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Abstract A broad class of boosting algorithms can be interpreted as performing coordinate-
wise gradient descent to minimize some potential function of the margins of a data set. This
class includes AdaBoost, LogitBoost, and other widely used and well-studied boosters. In
this paper we show that for a broad class of convex potential functions, any such boosting
algorithm is highly susceptible to random classification noise. We do this by showing that
for any such booster and any nonzero random classification noise rate η, there is a simple
data set of examples which is efficiently learnable by such a booster if there is no noise, but
which cannot be learned to accuracy better than 1/2 if there is random classification noise
at rate η. This holds even if the booster regularizes using early stopping or a bound on the
L1 norm of the voting weights. This negative result is in contrast with known branching
program based boosters which do not fall into the convex potential function framework and
which can provably learn to high accuracy in the presence of random classification noise.

Keywords Boosting · Learning theory · Noise-tolerant learning · Misclassification noise ·
Convex loss · Potential boosting

1 Introduction

1.1 Background

Much work has been done on viewing boosting algorithms as greedy iterative algorithms that
perform a coordinate-wise gradient descent to minimize a potential function of the margin
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of the examples, see e.g. Breiman (1997), Friedman et al. (1998), Ratsch et al. (2001), Duffy
and Helmbold (2002), Mason et al. (1999), Bradley and Schapire (2007). In this framework
every potential function φ defines an algorithm that may possibly be a boosting algorithm;
we denote the algorithm corresponding to φ by Bφ . For example, AdaBoost (Freund and
Schapire 1997) and its confidence-rated generalization (Schapire and Singer 1999) may be
viewed as the algorithm Bφ corresponding to the potential function φ(z) = e−z. The Mad-
aBoost algorithm of Domingo and Watanabe (2000) may be viewed as the algorithm Bφ

corresponding to

φ(z) =
{1 − z if z ≤ 0

e−z if z > 0.
(1)

(We give a more detailed description of exactly what the algorithm Bφ is for a given potential
function φ in Sect. 2.)

1.2 Motivation: noise-tolerant boosters?

It has been widely observed that AdaBoost can suffer poor performance when run on noisy
data, see e.g. Freund and Schapire (1996), Maclin and Opitz (1997), Dietterich (2000). The
most commonly given explanation for this is that the exponential reweighting of examples
which it performs (a consequence of the exponential potential function) can cause the al-
gorithm to invest too much “effort” on correctly classifying noisy examples. Boosting algo-
rithms such as MadaBoost (Domingo and Watanabe 2000) and LogitBoost (Friedman et al.
1998) based on a range of other potential functions have subsequently been provided, some-
times with an explicitly stated motivation of rectifying AdaBoost’s poor noise tolerance.
However, we are not aware of rigorous results establishing provable noise tolerance for any
boosting algorithms that fit into the potential functions framework, even for mild forms of
noise such as random classification noise (henceforth abbreviated RCN) at low noise rates.
This motivates the following question: are Adaboost’s difficulties in dealing with noise due
solely to its exponential weighting scheme, or are these difficulties inherent in the potential
function approach to boosting?

1.3 Our results: convex potential boosters cannot withstand random classification noise

This paper shows that the potential function boosting approach provably cannot yield learn-
ing algorithms that tolerate even low levels of random classification noise when convex
potential functions are used. More precisely, we exhibit a fixed natural set of base classifiers
h1, . . . , hn and show that for every convex function φ satisfying some very mild conditions
and every noise rate η > 0, there is a multiset S of labeled examples such that the following
holds:

– There is a linear separator sgn(α1h1 +· · ·+αnhn) over the base classifiers h1, . . . , hn that
correctly labels every example in S with margin γ > 0 (and hence it is easy for a boosting
algorithm trained on S to efficiently construct a final hypothesis that correctly classifies
all examples in S). However,

– When the algorithm Bφ is run on the distribution Dη,S , it constructs a classifier that has
error rate 1/2 on the examples in S. Here Dη,S is the uniform distribution over S but
where examples are corrupted with random classification noise at rate η, i.e. labels are
independently flipped with probability η.
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We also show that convex potential boosters are not saved by regularization through early
stopping (Margineantu and Dietterich 1997; Zhang and Yu 2005) or a bound on the L1 norm
of the voting weights (see Ratsch et al. 2001; Lugosi and Vayatis 2004).

These results show that random classification noise can cause convex potential function
boosters to fail in a rather strong sense. We note that as discussed in Sect. 9, there do exist
known boosting algorithms (Kalai and Servedio 2005; Long and Servedio 2005) that can
tolerate random classification noise, and in particular can efficiently achieve perfect accu-
racy on S, after at most poly(1/γ ) stages of boosting, when run on Dη,S in the scenario
described above.

A number of recent results have established the statistical consistency of boosting al-
gorithms (Breiman 2004; Mannor et al. 2003; Zhang 2004; Lugosi and Vayatis 2004;
Zhang and Yu 2005; Bartlett and Traskin 2007) under various assumptions on a random
source generating the data. Our analysis does not contradict theirs roughly for the following
reason. The output of a boosting classifier takes the form sign(f (x)), where the unthresh-
olded f (x) can be thought of as incorporating a confidence rating—usually, this is how
much more weight votes for one class than the other. The analyses that establish the consis-
tency of boosting algorithms typically require a linear f to have “potential” as good as any
f (see e.g. Condition 1 from Bartlett and Traskin 2007). In this paper, we exploit the fact
that convex potential boosters choose linear hypotheses to force the choice between many
“cheap” errors and few “expensive” ones. If any f is allowed, then an algorithm can make
all errors equally cheap by making all classifications with equally low confidence.

