension of Luce’s random choice model to study violations of the
weak axiom of revealed preference. We introduce the notion of a stochastic preference
and show that it implies the Luce model. Then, to address well-known difficulties of
the Luce model, we define the attribute rule and establish that the existence of a well-
defined stochastic preference over attributes characterizes it. We prove that the set of
attribute rules and random utility maximizers are essentially the same. Finally, we show
that both the Luce and attribute rules have a unique consistent extension to dynamic
problems.
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1. INTRODUCTION

IN EXPERIMENTAL SETTINGS, subjects routinely violate the weak axiom of re-
vealed preference.2 Often, these violations occur in a manner inconsistent with
any deterministic theory.3 There are many reasons why a static utility max-
imization model might be inadequate when analyzing consumption choices
across multiple periods: there may be income effects, dynamic effects such as
intertemporal complementarities, preference for variety, unobserved changes
in consumers’ budgets or expectations, and so forth. The theory we present
here aims to deal with weak axiom violations that occur even when none of
these factors are present. Instead, we explore random choice as a theory of
behavioral optimization, that is, not as a model of measurement error but as a
model of a consumer whose rationality is constrained by behavioral limitations
such as limited cognitive abilities or limited attention.

The Luce rule (Luce (1959)) is a well-known behavioral optimization model
that retains the simplicity of a deterministic theory. Each option s has a Luce
value, vs, so that the probability of choosing s from a set A containing s is

ρs(A) := vs∑
t∈A

vt
�

We can interpret the Luce value as a measure of desirability: s is stochastically
preferred to t if, for any set A that contains neither s nor t, the agent is more

1This research was supported by National Science Foundation Grant SES-1060073.
2See, for example, Sippel (1997) or Manzini, Mariotti, and Mittone (2010).
3In one of Sippel’s (1997) experiments, 11 of 12 subjects did not make the same choice when

the same choice set was presented again. In fact, empirical and experimental studies almost al-
ways interpret individual choice behavior as probabilistic. For example, Hey and Orme (1994),
a standard reference for the study of individual choice under uncertainty, interpreted subjects’
behavior as stochastic.
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likely to choose s from A ∪ {s} than t from A∪ {t}. Luce values represent this
stochastic preference: s is stochastically preferred to t if and only if vs ≥ vt .

These attractive features notwithstanding, the empirical literature on ran-
dom choice has documented systematic violations of the Luce model.4 Debreu
(1960) anticipated the best known such violation and identified the main short-
coming of Luce’s model: consider two items s1 and s2 that are very similar
(a yellow bus and a red bus) and a third dissimilar option t (a train). Then, it
may be that each item is chosen with probability 1/2 from every two-element
subset of {s1� s2� t}, but t is chosen from {s1� s2� t} more frequently than each of
the other two options. It is easy to check that this behavior cannot be gener-
ated (nor approximated) by any Luce rule. The problem that Debreu’s exam-
ple identifies is more generally referred to as the “duplicates problem” in the
discrete choice estimation literature.

Our model, the attribute rule, addresses the shortcomings of the Luce model
but retains Luce’s idea that choice is governed by desirability values. It does
so by reinterpreting the choice objects as bundles of attributes. Attributes, or at
least their relevance, are subjective; they are properties of the decision maker
and not of the choice objects. A main contribution of this paper is to provide a
model that derives the collection of relevant attributes from observed random
choices.

To see how our model works and how it relates to the Luce model, let Z
be the collection of attributes, let Xs be the set of attributes that s has, and let
X(A)= ⋃

s∈AXs. Hence, X(A) is the set of attributes represented in A. An at-
tribute value, w, maps attributes to positive reals, while an attribute intensity, η,
maps attribute and option pairs to natural numbers. Let w(X)= ∑

x∈X wx and
ηx(A) = ∑

s∈A ηx
s . Then, the probability of choosing s from A (containing s) is

ρs(A) :=
∑
x∈Xs

wx

w(X(A))
· ηx

s

ηx(A)
�

Hence, in an attribute rule, the decision maker first chooses a relevant attribute
according to a Luce-type formula and then picks one option that has that at-
tribute according to another Luce-type formula. The attribute rule reduces to
a Luce rule when no pair of alternatives shares a common attribute.

Let ρ(A�A ∪ C) = ∑
s∈A ρs(A ∪ C) be the probability that the agent

chooses an alternative in A. In the Luce model, if
∑

s∈A vs ≥ ∑
t∈B vt , then

ρ(A�A ∪ C) ≥ ρ(B�B ∪ C) for all C disjoint from A and B. Thus, the Luce
model satisfies the following independence assumption: if A∪B and C∪D are
disjoint, then

ρ(A�A∪C)≥ ρ(B�B ∪C) implies ρ(A�A∪D)≥ ρ(B�B ∪D)�(I)

4See Luce (1977) for a discussion of a number of these empirical studies.
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Our first result, Theorem 1, shows that in a rich setting, with sufficient variety
in options and option sets, the Luce rule is the only rule satisfying (I). We can
interpret (I) as a context-independence requirement: if the agent is more likely
to reject alternatives in C in favor of alternatives in A than he is to reject al-
ternatives in C in favor of alternatives in B, then this ranking of A and B is
preserved when C is replaced with D. The attribute rule weakens indepen-
dence by requiring that the sets C and D above share no common attributes
with A and B. Theorem 2, our main result, shows that a rich5 random choice
rule is an attribute rule if and only if it satisfies this weak version of indepen-
dence together with the requirement that duplicates can be removed without
affecting the choice probabilities of the remaining alternatives. Thus, allow-
ing for duplicates and attribute overlap is what distinguishes the attribute rule
from the Luce rule.

Section 5 applies the attribute rule to dynamic choice problems. In dynamic
choice, it is often the case that two distinct choices are consistent with the same
outcome. We would expect the overlap in outcomes to affect dynamic behavior
just as attribute-overlap affects static choice behavior. By identifying a choice’s
attributes as the outcomes consistent with that choice, the attribute model pro-
vides a natural framework for analyzing random choice in dynamic settings.
In Theorem 4, we characterize the recursive attribute rule, an adaptation of our
model to dynamic settings.

1.1. Related Literature

Block and Marschak (1960) showed that Luce rules are random utility max-
imizers. Holman and Marley (see Luce and Suppes (1965)) and McFadden
(1978) used the Gumbel distribution to construct a random utility for the Luce
model. Their construction facilitated the estimation of Luce values as a func-
tion of (observable) background parameters. Falmagne (1978) characterized
the set of all random utility maximizers. In Theorem 3 below, we show that the
Block and Marschak theorem extends to attribute rules: every attribute rule is
a random utility maximizer. The converse is almost true: while there are some
random utility maximizers that are not attribute rules, every random utility
maximizer can be approximated by an attribute rule.

Fudenberg and Strzalecki (2013) characterized a sequence of Luce rules in
a dynamic setting. Their model involved consumption in every period and ac-
commodated time discounting. However, their model did not address the over-
lap of continuation problems that is the focus of our analysis.

In Section 3 below, we discuss the relation between the attribute rule and two
existing approaches that deal with the duplicates problem: Tversky’s (1972)
elimination by aspects (EBA) model and the (cross-)nested logit models fa-
miliar from the discrete choice estimation literature (Ben-Akiva and Lerman
(1985), Train (2009)).

5As before, richness is a requirement on the variety of potential choices and choice sets.



1876 F. GUL, P. NATENZON, AND W. PESENDORFER

2. REVEALED STOCHASTIC PREFERENCE

Let S be a nonempty set of choice objects. A set, A, of countable subsets of
S is a proper collection if (i) {s} ∈A for all s ∈A, (ii) A ⊂ B ∈A implies A ∈A,
and (iii) A�B ∈ A implies A ∪ B ∈ A. One example of a proper collection is
the set of all finite subsets of S.

To simplify the statements below, we use the following notational conven-
tion:

AB := A∪B�

As :=A∪ {s}�
Given any proper collection A, let A+ =A\{∅}. A function ρ :A×A+ → [0�1]
is a (random) choice rule if, for all A ∈A+, ρ(·�A) is countably additive and

ρ(A�A)= 1�(rcr)

The equation (rcr) is the feasibility constraint; ρ must choose among options
available in A. Countable additivity is the requirement that ρ(·�A) is a prob-
ability. When A is the collection of all finite subsets of A, countable additivity
is just additivity. We write ρs(A) rather than ρ({s}�A).

Independence, stated below, requires that the stochastic preference is com-
plete. Formally, set A is stochastically preferred to set B if ρ(A�AC) >
ρ(B�BC) for all C ∈A+ such that AB∩C = ∅; the set A is stochastically indif-
ferent to B if ρ(A�AC) = ρ(B�BC) for C ∈ A+ such that AB ∩ C = ∅. Thus,
A is stochastically preferred to B if options in A are chosen more frequently
from AC than options in B from BC .

INDEPENDENCE: ρ(A�AC) ≥ ρ(B�BC) implies ρ(A�AD) ≥ ρ(B�BD) if
C�D ∈A+ and AB ∩CD= ∅.

If independence holds, stochastic preference is a complete binary relation
�ρ on A. The decision maker stochastically prefers A to B (A 	ρ B) if he is
more likely to choose from A when faced with AC than he is to choose from
B when confronting BC for any C that is disjoint from A and B.

Let v :A → R++ and vs := v({s}). Such a function v is a Luce value if it is
countably additive. Hence, v(∅) = 0 and, for all A ∈A+,

v(A)=
∑
s∈A

vs�

Call the choice rule ρ a Luce rule if there exists a Luce value v such that

ρs(A)= vs

v(A)
(�)
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whenever s ∈ A ∈ A. We say that the Luce value v represents ρ if equation (�)
holds for all such s�A. Clearly, every Luce value represents a unique choice
rule.

It is easy to see that Luce rules satisfy independence since

A�ρ B if and only if v(A)≥ v(B)�

Hence, v represents the stochastic preference of the Luce rule.
Theorem 1, below, shows that in a setting with a sufficient variety of options

and option sets, that is, in a rich setting, the Luce rule is the only choice rule
that satisfies independence and, therefore, the only rule that admits a stochas-
tic preference. Next, we state this richness condition.

RICHNESS: For A 
= ∅, C and δ ∈ (0�1), there is B such that B ∩ C = ∅ and
ρ(A�AB)= δ.

Richness requires that the probability of choosing something in A can be
varied continuously in the interval (0�1) by pairing A with an appropriate col-
lection of other alternatives (B). Moreover, there is enough variety that, for any
given choice set C, we can choose the alternatives in B to be disjoint from C.
This last condition is a technical requirement that is satisfied in all of the ex-
amples below. Together with independence, richness also ensures that every
option is chosen with positive probability from every option set that contains it.
Example 1, below, illustrates a rich setting.

EXAMPLE 1: Alternatives are differentiated along two dimensions, for ex-
ample, speed (x) and comfort (y). Let F ⊂ R+ be the set of feasible x� y com-
binations. Let F∗ be a finite subset of the efficient frontier of F and assume
that F∗ contains at least one extreme option, (0� y∗) or (x∗�0), and at least one
nonextreme option (x� y) such that x� y > 0. The choice objects are lotteries
π on F∗ that yield each element i ∈ F∗ with strictly positive probability πi > 0.
The two dimensions are complements, so that the lottery π has the Luce value
vπ = ∑

F πixiyi. Let A be the collection of finite subsets of such lotteries. It is
easy to verify that this example satisfies richness.

Example 1 illustrates how a sparse setting can be enriched with the help of
lotteries. Note that Example 1 works because the set F∗ contains at least one
alternative (a boundary alternative) which, by itself, would never be chosen.
In this case, full support lotteries yield a rich setting.

THEOREM 1: A rich choice rule satisfies independence if and only if it is a Luce
rule.
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It is easy to verify that two Luce values v, v̂ represent the same Luce rule if
and only if v̂ = αv for some α> 0. We interpret richness as a technical assump-
tion analogous to small event continuity (P6) in Savage (1954). Both assump-
tions are idealizations that facilitate the calibration of probabilities. In a sparse
setting, there may be choice rules that satisfy independence but are not Luce
rules. However, the fact that independence is satisfied for those choice rules
can be viewed as an artifact of the sparse setting.

Example 1 provides a rich setting with a continuum of alternatives. Exam-
ple 2, below, illustrates a rich setting with a countable number of alternatives.

EXAMPLE 2: Let S be the set of all strictly positive rational numbers and
let A be the collection of subsets of S that are summable. That is, A =
{A ⊂ S | ∑

s∈A s < ∞}. It is easy to verify that A is a proper collection. Let
v(A) = ∑

s∈A s and let ρ be the Luce rule that v represents. In Appendix, we
demonstrate that ρ is rich.

3. ATTRIBUTES

The following is a slight modification of an example proposed by Debreu
(1960).

EXAMPLE 3: Let S = {s1� s2� s3� t}. Assume that s1� s2� s3 are transparently
similar options, for example, buses of three different colors, while t is a train.
Let A = {s1� s2� s3} be the set of buses. If the agent stochastically prefers buses
over trains but is unresponsive to color, then we might have

ρsi

({si� t}) = 0�6 and ρsi(At)= 0�2

for all i. That ρsi({si� t}) > ρt({si� t}) suggests that every bus is stochastically
preferred to the train, whereas ρsi(At) < ρt(At) suggests that the train is
stochastically preferred to every bus. Thus, we have a violation of indepen-
dence.