Though the analysis required to establish our main result is somewhat delicate, the actual
construction is quite simple and admits an intuitive explanation (see Sect. 4.2). For every
convex potential function φ we use the same set of only n = 2 base classifiers (these are
confidence-rated base classifiers which output real values in the range [−1,1]), and the
multiset S contains only three distinct labeled examples; one of these occurs twice in S, for
a total multiset size of four. We expect that many other constructions which similarly show
the brittleness of convex potential boosters to random classification noise can be given. We
describe experiments with one such construction that uses Boolean-valued weak classifiers
rather than confidence-rated ones in Sect. 8.

2 Background and notation

Throughout the paper X will denote the instance space. H = {h1, . . . , hn} will denote a
fixed finite collection of base classifiers over X, where each base classifier is a func-
tion hi : X → [−1,1]; i.e. we shall work with confidence-rated base classifiers. S =
(x1, y1), . . . , (xm, ym) ∈ (X × {−1,1})m will denote a multiset of m examples with binary
labels.

For each convex potential function φ, we will consider three kinds of convex poten-
tial boosters: global-minimizing convex potential boosters, L1-regularized convex potential
boosters, and early-stopping convex potential boosters. First, we will define a convex poten-
tial function, then each kind of boosting algorithm in turn.

2.1 Convex potential functions

We adopt the following natural definition which, as we discuss in Sect. 7, captures a broad
range of different potential functions that have been studied.
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Definition 1 We say that φ : R → R is a convex potential function if φ satisfies the following
properties:

1. φ is convex and nonincreasing and φ ∈ C1 (i.e. φ is differentiable and φ′ is continuous);
2. φ′(0) < 0 and limx→+∞ φ(x) = 0.

2.2 Convex potential boosters

Let φ be a convex potential function, H = {h1, . . . , hn} a fixed set of base classifiers, and
S = (x1, y1), . . . , (xm, ym) a multiset of labeled examples.

All the boosting algorithms will choose voting weights α1, . . . , αn and output the classi-
fier

sign

(
n∑

i=1

αihi(x)

)

obtained by taking the resulting vote over the base classifier predictions. Let

F(x;α1, . . . , αn) =
n∑

i=1

αihi(x)

denote the quantity whose sign is the outcome of the vote, and whose magnitude reflects
how close the vote was.

2.3 Global-minimizing convex potential boosters

The most basic kind of convex potential booster is the idealized algorithm that chooses
voting weights α1, . . . , αn to minimize the “global” potential function over S:

Pφ,S(α1, . . . , αn) =
m∑

i=1

φ(yiF (xi;α1, . . . , αn)). (2)

It is easy to check that this is a convex function from Rn (the space of all possible
(α1, . . . , αn) coefficient vectors for F ) to R. We will denote this booster by B ideal

φ .

2.4 L1-regularized boosters

For any C > 0, the L1-regularized booster minimizes Pφ,S subject to the constraint that∑n

i=1 |αi | ≤ C. We will denote this booster by B
L1
φ,C ; see Ratsch et al. (2001), Lugosi and

Vayatis (2004) for algorithms of this sort.

2.5 Early-stopping regularized boosters

To analyze regularization by early stopping, we must consider how the optimization is per-
formed. Similarly to Duffy and Helmbold (1999, 2002), we consider an iterative algorithm
which we denote Bφ . The algorithm performs a coordinatewise gradient descent through the
space of all possible coefficient vectors for the weak hypotheses, in an attempt to minimize
the convex potential function of the margins of the examples. We now give a more precise
description of how Bφ works when run with H on S.
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Algorithm Bφ maintains a vector (α1, . . . , αn) of voting weights for the base classifiers
h1, . . . , hn. The weights are initialized to 0. In a given round T , the algorithm chooses an
index iT of a base classifier, and modifies the value of αiT . If αiT had previously been zero,
this can be thought of as adding base classifier number iT to a pool of voters, and choosing
a voting weight.

Let F(x;α1, . . . , αn) = ∑n

i=1 αihi(x) be the master hypothesis that the algorithm has
constructed prior to stage T (so at stage T = 1 the hypothesis F is identically zero).

In stage T the algorithm Bφ first chooses a base classifier by chooses iT to be the index
i ∈ [n] which maximizes

− ∂

∂αi

Pφ,S(α1, . . . , αn),

and then choosing a new value of αiT in order to minimize Pφ,S(α1, . . . , αn) for the re-
sulting α1, . . . , αn. Thus, in the terminology of Duffy and Helmbold (1999) we consider
“un-normalized” algorithms which preserve the original weighting factors α1, α2, etc. The
AdaBoost algorithm is an example of an algorithm that falls into this framework, as are the
other algorithms we discuss in Sect. 7. Note that the fact that Bφ can determine the exactly
optimal weak classifier to add in each round errs on the side of pessimism in our analysis.

For each K , let B
early
φ,K be the algorithm that performs K iterations of Bφ , and then halts

and outputs the resulting classifier.

2.6 Distributions with noise

In our analysis, we will consider the case in which the boosters are being run on a distrib-
ution Dη,S obtained by starting with a finite multiset of examples, and adding independent
misclassification noise. One can naturally extend the definition of each type of booster to
apply to probability distributions over X × {−1,1} by extending the definition of potential
in (2) as follows:

Pφ,D(α1, . . . , αn) = E(x,y)∼D(φ(yF (x;α1, . . . , αn))). (3)

For rational values of η, running Bφ on (3) for D = Dη,S is equivalent to running Bφ over
a finite multiset in which each element of S occurs a number of times proportional to its
weight under D.

2.7 Boosting

Fix a classifier c : X → {−1,1} and a multiset S = (x1, y1), . . . , (xm, ym) of examples la-
beled according to c. We say that a set of base classifiers H = {h1, . . . , hn} is boostable with
respect to c and S if there is a vector α ∈ Rn such that for all i = 1, . . . ,m, we have

sgn[α1h1(x
i) + · · · + αnhn(x

i)] = yi.

If γ > 0 is such that

yi · (α1h1(x
i) + · · · + αnhn(x

i))

|α1| + · · · + |αn| ≥ γ

for all i, we say that H is boostable w.r.t. c and S with margin γ .
It is well known that if H is boostable w.r.t. c and S with margin γ , then a range of dif-

ferent boosting algorithms (such as AdaBoost) can be run on the noise-free data set S to ef-
ficiently construct a final classifier that correctly labels every example in S. As one concrete
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example, after O(
logm

γ 2 ) stages of boosting AdaBoost will construct a linear combination

F(x) = ∑n

i=1 γihi(x) of the base classifiers such that sgn(F (xi)) = yi for all i = 1, . . . ,m;
see Freund and Schapire (1997) and Schapire and Singer (1999) for details.

2.8 Random classification noise and noise-tolerant boosting

Random classification noise is a simple, natural, and well-studied model of how benign
(nonadversarial) noise can affect data. Given a multiset S of labeled examples and a value
0 < η < 1

2 , we write Dη,S to denote the distribution corresponding to S corrupted with ran-
dom classification noise at rate η. A draw from Dη,S is obtained by drawing (x, y) uniformly
at random from S and independently flipping the binary label y with probability η.

We say that an algorithm B is a boosting algorithm which tolerates RCN at rate η if B
has the following property. Let c be a target classifier, S be a multiset of m examples, and
H be a set of base classifiers such that H is boostable w.r.t. c and S. Then for any ε > 0, if
B is run with H as the set of base classifiers on Dη,S , at some stage of boosting B constructs
a classifier g which has accuracy

|{(xi, yi) ∈ S : g(xi) = yi}|
m

≥ 1 − η − ε.

The accuracy rate above is in some sense optimal, since known results (Kalai and
Servedio 2005) show that no “black-box” boosting algorithm can be guaranteed to con-
struct a classifier g whose accuracy exceeds 1 − η in the presence of RCN at rate η. As
we discuss in Sect. 9, there are known boosting algorithms (Kalai and Servedio 2005;
Long and Servedio 2005) which can tolerate RCN at rate η for any 0 < η < 1/2. These
algorithms, which do not follow the convex potential function approach but instead build a
branching program over the base classifiers, use poly(1/γ, log(1/ε)) stages to achieve ac-
curacy 1 − η − ε in the presence of RCN at rate η if H is boostable w.r.t. c and S with
margin γ .

3 Main result

As was just noted, there do exist boosting algorithms (based on branching programs) that
can tolerate RCN. Our main result is that no convex potential function booster can have this
property:

Theorem 1 Fix any convex potential function φ and any noise rate 0 < η < 1/2. Then

(i) The global-minimizing booster B ideal
φ does not tolerate RCN at rate η;

(ii) For any number K of rounds, the early-stopping regularized booster B
early
φ,K does not

tolerate RCN at rate η; and
(iii) For any C > 0, the L1-regularized booster B

L1
φ,C does not tolerate RCN at rate η.

Our first analysis holds for the global optimization and early-stopping convex potential
boosters. It establishes parts (i) and (ii) of Theorem 1 through the following stronger state-
ment, which shows that there is a simple RCN learning problem for which B ideal

φ and B
early
φ,K

will in fact misclassify half the examples in S.
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Theorem 2 Fix the instance space X = [−1,1]2 ⊂ R2 and the set H = {h1(x) =
x1, h2(x) = x2} of confidence-rated base classifiers over X.

There is a target classifier c such that for any noise rate 0 < η < 1/2 and any convex
potential function φ, there is a value γ > 0 and a multiset S of four labeled examples (three
of which are distinct) such that (a) H is boostable w.r.t. c and S with margin γ , but (b) when
B ideal

φ or B
early
φ,K is run on the distribution Dη,S , it constructs a classifier which misclassifies

two of the four examples in S.

Our theorem about L1 which establishes part (iii) is as follows.

Theorem 3 Fix the instance space X = [−1,1]2 ⊂ R2 and the set H = {h1(x) =
x1, h2(x) = x2} of confidence-rated base classifiers over X.

There is a target classifier c such that for any noise rate 0 < η < 1/2 and any convex
potential function φ, any C > 0 and any β > 0, there is a value γ > 0 and a multiset S of
examples such that (a) H is boostable w.r.t. c and S with margin γ , but (b) when the L1-
regularized potential booster B

L1
φ,C is run on the distribution Dη,S , it constructs a classifier

which misclassifies 1
2 − β fraction of the examples in S.

Section 4 contains our analysis for the global optimization booster B ideal
φ ; the early stop-

ping and L1 regularization boosters are dealt with in Sects. 5 and 6 respectively.

4 Analysis of the global optimization booster

We are given an RCN noise rate 0 < η < 1/2 and a convex potential function φ.