Debreu’s example suggests that independence is violated because the deci-
sion maker has a stochastic preference over attributes and options that share
attributes compete more for the decision maker’s attention than those that do
not share attributes.6 In the above example, options in A all have the same
single attribute and, as a result, the decision maker treats them as if they were
a single option. The Luce model is inadequate for describing the resulting be-
havior.

In the following example, alternatives have multiple attributes.

6Tversky (1972) called this the similarity effect.
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EXAMPLE 4: Let S = {r� s� t} and assume that the options represent three
different airlines that service two destinations. Option r services both desti-
nations, while s services only the first and t only the second destination. The
decision maker is stochastically indifferent between the two destinations and
does not care about the airline. The following choice rule describes such a sit-
uation:

ρr

({r� s}) = 3/4; ρr

({r� t}) = 3/4; ρr

({r� s� t}) = 1/2�

It is easily verified that the choice rule above is not a Luce rule. (For any Luce
rule, the first two choice probabilities imply that ρr({r� s� t})= 3/5.) Of the two
attributes, r and s share the first while r and t share the second. Therefore,
intuitively, the set {s� t} is a duplicate of r.

Examples 3 and 4 suggest specific choices of attributes. In Example 3, it
seems natural that every collection of buses is treated like a single alterna-
tive. In Example 4, the choice of airlines is the result of a more basic choice
of destinations. In each case, we could preserve stochastic independence (and
hence the Luce model) if we focused on what is really driving the choice. The
difficulty is that the designation of attributes is rarely clear-cut. Even in the
stylized examples above, the choice rule may be responsive to the buses’ color
or to other characteristics of the airlines. If that is the case, then buses are not
exact duplicates and r is not an exact duplicate of {s� t}. Thus, a satisfactory
model must also deal with less clear-cut examples.

A more basic challenge is that the designation of attributes is subjective and
must be derived from behavior (i.e., the choice rule). If the decision maker
cares about the color of the means of transportation, then the fact that buses
share similar physical characteristics is irrelevant and, instead, what matters
is the color-attribute. Thus, how the decision maker groups objects into dupli-
cates cannot be decided based on physical characteristics of the objects. There-
fore, duplicates and attributes are a property of the choice rule and not of the
objects.

In Example 3, the yellow and red buses are duplicates because we can re-
place a yellow bus with a red bus in any option set without affecting the choice
probabilities of remaining alternatives. The next definition extends this notion
of a duplicate to option sets: A and B are duplicates if replacing A with B has
no effect on the probabilities of choosing elements that are not in A or B.

DEFINITION: A�B are duplicates if AB∩C = ∅ and s ∈C implies ρs(AC) =
ρs(BC).

We write A ∼ B if A is a duplicate of B. The relation ∼ is symmetric and
reflexive. Next, we define the notion of overlap of two option sets: when A
and B have elements in common, they overlap. Even if A and B have no el-
ements in common, they overlap if there are duplicates of A and B that have
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elements in common. In Example 4 above, the two-destination airline r and
the one-destination airline s overlap because B = {s� t} is a duplicate of r and
B ∩ {s} 
= ∅.

DEFINITION: A�B ∈ A are non-overlapping if A ∼ A′, B ∼ B′ implies A′ ∩
B′ = ∅.

We write A ⊥ B if A and B are non-overlapping. Our first substantive as-
sumption says that duplicates are treated like a single option. Specifically, if A
and B′ are duplicates, then adding A to a choice set that contains B′ does not
alter the odds of choosing options that do not overlap with A.

ELIMINATION OF DUPLICATES: A∼ B′ ⊂ B ⊥ C and s ∈ C implies ρs(BC) =
ρs(ABC).

As we illustrated in Example 3 above, duplicates may lead to violations of
independence. Recall that independence requires that ρ(A�AC) ≥ ρ(B�BC)
implies ρ(A�AD) ≥ ρ(B�BD) for C ∩ AB = D ∩ AB = ∅ and C�D ∈ A+.
In Example 3, independence fails because D or C overlap with A or B. Weak
independence, below, applies only if A and B have no overlap with C and D
and allows it to fail otherwise.

WEAK INDEPENDENCE: ρ(A�AC) ≥ ρ(B�BC) implies ρ(A�AD) ≥
ρ(B�BD) if C�D ∈A+ and AB ⊥ CD.

Theorem 2, below, shows that strongly rich7 choice rules that satisfy elimi-
nation of duplicates and weak independence are attribute rules. A collection of
attributes, a function that assigns each attribute a value, and a function that as-
signs to each object and attribute an intensity define an attribute system. Every
attribute system represents a unique choice rule. Henceforth,

A=Af �

where Af is the (proper) collection of all finite subsets of S. Therefore, when
we wish to be explicit about the domain of a choice rule ρ, we can simply write
(ρ�S). Let |A| be the cardinality of the set A.

An attribute set Z is an arbitrary index set and each element of Z is an at-
tribute. An attribute intensity is a function η :Z × S → N ∪ {0} that measures
the degree to which s has attribute x. We write ηx

s rather than η(x� s) and
let ηx(A) = ∑

s∈A ηx
s . We say that option s has attribute x if ηx

s > 0. We as-
sume that each object has a nonempty and finite set of attributes: for each
s ∈ S there exists x ∈ Z such that ηx

s > 0 and Xs = {x ∈ Z | ηx
s > 0} is finite.

7For a definition of strong richness, see below.
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Let X(A) := {x ∈ Z | ηx(A) > 0} for all A ∈ A+. We call X(A) the set of at-
tributes that are active in A; these are the attributes that at least one member
of A possesses.

Throughout this section, we assume that {s ∈ S | ηx
s > 0} = {s ∈ S | ηy

s > 0}
implies x = y . Hence, without risk of confusion, we identify each attribute x
with the set {s ∈ S | ηx

s > 0} and write s ∈ x to mean s has attribute x.8
An attribute value is a function w :Z → R++ that measures the desirability of

attribute x. Again, we write wx rather than w(x) and let w(X) := ∑
x∈X wx for

all nonempty finite X ⊂ Z. We call (w�η) an attribute system.
We say that η is simple if ηx

s = 0 or 1 for all x� s. An object s ∈ S is an
archetype for x ∈ Z if ηy

s = 1 if y = x and 0 otherwise. An attribute sys-
tem is complete if every attribute has multiple (i.e., at least two) archetypes.
The choice rule ρ is a (complete) attribute rule if there exists a (complete)
attribute system (w�η) such that

ρs(A) =
∑

x∈X(A)

wx

w(X(A))
· ηx

s

ηx(A)
�(1)

We say that the attribute system (w�η) represents ρ if equation (1) holds for all
s ∈ A ∈ A+. Clearly, every attribute system (w�η) on A represents a unique
choice rule ρ.

EXAMPLE 5: To define an attribute rule that is consistent with Example 3
above, let Z = {x� y}, where x = A is the bus-attribute and y = {t} is the train-
attribute. Let wx = 3, wy = 2 and let η be the simple intensity such that ηx

s = 1
if and only if s ∈ x = A and ηy

s = 1 if and only if s = t. Then, ρsi({si� t}) = 0�6
and ρsi(At)= 0�2, as required.

EXAMPLE 6: For an attribute rule that is consistent with Example 4, let
Z = {x� y}, where x = {r� s} and y = {r� t}. Set wx = wy = 1 and let η be
the simple attribute intensity such that ηx

r = ηx
s = 1, ηy

r = η
y
t = 1. Then,

ρr({r� s})= ρr({r� t})= 3/4 and ρr({r� s� t})= 1/2, as required.

Note that every Luce rule is an attribute rule. To see this, let v be a Luce
value. Choose the attribute set Z = S and set ws = vs for all s ∈ S. Define the
simple attribute intensity η such that ηx

s = 1 if and only if x = s. Then, (1) can
be restated as follows:

ρs(B)= wx

w(X(B))
= vs

v(B)
�

8Theorem 2 shows that this entails no loss of generality in sufficiently rich environments. When
S is finite, we permit {s ∈ S | ηx

s > 0} = {s ∈ S | ηz
s > 0} for x 
= z and with some abuse of notation,

we still write t ∈ x to mean t ∈ {s ∈ S | ηx
s > 0}.
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Hence, if each object has an exclusive attribute, that is, if each s is an archetype
and has no duplicates, the attribute rule reduces to the Luce model.

To establish our main result, we require that there is sufficient variety in the
set of options and option sets. The richness assumption of Theorem 2 below
strengthens the richness assumption of Theorem 1. First, we define fine option
sets.

DEFINITION: B is fine if, for every partition A1A2 · · ·An = A ∼ B, there is a
partition B1B2 · · ·Bn = B with Bi ∼ Ai for all i.

In Example 4 above, {s� t} is a fine set, whereas its duplicate {r} is not fine.9
Let M= {A ∈A | A is fine} be the fine option sets. We strengthen the richness
assumption of the previous section in two ways. First, we require an analogous
richness of non-overlapping option sets. Second, we require a rich collection
of fine duplicates.

STRONG RICHNESS: For A 
= ∅, C and δ ∈ (0�1), there is (i) B such that B ⊥
C and ρ(A�AB)= δ and (ii) D ∈M such that D∩C = ∅ and D ∼A.

Strong richness is satisfied if each attribute has an archetype and each
archetype has many duplicates. The following example of a strongly rich ran-
dom choice rule illustrates such a setting.

EXAMPLE 7: Let S = N×R++ and let Z = R++. For s = (i� r) ∈ S, let wr = r
and let the simple attribute intensity η be such that ηr

ir′ = 1 if and only if r ′ = r.
In this example, a choice object s is a pair (i� r) ∈N×R++. The first coordinate
describes an irrelevant feature analogous to the color of the bus in Debreu’s
example. Since each s = (i� r) has a single attribute r ∈ Z, every option is an
archetype. It is easy to check that (w�η) is a complete attribute system and
that the ρ it represents satisfies strong richness.

The choice rule above is an example of a particular type of attribute rule that
we call extended Luce rules: take any Luce rule ρo on some set of alternatives S.
Then, let Se = I × S, where I is any index set. Finally, set Z = S, ws = vs,
and ηs

is = 1 and ηs
is′ = 0 if s 
= s′. Thus, for i� j ∈ I, s ∈ S, (i� s) and (j� s) are

duplicates and each Si = {(i� s) | s ∈ S} is a “copy” of the original S; that is,
ρis(Ai) = ρo

s (A) for all s ∈ A ⊂ S, where Ai = {(i� s) | s ∈ A}. It is easy to see
that if ρo is a rich Luce rule, then ρ is a strongly rich attribute rule. Hence,
while a rich Luce rule is not a strongly rich attribute rule, it has a strongly rich
extension.

9The proof of Theorem 2 reveals that when ρ is an attribute rule, an option set A is fine if and
only if it consists of archetypes.
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THEOREM 2: A strongly rich choice rule satisfies weak independence and elim-
ination of duplicates if and only if it is a complete attribute rule.

Theorem 2 shows that in an environment with a sufficient variety of options
and option sets, the only rule that satisfies weak independence and elimina-
tion of duplicates is the attribute rule. In a sparse environment, other rules
may satisfy those two requirements but those rules cannot be extended with-
out violating one or both of them. The necessity part of Theorem 2 requires
completeness—a richness requirement specific to the attribute rule. It ensures
that options are non-overlapping if and only if they share no common attribute.
Note that any attribute rule can be completed by adding options (at most two
archetypes per attribute).

Without strong richness, there can be several representations for the same
attribute rule. However, strong richness yields the following uniqueness result:

PROPOSITION 1: The attribute systems (w�η) and (ŵ� η̂) represent the same
strongly rich, complete attribute rule if and only if ŵ = α ·w and η̂x = βx ·ηx for
α�βx > 0.

Note that Proposition 1 applies not just to complete attribute systems but to
all attribute systems. It states that the w is unique up to a positive multiplica-
tive constant, while the η is unique up to a positive constant for each x. The
uniqueness of η implies that the set of attributes, Z, is uniquely identified.

If η is simple, the choice rule that (w�η) represents satisfies weak stochastic
transitivity:

ρr

({r� s})> 1/2 and ρs

({s� t})> 1/2 implies ρr

({r� t})> 1/2�

There is a good deal of evidence suggesting that choice rules may violate this
property.10 The following example illustrates how a non-simple attribute rule
can accommodate failures of weak stochastic transitivity.

EXAMPLE 8: Let A = {r� s� t} and assume there are three attributes, Z =
{1�2�3}. Each attribute value is 1, that is, wx = 1 for all x ∈ Z. Option r has
attributes 1, 3, s has attributes 1, 2, and t has attributes 2, 3. In particular, η1

r =
η2

s = η3
t = 4, η3

r = η1
s = η2

t = 1, and η2
r = η3

s = η1
t = 0. This attribute system

represents the choice rule ρ such that

ρr

({r� s}) = ρs

({s� t}) = ρt

({r� t}) = 3/5�

In this example, binary comparisons are “won” by the alternative that has a
higher value of the common attribute. For example, r is chosen over s with

10For a detailed review of this evidence, see Rieskamp, Busemeyer, and Mellers (2006).
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probability 3/5 because η1
r > η1

s > 0. This “matchup-effect” creates a viola-
tion of stochastic transitivity: r matches up well against s, s matches up well
against t, and t matches up well against r.