4.1 The basic idea

Before specifying the sample S we explain the high-level structure of our argument. Recall
from (3) that Pφ,D is defined as

Pφ,D(α1, α2) =
∑
(x,y)

Dη,S(x, y)φ(y(α1x1 + α2x2)). (4)

As noted in Sect. 2.2 the function Pφ,D(α1, α2) is convex. It follows immediately from the
definition of a convex potential function that Pφ,D(α1, α2) ≥ 0 for all (α1, α2) ∈ R2.

The high-level idea of our proof is as follows. We shall construct a multiset S of four
labeled examples in [−1,1]2 (actually in the unit disc {x : ‖x‖ ≤ 1} ⊂ R2) such that there is
a global minimum (α∗

1 , α
∗
2) of the corresponding Pφ,D(α1, α2) for which the corresponding

classifier g(x) = sgn(α∗
1x1 + α∗

2x2) misclassifies two of the points in S (and thus has error
rate 1/2).

4.2 The sample S

Now let us define the multiset S of examples. S consists of three distinct examples, one of
which is repeated twice. (We shall specify the value of γ later and show that 0 < γ < 1

6 .)

– S contains one copy of the example x = (1,0) with label y = +1. (We call this the “large
margin” example.)
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Fig. 1 The sample S. All four
examples are positive. We show
that for a suitable 0 < γ < 1/6
(based on the convex potential
function φ), the “puller” example
at (γ,5γ ) causes the optimal
hypothesis vector to incorrectly
label the two “penalizer”
examples as negative

– S contains two copies of the example x = (γ,−γ ) with label y = +1. (We call these
examples the “penalizers” since they are the points that Bφ will misclassify.)

– S contains one copy of the example x = (γ,5γ ) with label y = +1. (We call this example
the “puller” for reasons described below.)

Thus all examples in S are positive. It is immediately clear that the classifier c(x) = sgn(x1)

correctly classifies all examples in S with margin γ > 0, so the set H = {h1(x) = x1, h2(x) =
x2} of base classifiers is boostable w.r.t. c and S with margin γ. We further note that since
γ < 1

6 , each example in S does indeed lie in the unit disc {x : ‖x‖ ≤ 1}.
Let us give some intuition. The halfspace whose normal vector is (1,0) classifies all

examples correctly, but the noisy (negative labeled) version of the “large margin” example
causes a convex potential function to incur a very large cost for this hypothesis vector. Con-
sequently a lower cost hypothesis can be obtained with a vector that points rather far away
from (1,0). The “puller” example (whose y-coordinate is 5γ ) outweights the two “penal-
izer” examples (whose y-coordinates are −γ ), so it “pulls” the minimum cost hypothesis
vector to point up into the first quadrant—in fact, so far up that the two “penalizer” examples
are misclassified by the optimal hypothesis vector for the potential function φ. See Fig. 1.

4.3 Proof of Theorem 2 for the B ideal
φ booster

Let 1 < N < ∞ be such that η = 1
N+1 , so 1 − η = N

N+1 .
We have that

Pφ,D(α1, α2) =
∑
(x,y)

Dη,S(x, y)φ(y(α1x1 + α2x2))

= 1

4

∑
(x,y)∈S

[
(1 − η)φ(α1x1 + α2x2) + ηφ(−α1x1 − α2x2)

]
.

It is clear that minimizing 4(N + 1)Pφ,D is the same as minimizing Pφ,D so we shall
henceforth work with 4(N + 1)Pφ,D since it gives rise to cleaner expressions. We have
that 4(N + 1)Pφ,D(α1, α2) equals

∑
(x,y)∈S

[
Nφ(α1x1 + α2x2) + φ(−α1x1 − α2x2)

]

= Nφ(α1) + φ(−α1)
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+ 2Nφ(α1γ − α2γ ) + 2φ(−α1γ + α2γ )

+ Nφ(α1γ + 5α2γ ) + φ(−α1γ − 5α2γ ). (5)

Let P1(α1, α2) and P2(α1, α2) be defined as follows:

P1(α1, α2)
def= ∂

∂α1
4(N + 1)Pφ,D(α1, α2) and

P2(α1, α2)
def= ∂

∂α2
4(N + 1)Pφ,D(α1, α2).

Differentiating by α1 and α2 respectively, we have

P1(α1, α2) = Nφ′(α1) − φ′(−α1)

+ 2γNφ′(α1γ − α2γ ) − 2γφ′(−α1γ + α2γ )

+ Nγφ′(α1γ + 5α2γ ) − γφ′(−α1γ − 5α2γ )

and

P2(α1, α2) = −2γNφ′(α1γ − α2γ ) + 2γφ′(−α1γ + α2γ )

+ 5γNφ′(α1γ + 5α2γ ) − 5γφ′(−α1γ − 5α2γ ).

Some expressions will be simplified if we reparameterize by setting α1 = α and α2 = Bα.
It is helpful to think of B > 1 as being fixed (its value will be chosen later). Now, let us write
P1(α) to denote P1(α,Bα) and similarly write P2(α) to denote P2(α,Bα), so that

P1(α) = Nφ′(α) − φ′(−α) + 2γNφ′(−(B − 1)αγ )

− 2γφ′((B − 1)αγ ) + Nγφ′((5B + 1)αγ )

− γφ′(−(5B + 1)αγ )

and

P2(α) = −2γNφ′(−(B − 1)αγ ) + 2γφ′((B − 1)αγ )

+ 5γNφ′((5B + 1)αγ ) − 5γφ′(−(5B + 1)αγ ).