4. RELATED MODELS OF RANDOM CHOICE

4.1. Random Utility Maximization

The theoretical literature on random choice has focused largely on interpret-
ing random choice as random utility maximization. In this section, we briefly
discuss this literature and relate the attribute model to random utility maxi-
mization. Often, the random utility literature assumes finitely many alterna-
tives. Thus, to relate the attribute model to that literature, it is convenient to
consider a finite setting.

Let S = {1� � � � � n} be the set of alternatives and let A+ be the set of all
nonempty subsets of S. In this case, a choice rule ρ can be identified with a
vector q ∈R

n(2n−1)
+ , where qiA = ρ({i}�A) for all A ∈A+. Such a vector q satis-

fies

qiA ≤ 1�(2)

qiA > 0 implies i ∈ A�∑
i∈S

qiA = 1�

Let Q be the set of all q ∈ R
n(2n−1)
+ that satisfy the conditions in (2). Let Q� be

the subset of Q corresponding to Luce rules and Qa be the subset correspond-
ing to attribute rules. One other class of extensively studied choice rules are
random utility maximizers. Most econometric models of discrete choice, such
as logit, probit, nested logit, etc., are examples of random utility maximizers.

Let U be the set of all bijections from S to S. For any i ∈A ∈A+, let

[iA] = {u ∈ U | ui ≥ uj ∀j ∈ A}�
A function π :U → [0�1] is a random utility if

∑
u∈U π(u) = 1. We identify each

such function with an element in R
|U |
+ . Let Π = {π ∈ R

|U |
+ | ∑

u∈U π(u) = 1} be
the set of all random utilities. Hence, Π is the |U | − 1 = n! − 1-dimensional
unit simplex. Let Qr be the set of choice rules that maximize a random utility.

DEFINITION: The choice rule q maximizes the random utility π if qiA =∑
u∈[iA] πu for all i�A.

Let Qr denote the set of random utility maximizers, that is, the set of choice
rules that maximize some random utility. Falmagne (1978) provided necessary
and sufficient conditions for a choice rule to be an element of Qr . Block and



RANDOM CHOICE AS BEHAVIORAL OPTIMIZATION 1885

Marschak (1960) showed that Q� ⊂ Qr . Holman and Marley (see Luce and
Suppes (1965)) and McFadden (1978) show how to find a random utility π
for any Luce rule. Theorem 3, below, shows that every attribute rule is a ran-
dom utility maximizer, that is, Qa ⊂ Qr . Hence, Theorem 3 extends Block and
Marschak’s result to the attribute rule. For any subset X ⊂ R

k, let clX denote
the closure of X and let convX denote its convex hull.

THEOREM 3: Q� ⊂ Qa ⊂Qr = clQa = cl convQ�.

Given the fact that Qr is closed, convex, and contains Q� (i.e., the Block–
Marschak theorem), the argument establishing that Qr is equal to the closed
convex hull of Q� is not difficult. However, unlike the closure operator, taking
convex hulls is not innocuous; as can be seen from Debreu’s example, the be-
havior associated with a mixture of two Luce rules can be very different from
the behavior associated with any single Luce rule.

Showing that the closure of Qa contains the convex hull of Q� is straightfor-
ward. From this and the fact that the closed convex hull of Q� is equal to Qr ,
it follows that the closure of Qa contains Qr . The most challenging step in the
proof of the theorem above is establishing that every attribute rule is a random
utility maximizer.

Theorem 2 shows that once the main hypothesis of the Luce model (i.e., con-
sistent revealed stochastic preference) is modified to deal with the duplicates
problem by restricting independence to non-overlapping option sets and elimi-
nating duplicates, we end up with the attribute rules. The random utility model,
on the other hand, interprets the choice behavior as the result of probabilistic
choice of utility functions. In general, this interpretation does not necessitate
a well-defined revealed stochastic preference (i.e., any form of independence).
Nevertheless, Theorem 3 establishes that the two approaches yield essentially
the same result (Qr = clQa).

4.2. Elimination by Aspects

Tversky (1972) introduced the elimination-by-aspects (EBA) rule that
shares certain features with the attribute rule. A choice rule q is an elimination-
by-aspects (EBA) rule if there is a scale u :A+ → R+ such that, for all
i ∈A ∈A+,

qiA =

∑
B∈A

u(B)qiA∩B

∑
B:B∩A
=∅

u(B)
�

We can interpret this rule as a modification of the attribute rule. First, the de-
cision maker chooses an attribute and discards all choices that do not have it.
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To choose among the remaining alternatives, the decision maker selects a sec-
ond attribute and again discards all options that do not have it. This process is
repeated until a single alternative is left.

Some attribute rules cannot be approximated by any EBA rule. Specifically,
Example 4 above (three airlines with two destinations) is not close to any EBA
rule. Tversky (1972) showed that every EBA rule is a random utility maximizer.
It then follows from Theorem 3 that every EBA can be approximated by some
attribute rule and hence, that attribute rules are more permissive than EBA
rules.

4.3. The Nested Logit

The econometric discrete choice literature uses the associated random utility
model to analyze estimation techniques for the Luce model.11 Generalizations,
such as the cross-nested logit model, allow for correlations in the underlying
distribution of utilities to address phenomena related to the duplicates prob-
lem (see, e.g., Ben-Akiva and Lerman (1985), Wen and Koppelman (2001),
and Train (2009)).

In a cross-nested logit, the modeler specifies a collection of (possibly over-
lapping) subsets that shape the correlation structure of the utility distribution.
Like our attributes, these subsets represent shared features. There are two
key differences between our approach and cross-nested logit models. First,
our model does not assume a set of attributes, but identifies them from ob-
served choice frequencies. Second, the cross-nested logit model has no ana-
logue of our key parameters, attribute values, and intensities. Attribute values
and intensities in our model are context-independent, that is, the same values
apply for every choice problem. It is the context-independence of those pa-
rameters that allows us to interpret the attribute rule as a generalization of
the context-independence that characterizes Luce’s original model. For a fixed
choice problem, a two-stage cross-nested logit can be written as a two-level
Luce rule. However, if the decision problem changes, the parameters of the
corresponding two-level Luce rule change as well. Thus, the parameters of the
cross-nested logit cannot be interpreted as attribute values and intensities.

5. DYNAMIC CHOICE

In this section, we extend our model to dynamic choice, that is, to a domain
in which options are nodes in decision trees. Decision trees reflect the timing
and order of decisions, that is, physical descriptions of the choice environment
that are, in principle, observable. As we illustrate in the following example, the

11The Luce model corresponds to a setting where utilities are independent and distributed
according to a Gumbel distribution. See Holman and Marley (see Luce and Suppes (1965)) and
McFadden (1978).
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duplicates problem is especially relevant in dynamic settings. Even if distinct
alternatives are non-overlapping, distinct terminal nodes may yield the same
physical outcome and, therefore, decision trees may create overlap even if in-
dividual alternatives are non-overlapping.

More specifically, suppose s1� s2� s3, and s4 are four non-overlapping alter-
natives. Decision problem 1 is a static problem, as in the previous section:
D1 = {s1� s2� s3� s4}. Decision problem 2 is a two-stage problem with two ac-
tions in stage 1; action 1 leads to the terminal node s1; action 2 leads to the
(second-stage) decision problem {s2� s3� s4}:

D2 = {
s1� {s2� s3� s4}

}
�

Decision problem 3 differs from 2 by the addition of another stage-1 action
that excludes s1 and s3:

D3 = {
s1� {s2� s4}� {s2� s3� s4}

}
�

Clearly, the actions {s2� s4} and {s2� s3� s4} overlap in the sense defined above.
After all, anything that can be achieved by choosing {s2� s4} can also be achieved
by choosing {s2� s3� s4}. The objective of this section is to characterize dynamic
choice behavior that results from applying our notions of duplicates and over-
lap to dynamic settings. Specifically, we will introduce a new axiom, consistency,
that requires s1 to be chosen with the same probability from all three decision
problems described above. Theorem 4, below, characterizes attribute rules that
satisfy consistency.

For the nonempty set K, let F(K) be the set of all nonempty finite subsets
of K. Define, inductively, T1 := F(S) and Tn+1 := F(Tn ∪ S) for all n ≥ 1. The
set Tn is the set of all decision problems with no more than n decision stages.
Let T := ⋃

n≥1 Tn; the set of decision nodes is Ω = T ∪ S and D = F(Ω) is the
set of all decision problems. Since all option sets are finite, the following fact
is straightforward:

FACT: D = T .

We write D�D′ for elements of D and s� t� s′� t ′ for elements of S. The func-
tion φ : (D∪{∅})×D → [0�1] is a dynamic choice rule if, for all D ∈D, φ(·�D)
is additive and φ(D�D) = 1. For a dynamic choice rule, the choice objects are
decision nodes ω ∈ Ω which can be final outcomes (ω ∈ S) or (continuation)
decision problems (ω ∈D). Hence Ω is analogous to S in the static case.

The definitions of duplicates, non-overlapping, and fine can be applied to a
dynamic choice rule φ without modification. The same is true for the axioms
Elimination of Duplicates, Weak Independence, Strong Richness, and the notion
of an attribute rule. We add one new axiom for dynamic choice rules:

CONSISTENCY: {D} is a duplicate of D.



1888 F. GUL, P. NATENZON, AND W. PESENDORFER

Consistency states that delaying the choice from D has no effect on the
choice probabilities of alternatives outside D. Hence, D1 = {s1� {s2� s3}} leads
to the same probability of choosing s1 as D0 = {s1� s2� s3}. In D0, the choice is
between s1� s2, and s3 in the first (and final) stage. In D1, the stage-1 choice is
between s1 and not-s1 and the stage-2 choice is between s2 and s3.

An attribute system (w�η) where w :Z → R++ and η :Z × Ω → R++ is re-
cursive if, for ω =D ∈D,

ηx
ω =

∑
ω′∈D

ηx
ω′ �(r)

Hence, for a recursive attribute rule, the attribute intensity of the sub-problem
D is simply the sum of the attribute intensities of its decision nodes.

As in Section 3, Xω = {x ∈ Z | ηx
ω > 0} and X(D) = ⋃

ω∈DXω. Then, φ is a
recursive attribute rule if there is a recursive attribute system (w�η) such that

φω(D)=
∑

x∈X(D)

wx

w(X(D))
· ηx

ω

ηx(D)
(3)

for all D ∈ D and ω ∈ D. As in Section 3, an option ω ∈ Ω is an archetype for
x ∈ Z if ηx

ω = 1 and ηy
ω = 0 for all y 
= x. An attribute system is complete if every

attribute has multiple (i.e., at least two) archetypes. The following theorem
characterizes recursive attribute rules.

THEOREM 4: A strongly rich dynamic choice rule satisfies weak independence,
elimination of duplicates, and consistency if and only if it is a complete recursive
attribute rule.

By restricting a dynamic choice rule φ to the objects S, we get another choice
rule (φ�S). We call this choice rule the static rule induced by φ; conversely,
we call (φ�Ω) an extension of (φ�S). As we demonstrate in Proposition 2,
below, the attribute rule can be used to extend Luce rules (or attribute rules)
to dynamic settings. Moreover, if the static setting is rich (or strongly rich in
the case of an attribute rule), then this extension is unique.

PROPOSITION 2: The extension of any rich Luce rule or strongly rich, complete
attribute rule to a recursive attribute rule is unique, complete, and satisfies strong
richness.

Proposition 2 shows that dynamic extensions of rich Luce rules are strongly
rich attribute rules. Notice that in this setting, outcomes (s ∈ S) are non-
overlapping; the extension to dynamic decision problems creates duplicates
and overlap and, as Proposition 2 shows, this is enough to guarantee strong
richness.
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So far, our dynamic model analyzes decision making in the first stage of a
multistage choice problem. To extend the model to subsequent stages requires
an assumption as to how randomness evolves over time. In the following, we
analyze the behavior of a consequentialist (see Machina (1989)) agent, that is,
an agent whose choice probabilities are independent of the choice history.

For any decision problem D ∈ D, let σ(D) ⊂ S be the terminal nodes of D.
The vector (ω0� � � � �ωn) is a path of D if ω0 ∈ σ(D), ωi ∈ ωi+1 for all i < n and
ωn =D. The (consequentialist) probability of path h= (ω0� � � � �ωn) of D is

ph(D)= φω0(ω1) ·φω1(ω2) · · ·φωn−1(ωn)�(c)

We use the term “consequentialist” because, in the formula (c) above, the
conditional probability of choosing ωi at node ωi+1 of D is the same as the
probability of choosing ωi in the decision problem ωi+1. Thus, dynamic choice
probabilities are history-independent. The outcome probability of s ∈ S is the
sum of the probabilities of all paths in D with ω0 = s. We write ps(D) for the
outcome probability of s in problem D. A decision problem D ∈ D is simple if
all of its terminal nodes are distinct; let Ds ⊂ D be the set of simple decision
problems. In that case, every s ∈ σ(D) has a unique associated path. We call
the consequentialist probability of this path, the outcome probability of s in D.
We say that a dynamic choice rule is invariant if the outcome probability of s in
D is the same as in D′ whenever D�D′ are two simple decision problems with
the same outcomes. That is, ps(D) = φs(σ(D)) for all D ∈ Ds. Proposition 3,
below, shows that every extension of a rich Luce rule is invariant. Moreover,
extensions of rich Luce rules are the only recursive attribute rules that satisfy
this property.

PROPOSITION 3: A strongly rich, complete, recursive attribute rule is invariant
if and only if it is the extension of a rich Luce rule.