We introduce the following function to help in the analysis of P1(α) and P2(α):

for α ∈ R, Z(α)
def= Nφ′(α) − φ′(−α).

Let us establish some basic properties of this function. Since φ is differentiable and con-
vex, we have that φ′ is a non-decreasing function. Since N > 1, this implies that Z(·) is a
non-decreasing function. We moreover have Z(0) = φ′(0)(N − 1) < 0. The definition of a
convex potential function implies that as α → +∞ we have φ′(α) → 0−, and consequently
we have

lim
α→+∞ Z(α) = 0 + lim

α→+∞ −φ′(−α) > 0,

where the inequality holds since φ′(α) is a nondecreasing function and φ′(0) < 0. Since
φ′ and hence Z is continuous, we have that over the interval [0,+∞) the function Z(α)

assumes every value in the range [φ′(0)(N − 1),−φ′(0)).
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Next observe that we may rewrite P1(α) and P2(α) as

P1(α) = Z(α) + 2γZ(−(B − 1)αγ ) + γZ((5B + 1)γ α) (6)

and

P2(α) = −2γZ(−(B − 1)αγ ) + 5γZ((5B + 1)γ α). (7)

In the rest of this section we shall show that there are values α > 0, 0 < γ < 1/6, B > 1

such that P1(α) = P2(α) = 0. Since Pφ,D is convex, this will imply that (α∗
1 , α

∗
2)

def= (α,Bα)

is a global minimum for the dataset constructed using this γ , as required.
Let us begin with the following claim which will be useful in establishing P2(α) = 0.

Proposition 1 For any B ≥ 1 there is a finite value ε(B) > 0 such that

2Z(−(B − 1)ε(B)) = 5Z((5B + 1)ε(B)) < 0 (8)

Proof Fix any value B ≥ 1. Recalling that Z(0) = φ′(0)(N − 1) < 0, at ε = 0 the quan-
tity 2Z(−(B − 1)ε) equals 2φ′(0)(N − 1) < 0, and as ε increases this quantity does not
increase. On the other hand, at ε = 0 the quantity 5Z((5B + 1)ε) equals 5φ′(0)(N − 1) <

2φ′(0)(N − 1), and as ε increases this quantity increases to a limit, as ε → +∞, which
is at least 5(−φ′(0)). Since Z is continuous, there must be some ε > 0 at which the two
quantities are equal and are each at most 2φ′(0)(N − 1) < 0. �

Observation 1 The function ε(B) is a continuous and nonincreasing function of B for
B ∈ [1,∞).

Proof The larger B ≥ 1 is, the faster −(B − 1)ε decreases as a function of ε and the faster
(5B +1)ε increases as a function of ε. Continuity of ε(·) follows from continuity of Z(·). �

We now fix the value of B to be B
def= 1 + γ , where the parameter γ will be fixed later.

We shall only consider settings of α,γ > 0 such that αγ = ε(B) = ε(1 + γ ); i.e. given a
setting of γ , we shall take α = ε(1+γ )

γ
. For any such α,γ we have

P2(α) = (7) = γ [−2Z(−(B − 1)ε(1 + γ )) + 5Z((5B + 1)ε(1 + γ ))] = 0

where the last equality is by Proposition 1. Now let us consider (6); our goal is to show that
for some γ > 0 it is also 0. For any (α, γ ) pair with αγ = ε(1+γ ), we have by Proposition 1
that

2γZ(−(B − 1)γ α) + γZ((5B + 1)γ α)

= 2γZ(−(B − 1)ε(1 + γ )) + γZ((5B + 1)ε(1 + γ ))

= 6γZ((5B + 1)ε(1 + γ ))

where the second equality is by Proposition 1. Plugging this into (6), we have that for α =
ε(1+γ )

γ
, the quantity P1(α) equals 0 if and only if

Z

(
ε(1 + γ )

γ

)
= −6γZ((5B + 1)ε(1 + γ ))

= 6γ · (−Z((6 + 5γ ) · ε(1 + γ ))). (9)
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Fig. 2 The LHS of (9) (solid
line) and RHS of (9) (dotted
line), plotted as a function of γ .
As γ ranges through (0,∞) the
LHS decreases through all values
between −φ′(0) (a positive
value) and φ′(0)(N − 1) (a
negative value). The RHS is 0 at
γ = 0 and is positive for all
γ > 0. Since both LHS and RHS
are continuous, there must be
some value of γ > 0 at which the
LHS and RHS are equal

Let us analyze (9). We first note that Observation 1 implies that ε(1 + γ ) is a nonincreas-
ing function of γ for γ ∈ [0,∞). Consequently ε(1+γ )

γ
is a decreasing function of γ , and

since Z is a nondecreasing function, the LHS is a nonincreasing function of γ. Recall that at
γ = 0 we have ε(1 + γ ) = ε(1) which is some fixed finite positive value by Proposition 1.
So we have limγ→0+ LHS = limx→+∞ Z(x) ≥ −φ′(0). On the other extreme, since ε(·) is
nonincreasing, we have

lim
γ→+∞ LHS ≤ lim

γ→+∞Z

(
ε(1)

γ

)
= Z(0) = φ′(0)(N − 1) < 0.