Invariance breaks down once we consider decision problems with multiple
paths that lead to the same option or to overlapping options. Hence, the pre-
sentation of the choice problem matters. In general, there are two conflicting
effects: adding more copies of s to subtrees increases opportunities to choose
s but also increases the inclination to delay choosing s at earlier nodes. The
first effect increases the outcome probability of s while the second effect de-
creases it.

More specifically, adding another s to any node of a simple decision problem
that already has s as a possible outcome increases the outcome probability of s.
However, adding one more s to an arbitrary decision problem may decrease
the outcome probability of s. For example, comparing D = {s� t� {s� t� {s� t}}} to
D′ = {s� t� {s� t� {t}}}, we note that ps(D) = φs({s� t}) < ps(D

′). Hence, remov-
ing the final opportunity to choose s from D increases the overall probability
of choosing s.
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While there is some theoretical work on dynamic random choice, empiri-
cal and experimental work on the topic is limited. Hence, there are few doc-
umented dynamic random choice regularities, and no well-documented dy-
namic random choice paradoxes. When more evidence becomes available, our
consequentialism assumption may prove to be restrictive. In that case, it may
be useful to consider versions of the recursive attribute model that permit
history-dependence. There is, in principle, no difficulty with constructing such
models nor with extending our notions of richness, duplicates, independence,
and consistency to them.

6. CONCLUSIONS

When agents follow the Luce rule, choice frequencies reflect stochastic pref-
erence: alternative s is stochastically preferred to alternative t if, in any deci-
sion problem, s is more likely to be chosen than t. We show that in a suffi-
ciently rich setting, Luce rules are the only stochastic choice rules that admit a
context-independent stochastic preference. While context-independence is an
attractive feature, it is too restrictive in many settings. For example, in dynamic
choice problems, we would expect that adding a future opportunity to choose
alternative s disproportionately affects the probability that s is chosen in the
current stage of the problem. Thus, future opportunities to choose the same al-
ternative create a wedge between stochastic preference and choice frequencies
and context-independence must be relaxed. We introduced the attribute model
to account for this effect. In our dynamic extension of the Luce model, choices
are themselves (continuation) decision problems and the attributes of a choice
are simply the collection of possible outcomes associated with the continuation
problem.

The technical innovation of the paper is to use richness assumptions to fa-
cilitate an exact calibration of the model’s parameters. In a strongly rich set-
ting, attribute rule parameters are uniquely identified up to a positive scalar.
In other words, we can infer the set of relevant attributes, their values, and at-
tribute intensities uniquely from the stochastic choice rule. While strongly rich
environments have desirable theoretical properties, they represent an ideal-
ized setting that may not fit a particular application. For example, strong rich-
ness requires that there are multiple archetypes (single-attribute choices) for
each attribute. In some settings, such as the dynamic extensions of rich Luce
rules analyzed in Section 5, this assumption is automatically satisfied. In other
settings, there may be no single-attribute alternatives. The attribute rule can
be applied in non-rich settings as well, but the parameters of the model will
not be uniquely identified. This is analogous to other choice-theoretic mod-
els, such as subjective expected utility theory, where probabilities are uniquely
pinned down if there is a finely divisible state space but will not be uniquely
identified in a discrete setting.

Both the Luce rule and the attribute rule are random utility maximizers and,
therefore, inherit the following monotonicity property: when an alternative is
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added to the choice set, the choice probability of the original members of the
choice set cannot increase. This property is in conflict with some of the evi-
dence from the marketing literature, most notably the attraction effect (Hu-
ber, Payne, and Puto (1982)) and the related compromise effect (Simonson
(1989)).

There are at least two possible avenues to extend the attribute rule beyond
the scope of random utility. First, recall that the attribute values in an attribute
rule must be positive, that is, each additional attribute must increase the fre-
quency that an object is chosen. If we relax this requirement and allow neg-
ative attributes, that is, attributes that reduce an object’s choice probability,
then the resulting random choice rules are no longer random utility maximiz-
ers. Specifically, this generalization allows for non-monotonicities as required
by the attraction effect. The attraction effect may come about when the decoy
option shares an unattractive attribute (a high price) with an existing option.
The added alternative dilutes the effect of the negative attribute, thereby cre-
ating an attraction effect.

Second, recall that in our analysis of dynamic choice, we interpreted the tree
as a description of the timing and order of decisions, that is, a physical descrip-
tion of the choice environment that may, in principle, be observable. Alterna-
tively, we may also interpret decision trees as frames, that is, descriptions of
how the decision maker perceives the choice problem. Presumably, such per-
ceptions are subjective and can only be identified through their implications on
observed behavior.

We noted above that adding more opportunities to choose s may decrease
the outcome probability of s. Hence, by identifying a suitable frame and focus-
ing on final choice probabilities, the recursive attribute model can be used to
analyze some violations of monotonicity. An analysis of these and other gener-
alizations of the attribute rule is left for future research.

APPENDIX

A.1. Example 2

We must prove that the ρ defined in Example 2 is rich. Let S = {s1� s2� � � �}
be an enumeration of S and consider any A�C ∈ A+, and δ ∈ (0�1). Let δ1 =∑

s∈A s, δ2 = (1−δ)δ1
δ

and set B0 = ∅. Define Bj for j = 1�2� � � � as follows: Bj+1 =
Bj ∪ {sj+1} if sj+1 /∈ AC and

∑
s∈Bj

s + sj+1 ≤ δ2; otherwise Bj+1 = Bj . (We set∑
s∈B0

s = 0.) Let B = ⋃
j≥1 Bj and note that

∑
s∈B s = δ2. Hence, B ∈A, B∩C =

∅ and ρ(A�AB)= δ1
δ1+δ2

= δ as desired.

A.2. Proof of Theorem 1

Verifying that every Luce rule satisfies independence is straightforward.
Hence, we will only prove that a rich choice rule that satisfies independence
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is a Luce rule. We assume richness (R) and independence (I) throughout the
following lemmas.

Define a binary relation �ρ on A+ as follows: A �ρ B if and only if
ρ(A�AC) ≥ ρ(B�BC) for all C ∈ A+ such that AB ∩ C = ∅. Let ∼ρ be the
symmetric and 	ρ be the strict part of �ρ.

LEMMA A.1: �ρ is complete and transitive.

PROOF: Clearly, ρ satisfies independence only if �ρ is complete. Next, as-
sume that A �ρ B and B �ρ C. By richness, there exists a D ∈ A such that
D ∩ ABC = ∅ and ρ(C�CD) < 1. Hence, D 
= ∅. Note that ρ(A�AD) ≥
ρ(B�BD)≥ ρ(C�CD); thus independence implies A �ρ C as desired. Q.E.D.

DEFINITION: The sequence A1� � � � �An ∈A is a test sequence if the elements
are pairwise disjoint and ρ(Ai�AiAi+1)= 1/2 for all i = 1� � � � � n− 1.

LEMMA A.2: For any test sequence A1� � � � �An ∈ A+, ρ(Ai�AiAj) = 1/2 for
all i 
= j.

PROOF: If the result is true for n = 3, then it is true for all n. So as-
sume n = 3 and suppose ρ(A1�A1A3) > 1/2. Independence implies that
A1 	ρ A2. Since ρ(A1�A1A2) = 1/2 = ρ(A3�A3A2), independence also im-
plies A1 ∼ρ A3. Then, by Lemma A.1, we have A3 	ρ A2. But ρ(A3�A1A3) <
1/2 = ρ(A2�A1A2), contradicting A3 	ρ A2. A similar argument reveals
the impossibility of ρ(A1�A1A3) < 1/2. Hence, ρ(A1�A1A3) = 1/2 as de-
sired. Q.E.D.

LEMMA A.3: If A1� � � � �An is a test sequence and A ∈ A+ with A ∩
A1A2 · · ·An = ∅, then ρ(A�AAi)= ρ(A�AA1) for all i = 1� � � � � n.

PROOF: If necessary, use richness to extend the test sequence so that n≥ 3.
Then, Lemma A.2 implies Ai ∼ρ Aj for all i� j and hence ρ(A�AAi) =
ρ(A�AA1) for all i. Q.E.D.

LEMMA A.4: For all A�B ∈ A+ with A ∩ B = ∅, A �ρ B if and only if
ρ(A�AB)≥ 1/2.

PROOF: By richness, we can choose D ∈ A+ such that D ∩ AB = ∅ and
ρ(B�BD)= 1/2. Let B1 = B and B2 = D and note that B1�B2 is a test sequence.
Then, by Lemma A.3, ρ(A�AB) = ρ(A�AD) and therefore ρ(A�AB) ≥ 1/2
if and only if ρ(A�AD) ≥ ρ(B�BD), that is, ρ(A�AB) ≥ 1/2 if and only if
A �ρ B. Q.E.D.

LEMMA A.5: If C1�C2�C3�C4 is a test sequence, then ρ(Ci�C1C2C3C4) = 1/4
for all i = 1�2�3�4.
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PROOF: Let C = C1C2C3C4, and without loss of generality, assume
ρ(Ci�C) ≥ ρ(Cj�C) whenever i ≤ j. Hence, by Lemma A.4,

C1C2 �ρ C3C4 and C1C3 �ρ C2C4�(A.1)

By richness, there exists C5 such that C1�C2�C3�C4�C5 is a test sequence.
By Lemmas A.2 and A.4, Ci ∼ρ Cj for all i� j and hence, by Lemma A.1, we
have

ρ(C1C2�C1C2C3) = ρ(C1C2�C1C2C5)(A.2)

≥ ρ(C3C4�C3C4C5)

= ρ(C3C4�C2C3C4)�

And by the same argument,

ρ(C1C3�C1C2C3)≥ ρ(C2C4�C2C3C4)�(A.3)

But we also have

2 = 2
[
ρ(C1�C1C2C3)+ ρ(C2�C1C2C3)+ ρ(C3�C1C2C3)

]
(A.4)

= ρ(C1C2�C1C2C3)+ ρ(C1C3�C1C2C3)+ ρ(C2C3�C1C2C3)

≥ ρ(C3C4�C2C3C4)+ ρ(C2C4�C2C3C4)+ ρ(C2C3�C2C3C4)

= 2
[
ρ(C2�C2C3C4)+ ρ(C3�C2C3C4)+ ρ(C4�C2C3C4)

]
= 2�

Equation (A.4) implies that the inequalities in (A.2) and (A.3) must in fact be
equalities. Hence ρ(C1C2�C1C2C5) = ρ(C1C2�C1C2C3) = ρ(C3C4�C2C3C4) =
ρ(C3C4�C3C4C5) and therefore, by independence C1C2 ∼ρ C3C4. By Lem-
ma A.4, we have ρ(C1C2�C) = ρ(C3C4�C) = 1/2. Finally since ρ(Ci�C) ≥
ρ(Cj�C) for i ≤ j, we must have ρ(Ci�C) = 1/4 for i = 1�2�3�4. Q.E.D.

LEMMA A.6: If A1� � � � �An is a test sequence, then AiAj ∼ρ AkA� for all i 
= j
and k 
= �.

PROOF: If i� j�k� � are all distinct, then Lemma A.5 implies ρ(AiAj�
AiAjAkA�) = 1/2 and Lemma A.4 implies AiAj ∼ρ AkA�. If {i� j�k� �} has
three distinct elements, assume, without loss of generality, that j = �. Let
B1 = Ai, B2 =Aj , B3 = Ak, and note that B1�B2�B3 is a test sequence. By rich-
ness, we can choose B4�B5 such that B1�B2�B3�B4�B5 is a test sequence. By
Lemmas A.4 and A.5, B1B2 ∼ρ B4B5 and B2B3 ∼ρ B4B5. Then, Lemma A.1 im-
plies B1B2 ∼ρ B2B3, that is, AiAj ∼ρ AkA�. Finally, if {i� j�k� �} has two distinct
elements, then AiAj = AkA�, and by Lemma A.1, we have AiAj ∼ρ AkA�.

Q.E.D.
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LEMMA A.7: If Ai1� � � � �Ai2n
are distinct elements and Aj1� � � � �Aj2n

are dis-
tinct elements of the test sequence A1� � � � �Am, then

⋃2n

k=1 Aik ∼ρ

⋃2n

k=1 Ajk .

PROOF: The proof is by induction. When n = 1, the statement is true
by Lemma A.6. Next, assume it is true for n and let Ai1� � � � �Ai2n+1 and
Aj1� � � � �Aj2n+1 be two collections of distinct elements of the same test se-
quence. Use richness to extend the test sequence A1� � � � �Am with an ad-
ditional 2n+1 elements, namely Am+1� � � � �Am+2n+1 . Let Bk = Ai2k−1Ai2k , let
Ck = Aj2k−1Aj2k , and let Dk = Am+2k−1Am+2k for k = 1� � � � �2n. Lemma A.6
implies that Bk ∼ρ B� for all k��. Hence B1� � � � �B2n is a test sequence. By
the same argument, C1� � � � �C2n is a test sequence and D1� � � � �D2n is a test
sequence. By construction, Bk and D� are disjoint for every k and �. More-
over, Lemma A.6 implies that Bk ∼ρ D� for all k��. Hence we can relabel
B1� � � � �B2n and D1� � � � �D2n so that they become distinct elements of the same
test sequence. By the inductive hypothesis,

⋃2n

k=1 Bk ∼ρ

⋃2n

k=1 Dk. By an entirely
analogous argument,

⋃2n

k=1 Ck ∼ρ

⋃2n

k=1 Dk. Finally, by Lemma A.1, we obtain⋃2n+1

k=1 Aik = ⋃2n

k=1 Bk ∼ρ

⋃2n

k=1 Ck = ⋃2n+1

k=1 Ajk as desired. Q.E.D.