So as γ varies through (0,∞), the LHS decreases through all values between −φ′(0) and 0.
On the other hand, at γ = 0 the RHS of (9) is clearly 0. Moreover the RHS is always

positive for γ > 0 by Proposition 1. Since the RHS is continuous (by continuity of Z(·) and
ε(·)), this together with the previous paragraph implies that there must be some γ > 0 for
which the LHS and RHS of (9) are the same positive value. (See Fig. 2.) So we have shown
that there are values α > 0, γ > 0, B = 1 + γ such that P1(α) = P2(α) = 0.

We close this section by showing that the value of γ > 0 obtained above is indeed at
most 1/6 (and hence every example in S lies in the unit disc as required). To see this, note
that we have shown that for this γ , we have Z((6 + 5γ )ε(1 + γ )) < 0 and Z(

ε(1+γ )

γ
) > 0.

Since Z is a nondecreasing function this implies 6 + 5γ < 1
γ

which clearly implies γ < 1/6
as desired.

This concludes the proof of Theorem 2 for the B ideal
φ booster.

5 Early stopping

In this section, we show that early stopping cannot save a boosting algorithm: it is possible
that the global optimum analyzed in the preceding section can be reached after the first
iteration.

Since Pφ,D(α1, α2) depends only on the inner product between (α1, α2) and the (normal-
ized) example vectors (yx1, yx2), it follows that rotating the set S around the origin by any
fixed angle induces a corresponding rotation of the function Pφ,D , and in particular of its
minima. (Note that we have used here the fact that every example point in S lies within the
unit disc; this ensures that for any rotation of S each weak hypothesis xi will always give
outputs in [−1,1] as required.) Consequently a suitable rotation of S to S ′ will result in
the corresponding rotated function Pφ,D having a global minimum at a vector which lies on
one of the two coordinate axes (say a vector of the form (0, τ )). The weight vector (1,0)
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achieved a margin γ for the original construction: since rotating this weight vector can only
increase its L1 norm, the rotated weight vector also achieves a margin γ .

Now, all that remains is to show that B
early
φ,K will choose the ultimately optimal direction

during the first round of boosting. For this to be the case after rotating, all we need before
rotating is that at the point (0,0), the directional derivative of Pφ,D(α1, α2) in any direction
orthogonal to (α∗

1 , α
∗
2) is not as steep as the directional derivative toward (α∗

1 , α
∗
2), which we

will now prove.
In Sect. 4, we established that (α,Bα) = (α, (1 + γ )α) is a global minimum for the data

set as constructed there. The directional derivative at (0,0) in the direction of this optimum
is P1(0)+BP2(0)√

1+B2
.

Since φ′(0) < 0, by (6) and (7) we have

P1(0) = (1 + 3γ )φ′(0)(N − 1) < 0

P2(0) = 3γφ′(0)(N − 1) < 0.

This implies that P1(0) < P2(0) < 0, which, since B > 1, implies BP1(0)−P2(0) < 0. This
means that (B,−1) rather than (−B,1) is the direction orthogonal to the optimal (1,B)

which has negative slope.
Recalling that B = 1 + γ , we have the following inequalities:

B < 1 + 6γ = (1 + 3γ ) + 3γ

(1 + 3γ ) − 3γ
(10)

B <
−P1(0) − P2(0)

−P1(0) + P2(0)

B(−P1(0) + P2(0)) < −P1(0) − P2(0) (11)

P1(0) + BP2(0) < BP1(0) − P2(0) < 0, (12)

where (11) follows from (10) using P1(0) < P2(0) < 0. So the directional derivative in the
optimal direction (1,B) is steeper than in (B,−1).

6 L1 regularization

Our treatment of L1 regularization relies on the following intuition. One way to think of the
beneficial effect of regularizing a convex potential booster is that regularization controls the
impact of the convexity—limiting the weights limits the size of the margins, and thus the
extremity of the losses on large-margin errors. But the trouble with regularization is that the
convexity is sometimes needed to encourage the boosting algorithm to classify examples
correctly: if he potential function is effectively a linear function of the margin, then the
booster “cares” as much about enlarging the margins of already correctly classified examples
as it does about correcting examples that are classified incorrectly.

In the absence of noise, our construction for regularized boosters concentrates the weight
on two examples:

– one positive example at (2γ,−γ ) with weight 1 + ε (where ε > 0), and
– one positive example at (−γ,2γ ) with weight 1.
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As in Sect. 2.3, when there is noise, for N > 1, each clean example will have weight N ,
and each noisy example weight 1. (Note once again that if N and ε are rational, these can
be realized with a finite multiset of examples.) Thus, the L1-regularized convex potential
boosting algorithm will solve the following optimization problem:

min
α1,α2

Q(α1, α2),

s.t. |α1| + |α2| ≤ C,
(13)

where Q(α1, α2) = (1 + ε)Nφ(2α1γ − α2γ ) + Nφ(−α1γ + 2α2γ )

+ (1 + ε)φ(−2α1γ + α2γ ) + φ(α1γ − 2α2γ ).

Let us redefine P1(α1, α2) and P2(α1, α2) to be the partial derivatives with respect to Q:

P1(α1, α2) = ∂Q(α1, α2)

∂α1
= 2γ (1 + ε)Nφ′(2α1γ − α2γ ) − γNφ′(−α1γ + 2α2γ )

− 2γ (1 + ε)φ′(−2α1γ + α2γ ) + γφ′(α1γ − 2α2γ )

P2(α1, α2) = ∂Q(α1, α2)

∂α2
= −γ (1 + ε)Nφ′(2α1γ − α2γ ) + 2γNφ′(−α1γ + 2α2γ )

+ γ (1 + ε)φ′(−2α1γ + α2γ ) − 2γφ′(α1γ − 2α2γ ).