LEMMA A.8: If A1� � � � �A2n+1 is a test sequence, then ρ(Aj�A1A2 · · ·
A2n+1) = 1/(2n + 1) for j = 1�2� � � � �2n + 1.

PROOF: By richness, we can find A2n+2 such that A1� � � � �A2n+1�A2n+2 is a
test sequence. Then for any j > 1, Lemmas A.1, A.4, and A.7 imply

ρ(A1�A1 · · ·A2n+1) = ρ(A2n+2�A2 · · ·A2n+2)

= ρ(A2n+2�A1 · · ·Aj−1Aj+1 · · ·A2n+2)

= ρ(Aj�A1 · · ·A2n+1)�

Then, the feasibility constraint and the additivity of ρ yield the desired re-
sult. Q.E.D.

LEMMA A.9: If Ai1� � � � �Ain are distinct elements and Aj1� � � � �Ajn are distinct
elements of the test sequence A1� � � � �Am, then

⋃n

k=1 Aik ∼ρ

⋃n

k=1 Ajk .

PROOF: Choose an integer k such that 2k > m ≥ n. By R, we can find
2k + 1 − n distinct elements Am+1� � � � �A2k+1� � � � �A2k+1+m−n such that A1� � � � �
A2k+1+m−n is a test sequence. Let B = Am+1 · · ·A2k+1+m−n. Then Lemma A.8
implies

ρ(Ai1 · · ·Ain�Ai1 · · ·AinB) = n/
(
2k + 1

)
= ρ(Aj1 · · ·Ajn�Aj1 · · ·AjnB)�

Then, I yields the desired result. Q.E.D.
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LEMMA A.10: If A1� � � � �An is a test sequence, then ρ(Aj�A1A2 · · ·An) =
1/n for all j.

PROOF: By R, we can find An+1 such that A1� � � � �An+1 is a test sequence.
Then for any j > 1, Lemmas A.1, A.4, and A.9 imply

ρ(A1�A1 · · ·An) = ρ(An+1�A2 · · ·An+1)

= ρ(An+1�A1 · · ·Aj−1Aj+1 · · ·An+1)

= ρ(Aj�A1 · · ·An)�

Then, the feasibility constraint and the additivity of ρ yield the desired re-
sult. Q.E.D.

LEMMA A.11: If Ai1� � � � �Aik are k distinct elements of the test sequence
A1� � � � �An and A= ⋃k

j=1 Aij , B = ⋃n

j=1 Aj , then ρ(A�B)= k
n
.

PROOF: By Lemma A.10, we have ρ(Ai�B)= ρ(Aj�B)= 1
n

for all i� j. Then,
the additivity of ρ yields the desired result. Q.E.D.

LEMMA A.12: If A�B ∈A+ and A∩B = ∅, then 0 < ρ(A�AB) < 1.

PROOF: Suppose ρ(A�AB)= 1; then R implies that there exists C such that
C ∩ AB = ∅ and ρ(C�AC) > 1/2. Hence, by Lemma A.4, C 	ρ A and there-
fore ρ(C�CB) > ρ(A�AB)= 1, a contradiction. By symmetry, we cannot have
ρ(A�AB)= 0 either. Q.E.D.

Assume ρ satisfies R and I. Then, choose any Ao ∈ A+ and define,
v̄(Ao)= 1. Then, set v̄(∅)= 0 and, for all B ∈A+ such that B ∩Ao = ∅, let

v̄(B) = ρ(B�BAo)

1 − ρ(B�BAo)
�

Finally, for any B ∈A+ such that Ao∩B 
= ∅, find A ∈A such that A∩BAo = ∅
and ρ(A�AB)= 1/2 and let v̄(B) = v̄(A).

LEMMA A.13: The function v̄ is well-defined and satisfies the following:
(i) v̄ :A→R+ and v(A)= 0 if and only if A= ∅. (ii) v̄(A)≥ v̄(B) if and only if
A �ρ B.

PROOF: To prove that v̄ is well-defined, we first note that by Lemma A.12,
v̄(A) < ∞ for all A disjoint from Ao. Next, suppose A1�A2 are such that
AoB ∩ A1 = AoB ∩ A2 = ∅ and ρ(A1�A1B) = ρ(A2�A2B). Then A1 ∼ρ A2

and hence, ρ(A1�A1A0) = ρ(A2�A2A0) and therefore v̄(A1) = v̄(A2), prov-
ing that v̄ is well-defined.

By Lemma A.12, v̄ satisfies (i). To prove (ii), choose C such that C∩BAAo =
∅ and ρ(C�CAo) = 1/2. Then, by Lemma A.4, Ao ∼ρ C. For any D ∈ A+ with
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D ∩ C = ∅, if D ∩ Ao = ∅, then Ao ∼ρ C implies ρ(D�DC) = ρ(D�DAo) =
v̄(D)

1+v̄(D)
. If D∩Ao 
= ∅, then since v̄ is well-defined, we have ρ(D�DC) = v̄(D)

1+v̄(D)
.

Hence, A �ρ B if and only if ρ(A�AC) ≥ ρ(B�BC) if and only if v̄(A) ≥
v̄(B). Q.E.D.

Let nC denote the union of some n-element test sequence Ci such that each
element Ci ∼ρ C for some C. Then, by Lemma A.11, ρ(nC�AnC) is the same
for all such sequences provided nC ∩ A = ∅. Hence, from now on, we will
let nC denote the union of any n-element test sequence with each element
satisfying Ci ∼ρ C.

LEMMA A.14: If nC ∼ρ Ao, then mC ∼ρ B if and only if v̄(B) = m
n

.

PROOF: By R it suffices to show the statement holds for A0�B�nC�mC
pairwise disjoint. Assume nC ∼ρ Ao and hence ρ(B�BAo) = ρ(B�BnC).
Then, Lemma A.11 yields ρ(mC�(n + m)C) = m

n+m
. By definition, ρ(mC�

(n + m)C) = ρ(B�BnC) if and only if B ∼ρ mC . Hence, ρ(B�BAo) = m
n+m

if
and only if mC ∼ρ B and therefore v̄(B) = m

n
if and only if mC ∼ρ B. Q.E.D.

LEMMA A.15: ρ(A�AB)= v̄(A)

v̄(A)+v̄(B)
for all A�B ∈A+ such that A∩B = ∅.

PROOF: First assume that v̄(A)� v̄(B) are rational numbers. Then, there ex-
ist positive integers k�m�n such that v̄(A) = k

n
and v̄(B) = m

n
. Choose C such

that nC ∼ρ Ao, that is, C such that C ∩ Ao = ∅ and ρ(C�CAo) = 1
n+1 . Note

that by Lemma A.14, kC ∼ρ A and mC ∼ρ B and hence ρ(kC� (k + m)C) =
ρ(A�AmC) = ρ(A�AB). But Lemma A.11 implies ρ(kC� (k + m)C) = k

k+m
,

which yields the desired result.
If either v̄(A) or v̄(B) is not a rational number, then for any ε > 0,

choose rational numbers, r1� r2 such that r1 < v̄(A), r2 > v̄(B), and r1
r1+r2

>
v̄(A)

v̄(A)+v̄(B)
− ε. Then, choose C�D such that A�B�C�D are all pairwise dis-

joint and v̄(C) = r1 and v̄(D) = r2. By the preceding argument, ρ(C�CD) =
r1

r1+r2
, and by Lemma A.13(ii), ρ(A�AB) ≥ ρ(A�AD) ≥ ρ(C�CD). Hence,

ρ(A�AB) ≥ v̄(A)

v̄(A)+v̄(B)
− ε for every ε > 0, that is, ρ(A�AB) ≥ v̄(A)

v̄(A)+v̄(B)
. A sym-

metric argument ensures that ρ(A�AB)≤ v̄(A)

v̄(A)+v̄(B)
and hence the desired con-

clusion. Q.E.D.

To complete the proof of the theorem, let vs = v̄({s}).

A.3. Proofs of Theorem 2 and Proposition 1

We assume strong richness (SR), weak independence (WI), and elimination
of duplicates (E) throughout the lemmas below. (Lemmas A.16–A.24 use only
SR. The remainder of the proof also uses WI and E.)
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LEMMA A.16: If A∩C = B ∩D= ∅, A∼ B, and C ∼D, then AC ∼ BD.

PROOF: Assume A ∩ C = B ∩ D = ∅ = ABCD ∩ E and C ∼ D. Let s ∈ E
and A ∼ B. Then, choose B∗ ∼ B such that B∗ ∩ ABCDE = ∅ and C∗ ∼ C
such that C∗ ∩ ABB∗CDE = ∅. By SR, this can be done. Then, ρ(s�ACE) =
ρ(s�AC∗E) = ρ(s�BC∗E) = ρ(s�B∗C∗E) = ρ(s�B∗CE) = ρ(s�B∗DE) =
ρ(s�BDE) as desired. Q.E.D.

LEMMA A.17: ∼ is an equivalence relation.

PROOF: By construction, ∼ is reflexive and symmetric. To prove it is tran-
sitive, assume A ∼ B ∼ C and let s ∈ D for D such that AC ∩ D = ∅.
By SR, we can choose E ∼ {s} such that E ∩ ABCD = ∅ and we can
choose D′ ∼ (D \ {s}) such that D′ ∩ ABCDE = ∅. Then ρ(t�AD′s) =
ρ(t�AD′E) for all t ∈ AD′, hence we have ρ(s�AD′s) = ρ(E�AD′E). Simi-
larly, we have ρ(s�CD′s) = ρ(E�CD′E). Therefore, ρ(s�AD) = ρ(s�AD′s) =
ρ(E�AD′E) = ρ(E�BD′E) = ρ(E�CD′E) = ρ(s�CD′s) = ρ(s�CD) as de-
sired. Q.E.D.

LEMMA A.18: A ∼ ∅ implies A = ∅.

PROOF: If A 
= ∅, then, by SR, there is B such that B ∩ A = ∅ and
ρ(A�AB) > 0. Hence, ρ(B�AB) < 1 = ρ(B�B) and, therefore, ρ(s�B) 
=
ρ(s�AB) for some s ∈ B, proving that A is not a duplicate of ∅. Q.E.D.

LEMMA A.19: If A ∼ B ∈ M and A 
= ∅, then there exists an onto mapping
f :B → A such that s ∼ f−1(s) for all s ∈ A.

PROOF: Consider an enumeration s1� s2� � � � � s|A| of the elements of A. Since
B is fine, there is a partition B1B2 · · ·B|A| = B such that Bi ∼ {si} for each i.
To obtain the desired f , for each i and each t ∈ Bi, let f (t)= si. Q.E.D.

LEMMA A.20: A ∈M if and only if |A| ≥ |B| for all B ∼A.

PROOF: If |A| = 0, the result follows from Lemma A.18. Otherwise, suppose
A ∈ M and {s1� s2� � � � � s|B|} = B ∼ A. Since A is fine, we can find a partition
A1A2 · · ·A|B| =A such that Ai ∼ {si} for all i. By Lemma A.18, Ai 
= ∅ for all i.
Hence |A| = ∑

i |Ai| ≥ |B|. Conversely, suppose that |A| ≥ |B| for all B ∼ A.
By SR, we can find C ∈M with C ∼ A. By the first part of the proof, |C| ≥ |A|,
and by hypothesis, |C| ≤ |A|. Since C is fine, there is a bijection f :C → A such
that f (s) ∼ s for all s ∈ C. Together with Lemma A.16 and Lemma A.17, this
implies A ∈M. Q.E.D.

LEMMA A.21: If A ⊂ B ∈M, then A ∈M.



1898 F. GUL, P. NATENZON, AND W. PESENDORFER

PROOF: Suppose A /∈M and A ⊂ B. By Lemma A.20, there is some C ∼A
with |C| > |A|. By SR, we can choose D ∈ M such that D ∩ C = ∅ and D ∼
(B \ A). By Lemma A.20, |D| ≥ |(B \ A)|. Hence |CD| = |C| + |D| > |A| +
|B \ A| = |B|. By Lemma A.16, CD ∼ B, thus Lemma A.20 implies B /∈M.

Q.E.D.

Let T = {s ∈ S | {s} ∈ M} and let B0 be the set of all finite subsets of T . Let
θ :T → T be a selection from the equivalence classes of (∼�B), that is, θ is any
function such that (i) θ(s) ∼ s for all s ∈ T and (ii) s ∼ t implies θ(s) = θ(t).
Finally, let T1 = {θ(s) | s ∈ T } and let B1 be the set of all finite subsets of T1.

LEMMA A.22: B0 =M.

PROOF: M ⊂ B0 follows from Lemma A.21. To show B0 ⊂ M, let A =
{s1� s2� � � � � s|A|} ∈ B0. By SR, there is D ∈M with D ∼A. Lemma A.20 implies
|D| ≥ |A|. Since D is fine, there is a partition D1D2 · · ·D|A| = D with Di ∼ {si}
for each i. Since each {si} is fine, Lemma A.20 implies |Di| ≤ 1 for all i. Hence
|D| = |A|, and Lemma A.20 implies A ∈M. Q.E.D.

LEMMA A.23: A⊂ B ⊥ C implies A⊥ C.

PROOF: Assume A′ ∼ A and C ′ ∼ C and choose D ∼ B \ A such that D ∩
A′ = ∅. Then, by Lemma A.16, D ∪ A′ ∼ (B \ A) ∪ A = B. Since B ⊥ C, we
have (D∪A′)∩C ′ = ∅ and hence A′ ∩C ′ = ∅, proving that A ⊥ C. Q.E.D.

LEMMA A.24: (i) If s� t ∈ T1 and s 
= t, then {s} ⊥ {t}. (ii) For A�B ∈ B0,
A ⊥ B or there is s ∈ A� t ∈ B such that s ∼ t. (iii) For A�B ∈ B1, A ∩ B = ∅ if
and only if A ⊥ B.

PROOF: (i) Suppose s� t ∈ T1, s ∼ A ∈ A, t ∼ B ∈ A and A ∩ B 
= ∅. By
Lemma A.22, s� t ∈ M. Hence, by Lemmas A.18 and A.20, |A| = |B| = 1 and,
therefore, A = B and, therefore, s ∼ t by Lemma A.17. Then, by the definition
of θ, s = θ(s)= θ(t)= t.

(ii) Assume A�B ∈ B0, A′ ∼ B, B′ ∼ B, and s∗ ∈ A′ ∩ B′. By Lemmas A.19
and A.22, there are functions f�g mapping A�B onto A′�B′ such that f−1(s) ∼
s and g−1(t) ∼ t for all s ∈ A′ and t ∈ B′. It follows from Lemma A.17 that
f−1(s∗) ∼ g−1(s∗). By Lemma A.21, f−1(s∗)�g−1(s∗) ∈ M, and hence, apply-
ing Lemma A.19 again yields an onto function h : f−1(s∗) → g−1(s∗) such that
h−1(s) ∼ s for all s ∈ g−1(s∗). By Lemma A.20, h must be a bijection. Hence,
there are s ∈A and t ∈ B such that t ∼ s.

(iii) Assume A�B ∈ B1. That A ⊥ B implies A ∩ B = ∅ is obvious. To prove
the converse, assume that A ⊥ B does not hold. Then, by part (ii) of this
lemma, there are s ∈ A and t ∈ A such that t ∼ s. Then, t = s by part (i) of
this lemma and hence A∩B 
= ∅. Q.E.D.
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LEMMA A.25: ρ(s�AB) = ρ(s�AB0) if s ∈ A, B0 ∈ B0, s ⊥ B0, and B =
{θ(t) | t ∈ B0}.

PROOF: Let B0 = B1B2 · · ·Bk, where s ∼ t if and only if i = j for all s ∈ Bi and
t ∈ Bj . Hence, B1� � � � �Bk is the partition of B0 that the equivalence relation ∼
yields. First, we note that i 
= j implies Bi ⊥ Bj . To see this, note that if Bi and
Bj overlap, then by Lemma A.24(ii), there are s ∈ Bi and t ∈ Bj such that s ∼ t
and hence i = j.

Let n(B0) = ∑k

i=1 |Bi| − k. The proof is by induction on n(B0). If n(B0) = 0,
then each Bi is a singleton and hence B ∼ B0 by Lemma A.16 and the result fol-
lows. Suppose the result holds whenever n(B̂0) = n and let n(B0) = n+ 1 ≥ 1.
Hence, there is some i such that |Bi| > 1. Choose t� t ′ ∈ Bi such that t 
= t ′

and let B̂0 = B0 \ {t}. By Lemma A.23, Bi ⊥ {s} and, therefore, E implies
ρ(s�AB0)= ρ(s�AB̂0). By the inductive hypothesis, ρ(s�AB̂0)= ρ(s�AB) and
hence ρ(s�AB0)= ρ(s�AB) as desired. Q.E.D.

For B ∈ B1 such that B 
= ∅, define the choice rule ρ1 such that

ρ1(s�B)= ρ(s�B)�

LEMMA A.26: ρ1 satisfies R, I and therefore is a Luce rule.

PROOF: Assume A�C ∈ B1, A 
= ∅, and δ ∈ (0�1). By SR, there is B̂ ∈ A
such that ρ(A�AB̂) = δ and B̂ ⊥ AC . Again by SR, we can choose B0 ∈
M such that B0 ∼ B̂ and B0 ∩ A = ∅. Hence, δ = ρ(A�AB̂) = ρ(A�AB0).
Lemma A.22 implies B0 ∈ B0. Lemma A.17 and B0 ∼ B̂ ⊥AC imply B0 ⊥AC .
Then, Lemma A.23 implies B0 ⊥ C and B0 ⊥ A. Let B = {θ(s) | s ∈ B0}.
Lemma A.25 yields δ = ρ(A�AB0) = ρ(A�AB). Lemma A.23 implies that,
for all s ∈ B0, we have s ⊥ C and, therefore, θ(s) ∩ C = ∅. Hence, B ∩ C = ∅
and ρ1 satisfies R. Lemma A.24(iii) and WI imply that ρ1 satisfies I and hence,
by Theorem 1, it is a Luce rule. Q.E.D.

For s ∈ T1, define

xs = {t ∈ S | ∃B ∈ B0 such that s ∈ B and B ∼ t}
and define Z = {xs | s ∈ T1}. Let v be the Luce value that represents ρ1 and
define

w(xs)= vs�

For s ∈ S, choose any B ∈ B0 such that s ∼ B and define

ηxt (s) = ∣∣{t ′ ∈ B | t = θ
(
t ′
)}∣∣�
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LEMMA A.27: (i) w : Z → R++ is well-defined. (ii) η : Z × S → N ∪ {0} is
well-defined.

PROOF: (i) We must show that xs = xt implies s = t. Since t ∈ xt , xt = xs

implies t ∈ xs and hence t ∼ B for some B such that s ∈ B. By Lemma A.22,
{t} ∈ M, which, by Lemma A.20, implies |B| = 1 and hence t ∼ s. It follows
that t = θ(t)= θ(s)= s, as desired.

(ii) We must show that s ∼ B ∈ B0 and s ∼ B′ ∈ B0 implies |{t ′ ∈ B | t =
θ(t ′)}| = |{t ′ ∈ B′ | t = θ(t ′)}|. Note that, by Lemma A.17, s ∼ B ∈ B0 and
s ∼ B′ ∈ B0 implies B ∼ B′. Hence, by Lemmas A.19 and A.20, there is a bijec-
tion f :B′ → B such that t ′ ∼ f (t ′) for all t ∈ B. Thus, t ′ ∈ B′ such that t = θ(t ′)
implies θ(f (t ′)) = θ(t ′) for f (t ′) ∈ B, proving that |{t ′ ∈ B | t = θ(t ′)}| =
|{t ′ ∈ B′ | t = θ(t ′)}|. Q.E.D.

LEMMA A.28: ηxt (s) > 0 if and only if s ∈ xt .

PROOF: Note that ηxs(s) = 1 for all s ∈ T1. Suppose s ∈ xt . Then, there exists
B ∈ B0 such that t ∈ B and B ∼ s. Since θ(t) = t, it follows that ηxt (s) > 0.
Conversely, if ηxt (s) > 0, then there exists B ∈ B0 such that s ∼ B and θ(t ′)= t
for some t ′ ∈ B. If t ∈ B, then s ∈ xt as desired. If not, let B′ = (B \ {t ′}) ∪ {t}
and note that B′ ∼ B by Lemmas A.16 and A.17 and hence, s ∈ xt . Q.E.D.

LEMMA A.29: Z is an attribute set.

PROOF: By Lemma A.28,

Xt :=
{
x ∈ Z | ηx(t) > 0

} = {x ∈Z | t ∈ x}�
For all t ∈ S, there exists B ∈ B0 such that t ∼ B (by SR and Lemma A.22).
Then, pick any t ′ ∈ B and let s = θ(t ′) ∈ T1. If s ∈ B, then t ∈ xs. Otherwise, let
B′ = {s} ∪ (B \ {t ′}). By Lemmas A.16 and A.17, B′ ∼ B ∼ t and hence t ∼ B′

and again, t ∈ xs. Therefore, Xt 
= ∅.
To prove that Xt is finite, we will show that t ∼ B ∈ B0 implies |Xt | ≤ |B|. Sup-

pose t ∼ B ∈ B0 and |Xt | > |B|. Let B∗ = {θ(s) | s ∈ B}. Then |B∗| ≤ |B| < |Xt |.
So there must exist at least one s′ ∈ T1 such that xs′ ∈ Xt and s′ /∈ B∗. Since
xs′ ∈ Xt , there exists some A ∈ B0 such that s′ ∈ A and A ∼ t. Lemma A.17
implies A ∼ B. Lemmas A.19 and A.20 imply there exists some s′′ ∈ B such
that s′′ ∼ s′. But then s′ = θ(s′)= θ(s′′), which would imply s′ ∈ B∗, a contradic-
tion. Q.E.D.

LEMMA A.30: s ∼ t, s� t ∈ B0 ∈ B0 implies ρ(s�B0)= ρ(t�B0).

PROOF: Choose D ∼ t ∼ s such that D∩B0 = ∅ and let C = B0 \ {s� t}. Then,
ρ(t ′�CDs)= ρ(t ′�CDt) for all t ′ ∈CD. Hence ρ(s�CDs) = ρ(t�CDt). There-
fore, ρ(s�B0) = ρ(s�Cst) = ρ(s�CDs) = ρ(t�CDt) = ρ(t�Cst) = ρ(t�B0) as
desired. Q.E.D.
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Lemmas A.27–A.29 imply that (w�η) is an attribute system. Let ρ̂ be the
choice rule that (w�η) represents. For s ∈ T1, Xs = {xs} and by SR, {t |
θ(t)= s} must be infinite. Hence, there are infinitely many archetypes for every
xs ∈ Z and therefore ρ̂ is complete. The following lemma completes the proof
of the “only if” part of Theorem 2.

LEMMA A.31: ρ= ρ̂.

PROOF: First, we show that ρs∗(B0) = ρ̂s∗(B0) whenever s∗ ∈ B0 ∈ B0. As in
Lemma A.25, let B0 = B1B2 · · ·Bk, where, for all s ∈ Bi and t ∈ Bj , s ∼ t if
and only if i = j. Hence, B1� � � � �Bk is the partition on B0 that ∼ yields. In the
proof of Lemma A.25, we showed that i 
= j implies Bi ⊥ Bj . Assume without
loss of generality that s∗ ∈ B1. If k = 1, then ρs(B0) = ρt(B0) for all s� t ∈ B0

by Lemma A.30 and hence ρs∗(B0) = 1
|B0| = ρ̂s∗(B0) as desired. If k > 1, let

B = {θ(s) | s ∈ B0} and let ŝ = θ(s∗). By definition,

ρs(B)= vs∑
t∈B

vt
= wxs∑

t∈B
wxt

= ρ̂s(B)

for all s ∈ B. Let B̂ = ŝB2 · · ·Bk and B∗ = s∗B2 · · ·Bk. Since B1 ⊥ B2 · · ·Bk, E
implies

ρs∗
(
B∗) = ρŝ(B̂)= ρŝ(B)= wxŝ∑

t∈B
wxt

= ρ̂s(B)= ρ̂ŝ(B̂)= ρ̂s∗
(
B∗)

and ρs(B
∗) = ρs(B0) for all s ∈ B2 · · ·Bk, that is,

∑
s∈B1 ρs(B0) = ρ̂s∗(B

∗). But
then Lemma A.30 implies

ρs∗(B0)= 1
|B1| ρ̂s∗

(
B∗) = ρ̂s∗(B0)

as desired.
To complete the proof of the lemma, consider an arbitrary A = {s1� � � � � sn}

and define Ci�Ai for i = 0� � � � � n inductively as follows: C0 = ∅, A0 = A.
For i > 0, choose Ci ∈ B0 such that Ci ∼ si and Ci ∩ AAi−1 = ∅ and let
Ai = Ci(Ai−1 \ {si}). Then, since An ∈ B0,

ρs1(A) = ρ(C1�A1)= · · · = ρ(C1�An)= ρ̂(C1�An)�

Finally, for each i, since si ∼ Ci ∈ B0, we have Xsi = X(Ci) and therefore
X(A) = X(An), which together with equation (1) and the definition of η im-
plies

ρ̂(C1�An) = ρ̂s1(A)

as desired. Q.E.D.
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To prove the “if” part of Theorem 2, let ρ be a complete attribute rule that
(w�η) represents and assume ρ satisfies SR. Let Z be the attribute set.

LEMMA A.32: Z is infinite and, for every x ∈ Z, there is an infinite number of
archetypes.

PROOF: If Z is finite, then ρ has a denumerable image, contradicting part
(i) of SR. Suppose some x ∈ Z has a finite number of archetypes. Since Z
is infinite, we can find some y ∈ Z with y 
= x. Completeness guarantees that
we can find two archetypes s 
= s′ for x, and an archetype t for y . Consider
any D ∈ A+ which does not contain t nor contains any archetypes for x.
If ρ(s′� ss′t) = ρ(s′�Ds′t), then equation (1) implies ρ(t� ss′t) > ρ(t�Ds′t).
Hence, for any such D, we have D� s, contradicting part (ii) of SR. Q.E.D.

LEMMA A.33: A∼ B if and only if ηx(A) = ηx(B) for all x ∈ Z.