The following key lemma characterizes the consequences of changing the weights when
γ is small enough.

Lemma 1 For all C > 0, N > 1, 1 > ε > 0, there is a γ > 0 such that, for all α1, α2 for
which

|α1| + |α2| ≤ C,

we have

P1(α1, α2) < P2(α1, α2) < 0.

Proof If |α1| + |α2| ≤ C, then |2α1 − α2| ≤ 3C and |2α2 − α1| ≤ 3C. Thus, by making
γ > 0 arbitrarily small, we can make |2α1γ − α2γ | and |2α2γ − α1γ | arbitrarily close to 0.
Since φ′ is continuous, this means that for any τ > 0, there is a γ > 0 such that, whenever
|α1| + |α2| ≤ C, we have

|φ′(2α1γ − α2γ ) − φ′(0)| < τ

|φ′(2α2γ − α1γ ) − φ′(0)| < τ

|φ′(−2α1γ + α2γ ) − φ′(0)| < τ

|φ′(−2α2γ + α1γ ) − φ′(0)| < τ.

For such a γ , we have

P1(α1, α2) − P2(α1, α2)

γ
= 3(1 + ε)Nφ′(2α1γ − α2γ ) − 3Nφ′(−α1γ + 2α2γ )

− 3(1 + ε)φ′(−2α1γ + α2γ ) + 3φ′(−2α2γ + α1γ )
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< 3((1 + ε)N + 1)(φ′(0) + τ) − 3(1 + ε + N)(φ′(0) − τ)

= 3ε(N − 1)φ′(0) + 3(2(N + 1) + ε(N + 1))τ.

Since φ′(0) < 0, ε > 0, and N > 1, for sufficiently small τ , we have

P1(α1, α2) − P2(α1, α2)

γ
< 0

and since γ > 0, this means

P1(α1, α2) < P2(α1, α2).

Furthermore

P2(α1, α2) < −γ (1 + ε)N(φ′(0) − τ) + 2γN(φ′(0) + τ)

+ γ (1 + ε)(φ′(0) + τ) − 2γ (φ′(0) − τ)

= γ (1 − ε)(N − 1)φ′(0) + γ (3 + ε)(N + 1)τ

so

P2(α1, α2)

γ
< (1 − ε)(N − 1)φ′(0) + (3 + ε)(N + 1)τ.

Again, since φ′(0) < 0, 1 > ε > 0, and N > 0, this means that when τ gets small enough

P2(α1, α2)

γ
< 0

and thus P2(α1, α2) < 0. �

Lemma 2 For all C > 0, N > 1, and 1 > ε > 0 there is a γ > 0 such that the output
(α∗

1 , α
∗
2) of the L1-regularized potential booster for φ satisfies α∗

1 > 0, α∗
2 = 0.

Proof By Lemma 1, there is a γ > 0 such that whenever |α1| + |α2| ≤ C,

P1(α1, α2) < P2(α1, α2) < 0.

For such a γ , if either of the coordinates of the optimal solution were negative, we could
improve the solution while reducing the L1 norm of the solution by making the negative
component less so, a contradiction. Also, if α∗

2 were strictly positive, then we could improve
the solution without affecting the L1 norm of the solution by transferring a small amount of
the weight from α∗

2 to α∗
1 , again, a contradiction. �

Looking at the proof of Lemma 1 it is easy to see that the lemma actually holds for all
sufficiently small γ > 0, and thus we may suppose that the instances (2γ,−γ ) and (−γ,2γ )

lie in the unit square [−1,1]2. Lemma 2 thus implies Theorem 3 because if α∗
1 > 0 and

α∗
2 = 0, the positive example (−γ,2γ ) is classified incorrectly.
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7 Consequences for known boosting algorithms

A wide range of well-studied boosting algorithms are based on potential functions φ that
satisfy our Definition 1. Theorem 1 thus implies that each of the corresponding convex
potential function boosters as defined in Sect. 2.2 cannot tolerate random classification noise
at any noise rate 0 < η < 1

2 . (In some cases the original versions of the algorithms discussed
below are not exactly the same as the Bφ algorithm as described in Sect. 2.2 because of small
differences such as the way the step size is chosen at each update. Thus we do not claim that
Theorem 1 applies directly to each of the original boosting algorithms; however we feel
that our analysis strongly suggests that the original boosters may, like the corresponding Bφ

algorithms, be highly susceptible to random classification noise.)

AdaBoost and MadaBoost As discussed in the Introduction and in Duffy and Helmbold
(1999), Mason et al. (1999) the Adaboost algorithm (Freund and Schapire 1997) is the algo-
rithm Bφ obtained by taking the convex potential function to be φ(x) = exp(−x). Similarly
the MadaBoost algorithm (Domingo and Watanabe 2000) is based on the potential function
φ(x) defined in (1). Each of these functions clearly satisfies Definition 1.

LogitBoost and FilterBoost As described in Duffy and Helmbold (1999), Mason et al.
(1999), Bradley and Schapire (2007), the LogitBoost algorithm of Friedman et al. (1998)
is based on the logistic potential function ln(1 + exp(−x)), which is easily seen to fit our
Definition 1. Roughly, FilterBoost (Bradley and Schapire 2007) combines a variation on the
rejection sampling of MadaBoost with the reweighting scheme, and therefore the potential
function, of LogitBoost.