PROOF: Sufficiency follows from equation (1). Next, suppose ηx(A) >
ηx(B) for some x ∈ Z. Lemma A.32 ensures that we can find y /∈X(A)∪X(B),
an archetype t ′ for y such that t ′ /∈ AB, and an archetype s′ for x such
that s′ /∈ ABt ′. By equation (1), if ρ(t ′�At ′) = ρ(t ′�Bt ′), then ρ(s′�As′t ′) <
ρ(s′�Bs′t ′), hence A� B, proving necessity. Q.E.D.

LEMMA A.34: A⊥ B implies ηx(s) ·ηx(t)= 0 for all s ∈ A, t ∈ B, and x ∈ Z.

PROOF: Suppose ηx(s) · ηx(t) > 0 for s ∈ A, t ∈ B, and x ∈ Z. By Lem-
mas A.32 and A.33, there are A′ ∼ A and B′ ∼ B such that every s′ ∈ A′ ∪ B′

is an archetype. By Lemma A.33, there is s′ ∈ A′ and t ′ ∈ B′, both archetypes
for x. Let B′′ = (B′ \ {t ′})∪{s′}. Now B′′ ∩A′ 
= ∅, A′ ∼ A, and by Lemma A.33,
B′′ ∼ B, hence A 
⊥ B. Q.E.D.

E and WI follow easily from Lemma A.33, Lemma A.34, and equation (1).
This completes the proof of the “if” part of Theorem 2.

A.3.1. Proof of Proposition 1

Verifying that w = α · ŵ for α > 0 and ηx = rx · η̂x for rx > 0 rational im-
plies (w�η) and (ŵ� η̂) represent the same choice rule is straightforward and
omitted.

For the converse, let (w�η) with attribute set Z be any complete attribute
system that represents ρ. It suffices to show that if (ŵ� η̂) with attribute set Ẑ is
any other attribute system that represents ρ, then there exist α> 0 and natural
numbers mx > 0 such that ŵ = α ·w and η̂x = mx ·ηx. In particular, it must be
Ẑ = Z. Let X(A)= {x ∈Z | ηx(A) > 0} and X̂(A) = {x ∈ Ẑ | η̂x(A) > 0}.

CLAIM 1: A⊥ B implies X̂(A)∩ X̂(B) = ∅.
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PROOF: Choose C ∼ B such that C ∩ AB = ∅. The representation and E
ensure that X̂(B)⊂ X̂(C) \ X̂(A). Hence, X̂(A)∩ X̂(B) = ∅. Q.E.D.

CLAIM 2: C ∼ B implies X̂(C)= X̂(B).

PROOF: Choose A 
= ∅ such that A ⊥ B. Repeating the argument in the
proof of Claim 1 and Claim 1 itself ensure X̂(B)⊂ X̂(C) \ X̂(A) = X̂(C), and
by symmetry, X̂(C)= X̂(B). Q.E.D.

CLAIM 3: C ∼ B if and only if η̂x(C) = η̂x(B) for all x ∈ Ẑ.

PROOF: By SR, there exists an infinite sequence Bi of pairwise disjoint sets
such that Bi ∩CB = ∅ and Bi ∼ B for all i. By Claim 2, X̂(C)= X̂(B) = X̂(Bi)
for all i. There exists a subsequence Bij of Bi such that η̂x(Bij ) converges (pos-
sibly to infinity) for all x ∈ X̂(B). Without loss of generality, assume that the
subsequence is the sequence itself.

By Claim 2 above, lim η̂x(Bi) is not zero for all x ∈ X(C) = X(B). Let kx

be this limit and let Bn = ⋃n

i=2 Bi. For now, assume kx < ∞ for all x ∈ X(C).
Then, the discreteness of the range of η̂ ensures that there exists n such that
η̂x(Bi)= kx for all i ≥ n. Again without loss of generality, assume this n = 1 so
that Bi ∼ C for all i. Hence, we have

ρ
(
C�CBn

) = ρ
(
B�BBn

) = 1/n�

Since (ŵ� η̂) represents ρ, the above equation yields

∑
x∈X(C)

ŵx

ŵ(X(C))
· η̂x(B)

η̂x(B)+ (n− 1)kx

= 1/n�

Some straightforward manipulations of the equation above yield

∑
x∈X(C)

ŵx

η̂x(B)− kx

η̂x(B)/(n− 1)+ kx

= 0�

Let rx = η̂x(B)/kx, then (i) let n = 2 and (ii) take the limit as n goes to infinity
and divide by 2. The two cases, (i) and (ii), yield

∑
x∈X(C)

ŵx

rx − 1
rx + 1

= 0�

∑
x∈X(C)

ŵx

rx − 1
2

= 0�

Comparing the two equations above, we note that whenever rx − 1 > 0, the
denominator of the terms in the top equation is larger, and whenever rx−1 < 0,
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the denominator of the corresponding terms in the bottom equation is larger.
Therefore, unless rx = 1 for all x, the left-hand side of the bottom equation will
be larger. Hence, we have η̂x(B) = kx for all x. By symmetry, the same holds
of C.

To conclude the proof, we will show that kx = ∞ is not possible. Suppose
kx = ∞ for some x. Let Y = {y ∈ X(C) | ky <∞}. Recall that the discreteness
of the range of η̂ ensures that there exists n such that η̂y(Bi)= ky for all i ≥ n.
If Y = ∅, let n= 1. Then, since kx = ∞ for all x ∈ X(C)\Y , there exists m≥ n
such that η̂x(Bm) > η̂x(Bn) for all such x. Hence, Bm has at least as much as
Bn of every attribute and strictly more of some attribute, contradicting the fact
that Bm and Bn are duplicates. Q.E.D.

CLAIM 4: A⊥ B if and only if η̂x(A) · η̂x(B)= 0 for all x ∈ Ẑ.

PROOF: Suppose η̂x(A) · η̂x(B) = 0 for all x ∈ Ẑ and A′ ∼ A, B′ ∼ B. By
Claim 3, η̂x(A′) = η̂x(A) and η̂x(B′) = η̂x(B) for all x ∈ Ẑ. Therefore, A′ ∩
B′ = ∅ and hence A ⊥ B. The converse follows from Claim 1. Q.E.D.

CLAIM 5: s ∈ T implies X̂s is a singleton.

Recall that T is the set of all s such that {s} is fine. Lemma A.22 in the proof
of Theorem 2 establishes that A is fine if and only if it is a finite, nonempty
subset of T .

PROOF: Since (w�η) is complete, Claim 3 and Lemma A.32 imply that s ∈ T
if and only if s is an archetype for (w�η). Hence, the completeness of (w�η)
implies Z = {x | {x} = Xs for some s ∈ T }. For all s ∈ T , let xs denote the
unique attribute for (w�η) that contains s.

By Claims 3 and 4,

xs =
⋃
y∈X̂s

y(A.5)

for all s ∈ T . Suppose y� z ∈ X̂s and y 
= z. Then, without loss of generality,
there exists ∅ 
= A ⊂ y \ z. By Claim 3, there exists no B such that s ∈ B ∼ A
and then, by Claim 4, A 
⊥ {s}. But, then Claim 3 applied to the representation
(w�η) ensures ηxs(A) > 0. But, then Lemma A.32 ensures there exists B ∼ A

such that s ∈ B, a contradiction. Hence, y� z ∈ X̂s implies y = z. Q.E.D.

CLAIM 6: Z = Ẑ.

PROOF: Since (w�η) is complete, equation (A.5) and Claim 5 ensure that
Z ⊂ Ẑ. For the converse, take A ⊂ x ∈ Ẑ. By SR, there is a fine B such that
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A ∼ B and hence by Claim 3, s ∈ x for some s ∈ T . Hence, X̂s = {x}, and by
equation (A.5), x = xs ∈ Z. Q.E.D.

Choose any s ∈ T and let α = ŵxs/wxs . Then, for any y ∈ Z, y 
= xs, pick t
such that xt = y . Then,

wxs

wxs +wxt

= ρs

({s� t}) = ŵxs

ŵxs + ŵxt

= α ·wxs

α ·wxs + ŵxt

�

Hence ŵy = ŵxt = α ·wxt = α ·wy as desired.
Next, for all x ∈ Z, let mx = η̂x

s for some s ∈ T such that xs = x. If t ∈ T

and xs = xt = x, then s ∼ t and therefore ρs({s� t}) = 1/2 = η̂x
s

η̂x
s +η̂x

t
and hence

η̂x
t = η̂x

s , so mx is well-defined.
Take any x ∈ Z and t ∈ S and choose s ∈ T such that x = xs. Then,

wx

w({s� t}) · 1
1 +ηx

t

= ρs

({s� t}) = ŵx

ŵ({s� t}) · mx

mx + η̂x
t

= wx

w({s� t}) · mx

mx + η̂x
t

�

Hence, η̂x
t =mx ·ηx

t as desired. This completes the proof of the proposition.

A.4. Proof of Theorem 3

In Section 3, we have established that Q� ⊂ Qa. Next, we will prove that
Qr = cl convQ�. Fact 1, below, requires no proof.

FACT 1: The sets Q and Π are compact and convex.

The next fact follows immediately from Fact 1 and the definition of “q max-
imizes π.”

FACT 2: If qi maximizes πi for i = 1�2 and α ∈ [0�1], then αq1 + (1 − α)q2

maximizes απ1 + (1 − α)π2.

FACT 3: The set Qr is compact and convex.

PROOF: That Qr is convex follows from Facts 1 and 2 above. Next, we will
prove that Qr is compact. Falmagne12 (1978) showed that q ∈ Qr if and only if

0 ≤
∑

{B|A⊂B}
(−1)|B\A|qiB(A.6)

12Block and Marschak (1960) introduced the inequalities (A.6) and identified them as neces-
sary conditions for q ∈Q to be an element of Qr .
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for all i ∈ A and A ∈ A+. Let Q0 be the subset of R
n(2n−1)
+ that satisfies the

inequalities above. Clearly, Q0 is closed, and by Falmange’s theorem, Qr =
Q ∩Q0. Since Qr is the intersection of a closed and (by Fact 1) a compact set,
it, too, is compact. Q.E.D.

Block and Marschak (1960) were the first to prove the following well-known
result:

FACT 4: Q� ⊂Qr .

Facts 3 and 4 imply cl convQ� ⊂ Qr . The fact below establishes the reverse
inclusion and yields cl convQ� = Qr .

FACT 5: For every ε′ > 0 and q ∈ Qr , there exists q̂ ∈ convQ� such that
|q− q̂| < ε′.

PROOF: Assume 0 < ε < 1 and, for u ∈ U , define the Luce value vεu such
that

vεui = εn−ui �

Let δu be the degenerate random utility that assigns probability 1 to u, let
qδu be the choice rule that maximizes δu, and let qvεu be the Luce rule that
vεu represents. It is easy to see that qvεu → qδu as ε → 0. It follows that
q := ∑

u∈U πuq
vεu ∈ convQ� converges to q∗ := ∑

u∈U πuq
δu as ε → 0. Note

that π = ∑
u∈U πuδ

u and hence, by Fact 2 (and a simple inductive argument),
q∗ = ∑

u∈U πuq
δu maximizes π. Thus, for every q∗ ∈ Qr , we can find q ∈ convQ�

arbitrarily close to q∗. Q.E.D.

LEMMA A.35: Qa ⊂Qr .

PROOF: Let q ∈ Qa and let (w�η) be an attribute system that represents q.
Let v̄x =wx for all x ∈ Z. Interpret the function v̄ as a Luce value on Z and let
ρ̄v̄ be the choice rule that v̄ represents, that is, for ∅ 
= Ā ⊂Z,

ρ̄v̄
x(Ā) =

⎧⎪⎨
⎪⎩
v̄x

/(∑
y∈Ā

v̄y

)
� if x ∈ Ā,

0� if x /∈ Ā.

Let K = |Z|, let Ū be the set of all bijections from Z to {1� � � � �K}, and let Π̄
be the set of all probability distributions on Ū . For x ∈Z, ∅ 
= Ā ⊂Z, define

[xĀ] = {
ū ∈ Ū | ū(x)≥ ū(y) for all y ∈ Ā

}
�
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For π̄ ∈ Π̄, define the choice rule ρ̄π̄ such that, for all x ∈ Ā ⊂Z,

ρ̄π̄
x (Ā) =

∑
ū∈[xĀ]

π̄(ū)�

Applying Fact 4 to this new setting yields μ̄ ∈ Π̄ such that

ρ̄v̄
x(Ā) =

∑
ū∈[xĀ]

μ̄(ū)= ρ̄μ̄
x (Ā)(A.7)

for all x ∈ Ā ⊂Z. For any ∅ 
=A⊂ S and ū ∈ Ū , let

xAū = arg max
x∈X(A)

ū(x)

and let Aū = {i ∈ A | i ∈ xAū}. Then, let

ρū
i (A) =

⎧⎨
⎩
η

xAū
i

/(∑
j∈Aū

η
xAū
j

)
� if i ∈Aū,

0� otherwise.
(A.8)

For any π̄ ∈ Π̄, let ρπ̄ = ∑
ū∈Ū π̄(ū)ρū. We will prove that q ∈ Qr by showing

(1) ρū ∈Qr for all ū ∈ Ū and (2) q = ρμ̄. Note that (1) and (2) together establish
that q is a convex combination of choice rules that are in Qr , which, together
with Fact 3 above, yields q ∈Qr .

Recall that U is the set of all bijections from S = {1� � � � � n} to S; Π is the set
of all probabilities on U , and ρπ is the choice rule that maximizes π ∈ Π.

CLAIM: For every ū ∈ Ū , there is π ∈Π such that ρū = ρπ .

PROOF: Fix ū ∈ Ū and enumerate the attribute set Z = {x1� � � � � xK} such
that ū(xk) = k. Let BK = {i ∈ S :ηxK

i > 0} be the set of objects that have
attribute xK , the highest ranked attribute according to ū. For each k =
1� � � � �K − 1 let Bk = {i ∈ S :ηxk

i > 0 and ηx�
i = 0 ∀� > k}, the set of objects

that have attribute xk and none of the attributes ranked higher than xk. For
each k such that Bk 
= ∅ let ρk be the Luce rule on Bk given by

ρk
i (A)= η

xk
i

ηxk(A)

for each i ∈ A⊂ Bk, and ρk
i (A) = 0 for i ∈ Bk \A. By Fact 4, each ρk maximizes

a random utility πk on Bk. If the utility function u ∈ U is such that: (i) u(i) >
u(j) for each i ∈ Bm and j ∈ B� with m > �; and (ii) u(i) > u(j) if and only
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if uk(i) > uk(j) for i� j ∈ Bk, then let π(u) = ∏
k:Bk 
=∅ π

k(uk). Otherwise, let
π(u)= 0. Note that π is a random utility on U and, for each i ∈Aū,

ρπ
i (A) =

∑
u∈[iA]

π(u) =
∑

uk∈[iAū]
πk(uk)= ρk

i (Aū)

for k such that xk = xAū. Hence

ρπ
i (A) = η

xk
i

ηxk(A)
= η

xAū
i

ηxAū(A)
= ρū

i (A)

and, for i /∈Aū�ρ
π
i (A) = 0 = ρū

i (A) as desired. Q.E.D.

The claim above implies (1). To prove (2), let [xX(A)] = {ū ∈ Ū | xAū = x},
Xi = {x | i ∈ x}, and [XiX(A)] = {ū ∈ Ū | xAū ∈ Xi}. Then, (A.7)–(A.8) imply

ρμ̄
i (A) =

∑
ū∈Ū

μ̄(ū)ρū
i (A) =

∑
ū∈[XiX(A)]

μ̄(ū)ρū
i (A)

=
∑

ū∈[XiX(A)]
μ̄(ū)

η
xAū
i∑

j∈Aū

η
xAū
j

=
∑
x∈Xi

∑
ū∈[xX(A)]

μ̄(ū)
ηx

i∑
j∈A∩x

ηx
i

=
∑
x∈Xi

ηx
i∑

j∈A∩x
ηx

j

∑
ū∈[xX(A)]

μ̄(ū) =
∑
x∈Xi

ηx
i∑

j∈A∩x
ηx

j

ρ̄ū
(
x�X(A)

)

=
∑

x∈X(A)

ηx
i∑

j∈A∩x
ηx

j

wx∑
y∈X(A)

wy

= qiA�

Q.E.D.

We conclude the proof of the theorem by showing that convQ� ⊂ clQa. Since
we have already established cl convQ� = Qr , this will imply Qr ⊂ clQa. Then,
Lemma A.35 and Fact 3 yield clQa =Qr and conclude the proof.

Let qj be a Luce rule for j = 1� � � � �m and let q = ∑m

j=1 α
jqj for αj ≥ 0 such

that
∑m

j=1 α
j = 1. Hence, for each j, there exists a Luce value vj that repre-

sents qj . We can choose rational-valued v̂j ’s close to the corresponding vj ’s
and hence ensure that q̂ = ∑m

j=1 α
jρv̂j is close to q. Then, we can multiply each

v̂j with a sufficiently large integer M so that Mv
j
i is an integer for all i� j. Let

Z = {1� � � � �m}, wj = αj and η
j
i = Mv

j
i and note that (w�η) represents q̂.

A.5. Proof of Theorem 4 and Propositions 2–3

Throughout the proofs in this section, we distinguish between the duplicates
relation for a choice rule on S and a choice rule on Ω by letting ∼S denote the
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former and letting ∼Ω denote the latter. Similarly, let ZS ⊂ 2S \ {∅} denote the
attribute set of a choice rule on S and ZΩ ⊂ 2Ω \ {∅} denote the attribute set
for a choice rule on Ω.

THE RECURSIVE CONSTRUCTION: All of the properties listed below are easy to
verify: For any attribute system (w�η) on S, define its recursive extension (ŵ� η̂) to
Ω as follows: Let xy = {ω ∈ Ω | σ(ω)∩y 
= ∅}. Hence, the node ω has attribute xy

if and only if one of its terminal nodes has attribute y . Set ZΩ = {xy | y ∈ZS}. The
function y → xy is a bijection from ZS to ZΩ and x → yx, where yx = {s ∈ S | s ∈
σ(t) for some t ∈ x} = S∩x is its inverse. Let ŵxy =wy and define η̂xy

s recursively
for all s ∈ Ω: if s ∈ S, then η̂

xy
s = ηy

s . For t ∈ tn, η̂xy
t = ∑

s∈t η̂
xy
s . Clearly, every

attribute system on ZS has a unique recursive extension to ZΩ.
Conversely, for every recursive (ŵ� η̂) on Ω, there exists a unique (w�η) on

S such that (ŵ� η̂) is the recursive extension of (w�η). Moreover, if (ŵ� η̂) is a
recursive extension of (w�η) and represents (φ�Ω) an extension of (φ�S), then
(w�η) represents (φ�S).

A.5.1. Proof of Theorem 4

By Theorem 2, there exists an attribute system (w�η) that represents (φ�Ω).
To prove the “only if” part of the theorem, we will show that η is recursive.
First, note that Claim 3 in the proof of Proposition 1 ensures that t ∼Ω t̂ if and
only if ηx

t = ηx
t̂

for all x ∈ Z. Then, the proof of recursiveness follows from a
straightforward inductive argument.

To prove that an SR dynamic rule that can be represented by a complete
and recursive attribute system is consistent and satisfies E and WI, note that
the latter two properties follow from Theorem 2. To prove consistency, note
that the recursivity of η immediately implies that ηx

D = ∑
ω∈D η

x
ω. Hence,

ηx({D}) := ηx
D = ∑

ω∈D η
x
ω = ηx(D). Then, appealing to Claim 3 in the proof

of Proposition 1 again yields {D} ∼Ω D.

A.5.2. Proof of Proposition 2

To show the existence of an SR dynamic extension of any (1) SR attribute
rule (φ�S) or (2) rich Luce rule (φ�S), let (ŵ� η̂) be the recursive extension
of (w�η), where in case (1), (w�η) is any complete attribute system that rep-
resents (φ�S), and in case (2), let ZS = {{s} | s ∈ S}, η{s′}

s = 1 if s = s′ and 0
otherwise and w{s} = vs for some Luce value v that represents (φ�S). Then,
let (φ�Ω) be the dynamic choice rule that (ŵ� η̂) represents. The preceding
observations ensure that (φ�Ω) is an extension of (φ�S). By Theorem 4, it is
enough to show that (φ�Ω) is SR and (ŵ� η̂) is complete.

Recall that there is a bijection y → xy between ZS and Zy . Moreover, s is
an archetype for y implies s is an archetype for xy and so are {s}, {{s}}, etc.
Hence, (ŵ� η̂) every attribute has infinitely many archetypes. This proves com-
pleteness. Since (w�η) represents (φ�Ω), η̂x

A = η̂x
B for all x implies A ∼Ω B.
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With infinitely many archetypes, it is easy to check from the representation
that the converse is also true: η̂x

A = η̂x
B for all x if and only if A ∼Ω B. There-

fore, B is a fine duplicate of A if and only if η̂x
A = η̂x

B for x and B consists of
archetypes. But since there are infinitely many archetypes, it follows that there
are infinitely many fine duplicates, proving part (ii) of SR.

Suppose A′ ∼Ω A and B′ ∼Ω B and A′ ∩B′ 
= ∅. Then, we must have η̂x
A ·η̂x

B >
0 for some x. It follows that if η̂x

A · η̂x
B = 0 for all x, then A and B are non-

overlapping. In case (1) above, by Claim 4 of the proof of Proposition 1, (φ�S)
is SR implies that ηx

A · ηx
B = 0 if and only if A�B are (φ�S)-non-overlapping.

Then, since (φ�S) is SR, for any A, δ ∈ (0�1), there is B such that ηx
σ(A) ·ηx

B =
0, ρ(σ(A)�AB) = δ. Hence, η̂x

A · η̂x
B = 0 and therefore ρ(A�AB) = δ. Thus,

(φ�Ω) also satisfies part (i) of SR.
In case 2, since (φ�S) satisfies R, for any t ∈ T , δ ∈ (0�1), there is B ⊂ S

such that B ∩ σ(t) = ∅ and ρ(σ(t)�σ(t)B) = δ. Hence, v(σ(t))

v(σ(t))+v(B)
= δ. By the

recursive construction, the fact that B ∩ σ(t) = ∅ implies ηx
σ(t) · ηx

B = 0 for all
x and therefore η̂x

t · η̂x
B = 0 for all x. Therefore, t is non-overlapping with B

and hence ρt(tB) = w(Xt)

w(Xt)+w(X(B))
= v(σ(t))

v(σ(t))+v(B)
= δ, proving that (φ�Ω) satisfies

(i) of SR in case 2 as well.
For uniqueness, let (φ1�Ω) and (φ2�Ω) be two SR recursive attribute rules

that are extension of the same (φ�S). By Theorem 4, both have complete re-
cursive attribute systems, (ŵ1� η̂1), (ŵ2� η̂2) respectively, that represent them.

For i = 1�2, let (wi�ηi) be the unique attribute system on S that has the
property that (ŵi� η̂i) is its recursive extension. Since (ŵi� η̂i) is complete, so
is (wi�ηi), and since both (ŵi� η̂i)’s are complete representations of the same
SR attribute rule, by Proposition 1, η̂1 = η̂2 and there exists α > 0 such that
w1 = αw2. But since (ŵi� η̂i) is a recursive extension of (wi�ηi), we have ŵ1 =
αw2 and η̂1 = η̂2. Then, Proposition 1 implies (φ1�Ω)= (φ2�Ω).

If (φ�S) is a rich Luce rule, then the fact that (ŵi� η̂i) is a recursive extension
of (wi�ηi) for every x ∈ ZΩ implies that there must be an (φi�Ω)-archetype
s ∈ S. But then, invoking recursiveness again, we note that Z1

Ω = Z2
Ω = {[s] |

s ∈ S} where [s] := {ω | s ∈ σ(ω)} and η̂1 = η̂2. Let vis = wi
[s] for all s and note

that since both (wi�ηi)’s are attribute systems for (φ�S), both vi’s are Luce
values for (φ�S). Then, by the uniqueness of Luce values, v1 = αv2 for some
α > 0 and hence w1 = αw2 and finally, ŵ1 = αŵ2. By Proposition 1, (φ1�Ω) =
(φ2�Ω).

A.5.3. Proof of Proposition 3

Let (φ�Ω) be an invariant, strongly rich, complete, recursive attribute rule.
We claim that s� t ∈ S must be (φ�Ω)-non-overlapping. Assume the contrary
and let (w�η) be a complete recursive attribute system that represents (φ�Ω).
By strong richness, we can find ∅ 
= C ⊂ Ω such that C and {s� t} are non-
overlapping. Then, Claim 1 in the proof of Proposition 1 ensures that X({s})∩
X(C) = X({t}) ∩ X(C) = ∅, where X(D) = {z | ηz

ω > 0 for some ω ∈ D}. Let
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X = X({s}) ∩ X({t}), a = w(X({s}) \ X), a′ = w(X({t}) \ X), b = w(X) and
c = w(X(C)). Also let bs = ∑

x∈X w(x) · ηx
s

ηx
s +ηx

t
and note that bs < b.

Let D = {s� t�C} and let D′ = {t� {s�C}}. The representation ensures
ps(D) = φs(D) = a+bs

a+a′+b+c
while ps(D

′) = (1 − ρt(D
′)) · φs({s�C}) = a+bs+c

a+a′+b+c
·

a+b
a+b+c

. Then, since bs < b, verifying that ps(D) 
= ps(D
′) is straightforward. This

contradicts the fact that φ is invariant.
Since s� t are non-overlapping for all s� t ∈ S, (φ�S) satisfies independence.

Since (φ�Ω) is strongly rich, recursive and {s} ⊥ {t} whenever s� t ∈ S and s 
= t,
(φ�S) must be rich. Therefore, Theorem 1 ensures that (φ�S) is a Luce rule.

Next, assume (φ�S) is a rich Luce rule and D ∈D is a regular decision prob-
lem. Then, for any s ∈ S and path (ω0� � � � �ωn) of D ending in s, that is, path
such that ω0 = s and ωn = D, the recursive property yields

ps(D) = φ
(
s�σ(ω1)

) ·φ(
σ(ω1)�σ(ω2)

) · · ·φ(
σ(ωn−1)�σ(D)

)

= vs

v(σ(ω1))
· v(σ(ω1))

v(σ(ω2))
· · · v(σ(ωn−1))

v(σ(D))

= vs

v(σ(D))

= φs

(
σ(D)

)
�

proving that (φ�Ω) is invariant.
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