8 Experiments with binary-valued weak learners

The analysis of this paper leaves open the possibility that a convex potential booster could
still tolerate noise if the base classifiers were restricted to be binary-valued. In this section
we describe empirical evidence that this is not the case. We generated 100 datasets, applied
three convex potential boosters to each, and calculated the training error.

Data Each dataset consisted of 4000 examples, divided into three groups, 1000 large mar-
gin examples, 1000 pullers, and 2000 penalizers. The large margin examples corresponded
to the example (1,0) in Sect. 4.2, the pullers play the role of (γ,5γ ), and the penalizers
collectively play the role of (γ,−γ ).

Each labeled example (x, y) in our dataset is generated as follows. First the label y is
chosen randomly from {−1,1}. There are 21 features x1, . . . , x21 that take values in {−1,1}.
Each large margin example sets x1 = · · · = x21 = y. Each puller assigns x1 = · · · = x11 = y

and x12 = · · · = x21 = −y. Each penalizer is chosen at random in three stages: (1) the values
of a random subset of five of the first eleven features x1, . . . , x11 are set equal to y, (2) the
values of a random subset of six of the last ten features x12, . . . , x21 are set equal to y, and
(3) the remaining ten features are set to −y.

At this stage, if we associate a base classifier with each feature xi , then each of the 4000
examples is classified correctly by a majority vote over these 21 base classifiers. Intuitively,
when an algorithm responds to the pressure exerted by the noisy large margin examples and
the pullers to move toward a hypothesis that is a majority vote over the first 11 features only,
then it tends to incorrectly classify the penalizers, because in the penalizers only 5 of those
first 11 features agree with the class.
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Finally, each class designation y is corrupted with classification noise with probabil-
ity 0.1.

Boosters We experimented with three boosters: AdaBoost, MadaBoost (which is arguably,
loosely speaking, the least convex of the convex potential boosters), and LogitBoost. Each
booster was run for 100 rounds.

Results The average training error of AdaBoost over the 100 datasets was 33%. The aver-
age for LogitBoost was 30%, and for MadaBoost, 27%.

9 Discussion

We have shown that a range of different types of boosting algorithms that optimize a con-
vex potential function satisfying mild conditions cannot tolerate random classification noise.
While our results imply strong limits on the noise-tolerance of algorithms that fit this frame-
work, they do not apply to other boosting algorithms such as Freund’s Boost-By-Majority
algorithm (Freund 1995) and BrownBoost (Freund 2001) for which the corresponding po-
tential function is non-convex. An interesting direction for future work is to extend our
negative results to a broader class of potential functions.

The L1 regularized boosting algorithms considered here fix a bound on the norm of the
voting weights before seeing any data. This leaves open the possibility that an algorithm that
adapts this bound to the data may still tolerate random misclassification noise. We suspect
that this type of adaptiveness in fact cannot confer noise-tolerance; it would be interesting
to show this.

There are efficient boosting algorithms (which do not follow the potential function ap-
proach) that can provably tolerate random classification noise (Kalai and Servedio 2005;
Long and Servedio 2005). These noise-tolerant boosters work by constructing a branching
program over the weak classifiers; the original algorithms of Kalai and Servedio (2005) and
Long and Servedio (2005) were presented only for binary-valued weak classifiers, but re-
cent work (Long and Servedio 2008) extends the algorithm from Long and Servedio (2005)
to work with confidence-rated base classifiers. A standard analysis shows that this boosting
algorithm for confidence-rated base classifiers can tolerate random classification noise at
any rate 0 < η < 1/2 according to our definition from Sect. 2.8. In particular, for any noise
rate η bounded below 1/4, if this booster is run on the data sets considered in this paper,
it can construct a final classifier with accuracy 1 − η − ε > 3/4 after O(

log 1/ε

γ 2 ) stages of
boosting. Since our set of examples S is of size four, though, this means that the booster’s
final hypothesis will in fact have perfect accuracy on these data sets which thwart convex
potential boosters.

This work thus points out a natural attractive property that some branching program
boosters have, but all convex potential boosters do not. It would be interesting to further
explore the relative capabilities of these classes of algorithms; some concrete goals along
these lines include investigating under what conditions branching program boosters can be
shown to be consistent, and working toward a characterization of the sources for which one
kind of method or another is to be preferred. The fact that convex potential boosters have
been shown to be consistent when applied with weak learners that use rich hypothesis spaces
suggests that branching program boosters have the most promise to improve accuracy for
applications in which the number of features is large enough that, for example, boosting a
decision tree learner is impractical. Also, because branching program boosters divide data
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into disjoint bins during training, they are likely to be best suited to applications in which
training data is plentiful.

The parameter γ used in our constructions is associated with the quality of the weak
hypotheses available to the booster. The known noise-tolerant boosting algorithms tolerate
noise at rates that do not depend on γ , and the analysis of this paper shows that potential
boosters cannot achieve such a guarantee. The still leaves open the possibility that noise
at rates depending on γ may still be tolerated. In fact, “smooth” boosting algorithms can
tolerate even “malicious” noise at rates that depend on γ (Servedio 2003).

The construction using binary classifiers as weak learners that we used for the exper-
iments in Sect. 8 is patterned after the simpler construction using confidence-rated weak
learners that we analyzed theoretically. It may be possible to perform a theoretical analysis
for a related problem with binary weak learners. The main outstanding task appears to be
to get a handle on the unattractiveness of the penalizers to the boosting algorithm (for ex-
ample, to prove nearly matching upper and lower bounds on their contribution to the total
potential).
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